
Class: Scripting a Spreadsheet with Google Apps Script

Spreadsheets on GS - it’s
not steroids; just
JavaScript

Spreadsheets are a tool that everybody is familiar with - because everybody needs
spreadsheets for something. Google, among others, brought us spreadsheets in the browser
(Google Docs) which took things up a notch in terms of utility, ubiquity and sharing. Now with a
new service called Google Apps Script (or GS for short), we can do even more interesting and
useful things with our spreadsheets that are worth examining. In this article we’ll take a look at
how you can take a “master” list, such as a list of all company employees, and break it down
automatically into consumable sub-lists such as a list of employees by office location. Then
we’ll take that data and publish it to a series of webpages in Google Sites. We’ll touch on
permissioning since oftentimes access to the data may be based on role or authority. This
same recipe could be useful in a thousand scenarios such as providing baseball team rosters
from a master list of all the players in the league.

It’s Déjà-vu
all over
again.

Writing applications using a single language (JavaScript) that can
cross the boundary between client and server is a very enticing
concept. Netscape first introduced the idea with their LiveWire server
back in 1996. (It can take awhile for prescient ideas to gain
popularity; and for those ideas to mature.)

People are taking advantage of the benefits:

●​ One language to learn, so less overhead to development
●​ Construct a DOM server-side and then modify it client-side

using the same data structures, methods etc.
●​ Developing in the browser brings development closer to the

p. 1

finished product.

Fortunately in the last several years, the amount of library code (e.g
http://phpjs.org/) and other aspects of the ecosystem (e.g.
http://jsfiddle.net/) have grown tremendously to foster it’s continued
popularity and capability.

Google Apps Script is basically JavaScript run on the server. Google provides a complete
development environment in the browser, with all the code versioning and hosting done for you.
They also provide a library of functionality, with APIs for other Google services from email to
documents and sites. For this tutorial, we’ll assume that you have a Google Account and some
familiarity with JavaScript. If you’re a total beginner, see
https://developers.google.com/apps-script/your_first_script.

You can start off by making a script at https://script.google.com, but let’s assume that you have
an existing spreadsheet and want to add some functionality to it. We’re going to start with a
sample spreadsheet full of employees . Our imaginary company is a sales organization with 1

field reps associated with offices in major locations throughout the globe. The spreadsheet has
columns for

●​ Direct phone number
●​ Extension
●​ Office
●​ First Name
●​ Last Name
●​ Middle Initial
●​ Cell Phone

Open the spreadsheet and click Tools -> Script editor in the menu to open the Script editor. (See
figure 1.)

1 This anonymous sample data is reset every 24 hours.

p. 2

https://developers.google.com/apps-script/your_first_script
https://script.google.com
https://docs.google.com/spreadsheet/ccc?key=0AqwQ0jPilu4IdGNqMzNXSy15ZWQ3c0ZFMkZja2RuS2c#gid=0

Figure 1: Click ‘Tools’ -> ‘Script editor’ in the menu to open the Script editor interface.

Copy the Master
​
The first thing we want to do is make it so that the master list of employees is copied to another
list designed to be a READ-ONLY reference so that casual phone lookups don’t inadvertently
change a record. Refer to Listing 1 where we create a JavaScript function named
copyPhoneList()

Note: find the code in this article at http://pastebin.com/U0C9pHUD, nicely formatted with
comments.

This is our main function - responsible for copying data from our master data set
to another copy that is read-only (due to the sheet protection added to it).

Listing 1: Code.gs - copyPhoneList
function copyPhoneList() {
 var hasFirstName = false;
 var ss = SpreadsheetApp.getActiveSpreadsheet();

 var data = ss.getRangeByName("masterPhoneListData").getValues(); // the named range
 var range = ss.getRangeByName("masterPhoneListData");
 var numColumns = range.getEndColumn() - range.getColumn() + 1;
 //var numColumns = data[10].length; // how many columns are in each row
 var phoneList = new Array();

p. 3

http://pastebin.com/U0C9pHUD

 // then we'll iterate through our source data and push recordDatas over to the target for each
non-empty row
 for (i=0; i<data.length; i++) { // we've already used a named data range to skip it's header
 hasFirstName = !isCellEmpty(data[i][4]);
 if (hasFirstName) { // if there is something in firstname, then get the record
 var record = new Array();
 for (j=0; j<numColumns; j++) {
 // we want to explicitly grab only columns a,b,c,d,e,g or 0,1,2,3,4,6
 switch(j) {
 case 0: // DID (Direct Inward Dial)
 case 1: // Ext
 case 2: // Office
 case 3: // First Name
 case 4: // Last Name
 case 6: // Cell Phone
 record.push(data[i][j]);
 break;

 default:
 break;

 }
 }

 // now add each record to the data we're compiling
 phoneList.push(record);
 }
 }

 // now push it all over to the target sheet
 var target = ss.getSheetByName("Read Only");
 target.clearContents(); // empty out our target sheet, preserving the formatting

 // first we'll create a heading row
 var heading = ['Direct', 'Ext', 'Office', 'First Name', 'Last Name', 'Cell Phone'];
 //target.appendRow(heading); // put the first heading row into our target sheet

 var headersRange = target.getRange(1, 1, 1, heading.length);
 headersRange.setValues([heading]);

p. 4

 // we'd like to have sorted data, by First Name, and if those are equal, then by Last Name
 // JavaScript arrays can be sorted by using a callback function supplied as the argument to the
sort() method call
 // http://www.sitepoint.com/sophisticated-sorting-in-javascript/
 phoneList.sort(function(a, b) {
 if(a[3].toLowerCase() === b[3].toLowerCase()) {
 var x = a[4].toLowerCase(), y = b[4].toLowerCase();
 return x < y ? -1 : x > y ? 1 : 0;
 } else {
 var x = a[3].toLowerCase(), y = b[3].toLowerCase();
 return x < y ? -1 : x > y ? 1 : 0;
 }
 });

 // All done, put the data into place
 target.getRange(2, 1, phoneList.length, phoneList[0].length).setValues(phoneList);
}

I won’t go through the code line-by-line since the comments indicate what’s going on. We have
access to all the normal JavaScript language functions, and use multiple functions which are
built-in to the Google Spreadsheets API (See sidebar for a list of the base classes). For
beginners our code may seem daunting, but it’s really just an extension of examples that are
available in the Google Apps Script website: https://developers.google.com/apps-script/
Essentially, to copy the phone list, we select a range of data from a reference to our source
spreadsheet. Then we loop through each row of data looking for rows where there is at least a
FirstName. Each of those records becomes something we copy to a target list. We’re going to
leave out the column for Middle Initial because that data is unimportant to us. We can skip over
those by simply enumerating the columns we do want. With the data in memory, ready to put in
place in our target, we select another sheet by name and clear it’s contents. We create an array
to use as a header row in our new spreadsheet. Finally we use getRange() and setValues
together to put the data in place.

Default Services in
Google Apps Script

GS offers pre-written code libraries
(https://developers.google.com/apps-script/defaultservices)
covering wide areas of functionality including APIs to their other
online services including: Base Services, Cache, Calendar,
Charts, Contacts, Content, DocsList, Document, Domain,
Finance, Gmail, Groups, Html, Jdbc, Language, Lock, Mail, Maps,
Properties, Script, ScriptDb, Sites, Soap, Spreadsheet, Ui,
UrlFetch, Utilities, and Xml

p. 5

https://developers.google.com/apps-script/
https://developers.google.com/apps-script/defaultservices

Once our function is ready, we can run it by selecting it in the top menu bar, and clicking the >
play/run icon (Figure 2). If there are no syntax or other errors, we’ll see the script execution
complete.

Figure 2: Select the function you wish to run (copyPhoneList) in the menu bar, and click the
play icon to execute that piece of functionality.

Script Authorization

The first time you run a GS script, you will likely receive a
notification that the script needs your authorization to be
executed, as illustrated at
https://developers.google.com/apps-script/your_first_script

Permission granted

We want our copy to be usable as a reference, which means that it needs to be accessible to a
lot of people, but we don’t want them to make changes. In Listing 2 we are using the built-in
permissions infrastructure; we can restrict edit access to a few users. Note that we can use the
msgBox() method of the Browser Services to pop a JavaScript alert(). Since this is server-side
code we can’t use a regular JavaScript alert() to see something on the client.

p. 6

https://developers.google.com/apps-script/your_first_script

Listing 2: Code.gs - Setting permissions

/*
 * A function to add protection to a sheet so that it's not
 * inadvertently modified
 */
function protectSheet(sheetName) {
 if (typeof(sheetName) == "undefined") {
 var sheet = SpreadsheetApp.getActiveSpreadsheet().getSheets()[0];
 } else {
 var sheet = SpreadsheetApp.getActiveSpreadsheet().getSheetByName(sheetName);
 }

 var permissions = sheet.getSheetProtection();
 var isProtected = permissions.isProtected();
 if (isProtected) {
 // Browser.msgBox('The sheet ' + sheetName + ' has been protected');
 } else {
 // Browser.msgBox('The perission check shows ' + permissions);
 permissions.addUser('editors@example.com');
 permissions.addUser('joe.boss@example.com');
 permissions.addUser('mary.manager@example.com');
 permissions.setProtected(true);
 sheet.setSheetProtection(permissions);
 }
}

Break it down

The next thing we want to do is break out our master list into several smaller spreadsheets
according to what office the employee is affiliated with.

Note that when getting a reference to a spreadsheet, you can either get a reference to the
active document or take an “external” approach by identifying the sheet with it’s unique id:
var ss = SpreadsheetApp.getActiveSpreadsheet();
var DATA_SPREADSHEET_ID = "0AqwQ0jPilu4IdGNqMzNXSy15ZWQ3c0ZFMkZja2RuS2c";
var ss = SpreadsheetApp.openById(DATA_SPREADSHEET_ID);

p. 7

then to get the actual sheet in question, you can work with the ordinal index of the sheet you
wish to retrieve (assuming that order does not change) or get the sheet by name:

var sheet = ss.getSheets()[0];
var sheet = ss.getSheetByName("Read Only");

Listing 3: Code.gs - createOfficeSheets()

// This is where the data used will be retrieved from:
var DATA_SPREADSHEET_ID = "0AqwQ0jPilu4IdGNqMzNXSy15ZWQ3c0ZFMkZja2RuS2c";

function createOfficeSheets() {
 var ss = SpreadsheetApp.getActiveSpreadsheet();
 var sheet = ss.getSheets()[0];

 var dataSs = SpreadsheetApp.openById(DATA_SPREADSHEET_ID);
 // var dataSheet = dataSs.getSheets()[0];
 var dataSheet = ss.getSheetByName("Read Only");

 // Fetch all the data
 var data = getRowsData(dataSheet);

 // This is the data we want to display
 var columnNames = ['Direct', 'Ext', 'Office', 'First Name', 'Last Name', 'Cell Phone'];

 // Index data by office name
 var dataByOffice = {};
 var offices = [];
 for (var i = 0; i < data.length; ++i) {
 var rowData = data[i];
 if (!dataByOffice[rowData.office]) {
 dataByOffice[rowData.office] = [];
 offices.push(rowData.office);
 }
 dataByOffice[rowData.office].push(rowData);
 }

 offices.sort();
 var headerBackgroundColor = dataSheet.getRange(1, 1).getBackgroundColor();
 for (var i = 0; i < offices.length; ++i) {
 var sheet = ss.getSheetByName(offices[i]) ||

p. 8

 ss.insertSheet(offices[i], ss.getSheets().length);
 sheet.clear();
 var headersRange = sheet.getRange(1, 1, 1, columnNames.length);
 headersRange.setValues([columnNames]);
 headersRange.setBackgroundColor(headerBackgroundColor);
 setRowsData(sheet, dataByOffice[offices[i]]);
 }
}

Trigger Happy

We’ve worked out our main functionality, and clicked the Run icon to test our code, but how do
we tie this code to our spreadsheet so that it just works? GS provides some built-in events that
you can attach code to. If defined, any function named onEdit() will run automatically when a
user edits a spreadsheet. Similarly, onOpen will get triggered once per user session. With that
in mind, we’ll create our office sheets once per session, but we’ll make the read-only copy on
every edit. We’ll also introduce a couple more features. The onEdit handler is obviously tied to
an edit event, and so that carries with it some context. It makes it easy to add an automatic
comment that records when a particular cell was last modified (answering such questions as
“did I remember to update Joe’s phone number?”). We also add in a zebraStripe() function that
makes it easier to visually scan large tables.

Another option we have is to expose functionality to the user in the form of custom spreadsheet
menus. Actually, there is a whole UI Services section that we could use to build a custom
interface, but that is for another day. For this demo, we’ll just use addMenu() to allow the end
user to update office sheets on demand (in addition to once per session).

Listing 4: Code.gs - Triggers

/*
 * Our main handler
 * The onEdit trigger is one of three built-in triggers
 * This function, if defined, is called automatically
 * @see https://developers.google.com/apps-script/understanding_triggers
 */
function onEdit(event) {
 var ss = event.source.getActiveSheet();
 var r = event.source.getActiveRange();

p. 9

 r.setComment("Last modified: " + (new Date()));
 copyPhoneList();
 zebraStripe("Read Only");

// createOfficeSheets(); // don't do this every edit
}

// The onOpen function is executed automatically every time a Spreadsheet is opened
function onOpen(e) {

 var ss = SpreadsheetApp.getActiveSpreadsheet();
 var menuEntries = [];
 menuEntries.push({name: "Generate Office Sheets", functionName: "createOfficeSheets"});
 ss.addMenu("Internal Tools", menuEntries);
 protectSheet('Read Only');
 createOfficeSheets();
}

Our spreadsheets will be accessible according to however we’ve shared them. But we can take
it a step further by publishing these spreadsheets in web pages that we build in Google Sites.
First create a site at https://sites.google.com Then create a new top-level page, and make it
type:list. In the definition of that page, we’ll choose the basic fields that we want to publish from
our spreadsheet.

As an example, I’ve created a site named examplegsr and I created a page named ‘phone-list’
which can be viewed at https://sites.google.com/site/examplegsr/phone-list. Note; ‘name’ is not
the title, it’s the URL of the page.

With the code in Listing 5, I can publish this spreadsheet data as list elements in a page on my
site. See figure 3.

p. 10

https://sites.google.com
https://sites.google.com/site/examplegsr/phone-list

Figure 3: A list page: Company Phone List generated from spreadsheet

Listing 5:Code.gs - pushToSite

function pushToSite() {
 var phoneList = new Array();
 // var ss = SpreadsheetApp.getActiveSheet().getSheetByName('Read Only');
 var ss = SpreadsheetApp.getActiveSpreadsheet().getSheetByName('Read Only');

 var site = SitesApp.getSiteByUrl("https://sites.google.com/site/examplegsr/");
 // Or, if you are a Google Apps user:
 // var site = SitesApp.getSite("YOUR_DOMAIN", "SITE_NAME")

p. 11

 var page = site.getChildByName("phone-list");

 var data =
SpreadsheetApp.getActiveSpreadsheet().getRangeByName("masterPhoneListData").getValues
();
 var range =
SpreadsheetApp.getActiveSpreadsheet().getRangeByName("masterPhoneListData");
 var numColumns = range.getEndColumn() - range.getColumn() + 1;

 // then we'll iterate through our source data and push recordDatas over to the target for each
non-empty row
 for (i=0; i<data.length; i++) { // we've already used a named data range to skip it's header
 hasFirstName = !isCellEmpty(data[i][3]);
 if (hasFirstName) { // if there is something in firstname, then get the record
 var record = new Array();
 record.push(data[i][3]); // First Name
 record.push(data[i][4]); // Last Name
 record.push(data[i][6]); // Cell Phone
 record.push(data[i][0]); // Direct
 record.push(data[i][2]); // Office
 // now add each record to the data we're compiling
 // phoneList.push(record);
 page.addListItem(record);

 }
 }
}

Further info

See the home for GS https://developers.google.com/apps-script/ and
the various articles they have curated at
https://developers.google.com/apps-script/articles.
Code: http://pastebin.com/U0C9pHUD
Sample Spreadsheet Data:
https://docs.google.com/spreadsheet/ccc?key=0AqwQ0jPilu4IdGNqM
zNXSy15ZWQ3c0ZFMkZja2RuS2c#gid=0
Sample Site: https://sites.google.com/site/examplegsr/phone-list

p. 12

https://developers.google.com/apps-script/
https://developers.google.com/apps-script/articles
http://pastebin.com/U0C9pHUD
https://docs.google.com/spreadsheet/ccc?key=0AqwQ0jPilu4IdGNqMzNXSy15ZWQ3c0ZFMkZja2RuS2c#gid=0
https://docs.google.com/spreadsheet/ccc?key=0AqwQ0jPilu4IdGNqMzNXSy15ZWQ3c0ZFMkZja2RuS2c#gid=0
https://sites.google.com/site/examplegsr/phone-list

- Gregory Scott Rundlett
A longtime Free Software advocate participating in the Boston Linux User Group and Greater
New Hampshire Linux User Group. He lives with his two sons in Salisbury, MA.

p. 13

	Spreadsheets on GS - it’s not steroids; just JavaScript
	
	
	Copy the Master
	Listing 1: Code.gs - copyPhoneList
	

	Permission granted
	Listing 2: Code.gs - Setting permissions

	Break it down
	Listing 3: Code.gs - createOfficeSheets()

	
	Trigger Happy
	Listing 4: Code.gs - Triggers
	Listing 5:Code.gs - pushToSite

	
	- Gregory Scott Rundlett

