
QuickSort vs. Selection Sort 

 
1.​ The Quicksort has been mathematically proven to be the fastest sorting algorthm. The algorthm is written 

below, as is the Selection Sort. 
 

public class quicksorter 
{ 
   private final int MAX = 100000; 
    private int[] ar = new int[MAX]; 
      
    public void fill()                                     // fill with random numbers 
      {for (int x=0;x < ar.length; x++) 
           ar[x] = (int)(Math.random() * 100000) + 1; 
        } 
 
        public void fill2()                           // fill with sorted numbers 
      {for (int x=0;x < ar.length; x++) 
           ar[x] = x; 
        } 
         
    public void quicksort() 
      {quicksorthelper(0,ar.length-1); 
        } 
         
      public void selectionSort() 
       {for (int x=0; x < ar.length; x++) 
           {int place = x; 
             for (int y=x+1; y < ar.length;y++) 
               if (ar[x] < ar[place]) 
                 place = x; 
               
               int temp = ar[x]; 
               ar[x] = ar[place]; 
               ar[place] = temp; 
            }} 
               
      public void quicksorthelper(int low,int high) 
        {int pivotplace; 
           if (low >= high)      return; 
        
         int pivotvalue = ar[low];                        //  will switch this to middle later 
         int frontofbig = low+1;                          // point to front of numbers > pivot value 
         for (int x=frontofbig; x <= high;x++) 
           if (ar[x] < pivotvalue) 
              {int temp =ar[x]; 



               ar[x] = ar[frontofbig];              // keep all small to left of frontofbig 
               ar[frontofbig] = temp; 
               frontofbig++; 
            } 
 
            ar[low] = ar[frontofbig-1];                        // when done move pivot value to pivot place 
            ar[frontofbig-1] = pivotvalue; 
             pivotplace = frontofbig-1; 
​ ​  
​             quicksorthelper(low, pivotplace-1);           // now sort 2 partitions 
​ ​ quicksorthelper(pivotplace+1, high);​  
        } 
    } 
 
 
The hardest part of writing the Quicksort is writing the partition algorithm that divides the array into two parts 
separated by the pivot value.  
 
So if the array was   12 4 18 8 23 9 45 2 and we picked the first number 12 as the pivot value then the array 
would become     4 8 9 2 12  18 23 45 with the numbers separated around the pivot value. We would then call 
the quicksort function to sort the two smaller sections, and then the smaller sections, until all sections were 
down to a size of 1. 
 
2.  Below is the call, with a timer to the Quicksort and Selection sorts 
 
import java.io.*; 
 
public class SortObjects2 
{ 
   public static void main(String[] args) 
   { 
quicksorter q = new quicksorter(); 
  
q.fill(); 
long timeA = System.currentTimeMillis(); 
q.quicksort(); 
long timeB = System.currentTimeMillis(); 
System.out.println("Elapsed time with Quicksort Sort: " + (timeB - timeA) + " milliseconds"); 
 
q.fill(); 
timeA = System.currentTimeMillis(); 
q.selectionSort(); 
timeB = System.currentTimeMillis(); 
System.out.println("Elapsed time with Selection Sort: " + (timeB - timeA) + " milliseconds"); 
   } 
} 
 
 



The output was :   
Elapsed time with Quicksort Sort: 18 milliseconds 
Elapsed time with Selection Sort: 19758 milliseconds 
 
The Quicksort was over 1000 times faster for 100,000 integers. 
 
Run again: 
Elapsed time with Quicksort Sort: 22 milliseconds 
Elapsed time with Selection Sort: 19494 milliseconds 
 
Over 800 times faster. The times will change because some sets of data will sort quicker than others. 
 
Run a third time we get: 
Elapsed time with Quicksort Sort: 23 milliseconds 
Elapsed time with Selection Sort: 23374 milliseconds 
 
 
3. There is a problem with the Quicksort though. If the array is sorted, then the algorithm becomes really slow, becoming 
almost as slow as the Selection Sort. This is because you aren’t separating the data into smaller and smaller partitions. So 
if we sort 4000 sorted integers (call fill2, instead of fill) you get: 
 
Elapsed time with Quicksort Sort: 27 milliseconds 
Elapsed time with Selection Sort: 38 milliseconds 
 
the reason we only sorted 4000 elements is because with more than that we get a stack overflow and the program crashes 
because the program has  so many recursive calls it has to remember. So the Quicksort won’t even work for large groups 
of data. 
 
4. Quicksort fix. To fix the Quicksort bug, we can use something other than the first value as the pivot value. If we pick 
the middle value of the segment as the middle value it will avoid this problem of working with sorted arrays.  
 
We can keep the partition algorithm by just switching the first value in the segment we are sorting with the middle value 
in that segment. 
 
                        if (low >= high) return; 
​ ​  int mid = (low + high) /2; 
​ ​  int pivotvalue = ar[mid]; 
​ ​  ar[mid] = ar[low]; 
​ ​  ar[low] = pivotvalue; 
 
 
Then the Quicksort functions as expected, even for sorted values. 
 
Elapsed time with Quicksort Sort: 19 milliseconds 
Elapsed time with Selection Sort: 19398 milliseconds 


