
 

CS197 Harvard: AI Research Experiences 
Fall 2022: Lecture 4 – “In-Tune with Jazz Hands”​
Fine-tuning a Language Model using Huggingface 

Instructed by Pranav Rajpurkar. Website https://cs197.seas.harvard.edu/ 

Abstract 
I’ve found that building is the most effective way of learning when it comes to AI/ML 
engineering. Instead of a typical theoretical introduction to deep learning, I want to start our 
first dive into deep learning through engineering using Huggingface, which has created a set 
of libraries that are being rapidly adopted in the AI community. We’ll focus today on natural 
language processing, which has seen some of the biggest AI advancements, most recently 
through large language models. This lecture is structured as a live coding walkthrough: we will 
fine-tune a pre-trained language model on a dataset. Through an engineering lens, this 
walkthrough will cover dataset loading, tokenization, and fine-tuning. 

 
Midjourney generation for "a human 
typing into a computer that types into 
another computer" 

Learning outcomes: 
-​ Load up and process a natural 

language processing dataset using the 
datasets library. 

-​ Tokenize a text sequence, and 
understand the steps used in 
tokenization. 

-​ Construct a dataset and training 
step for causal language modeling.

https://cs197.seas.harvard.edu/
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Fine-Tuning Our Language Model 
In lecture 1, we used the GPT-3 language model to complete some text for us. Today, we are 
going to fine tune such a model (adapt it to new data). Language modeling predicts words in a 
sentence. There are different types of language modeling, we’re going to focus in particular 
on causal language modeling, where the task is to predict the next token in a sequence of 
tokens using only the tokens that came before it. 
 
My final notebook after today’s lecture is here. 

HuggingFace 
For this example, we are going to work with libraries from Huggingface. Hugging Face has 
become a community and data science center for building, training and deploying ML models 
based on open source (OS) software. Fun fact: Huggingface was initially a chatbot, and named 
after the emoji that looks like a smiling face with jazz hands – 🤗. 
 
We’re going to use Huggingface to fine-tune a language model on a dataset. You may have to 
follow the installation instructions here later in the lecture. Our lecture today will closely follow 
this, and this, but with some of my own spin on things. 

Loading up a dataset 
We are going to use the 🤗 Datasets library. This library has three main features: (1) efficient 
way to load and process data from raw files (CSV/JSON/text) or in-memory data (python dict, 
pandas dataframe), (2) a simple way to access and share datasets with the research and 
practitioner communities (over 1,000 datasets are already accessible in one line), and (3) is 
interoperable with DL frameworks like pandas, NumPy, PyTorch and TensorFlow. 
 
For this demo, we are going to work with the SQuAD dataset. Briefly, the Stanford Question 
Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions 
posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a 
segment of text, or span, from the corresponding reading passage, or the question might be 
unanswerable. Fun fact: SQuAD came out of one of my first projects in my PhD. 
 
Today, we’re going to see whether we can fine-tune GPT on the questions posed in SQuAD, 
so we have a question completion agent. We will load the dataset from here: 
https://huggingface.co/datasets/squad 
 
Let’s get started! 

https://huggingface.co/docs/transformers/tasks/language_modeling
https://github.com/rajpurkar/cs197-lec4/blob/master/demo.ipynb
https://huggingface.co/welcome
https://huggingface.co/docs/transformers/tasks/language_modeling
https://github.com/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb
https://huggingface.co/docs/datasets/v1.11.0/quicktour.html
https://huggingface.co/datasets/squad
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This method (1) downloads and import in the library the dataset loading script from the path if 
it’s not already cached inside the library, (2) run the dataset loading script which will download 
the dataset file from the original URL if it’s not already downloaded and cached, process and 
cache the dataset, and (3) return a dataset built from the requested splits in split (default: all). 
 
The method returns a dictionary (datasets.DatasetDict) with a train and a validation subset; 
what you get here will vary per dataset. 
 
We can remove columns that we are not going to use, and use the map function to add a 
special <|endoftext|> token that GPT2 uses to mark the end of a document. 
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Note the use of the map() function. As specified here, the primary purpose of map() is to 
speed up processing functions. It allows you to apply a processing function to each example in 
a dataset. 
 
Let’s look at the structure of a few of the entries.  

 
 
Good. Our dataset is ready for use (almost)! 

https://huggingface.co/docs/datasets/process#map
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Tokenizer 
Before we can use this data, we need to process it to be in an acceptable format for the 
model. So how do we feed in text data into the model? We are going to use a tokenizer. A 
tokenizer prepares the inputs for a model. 
 
A tokenization pipeline in huggingface comprises several steps: 

(1) Normalization (any cleanup of the text that is deemed necessary, such as removing 
spaces or accents, Unicode normalization, etc.), (2) Pre-tokenization (splitting the input 
into words), (3) Running the input through the model (using the pre-tokenized words to 
produce a sequence of tokens), and (4) Post-processing (adding the special tokens of 
the tokenizer, generating the attention mask and token type IDs). 

 
This is depicted in this helpful image from huggingface: 

 
 
The above steps show how we can go from text into tokens. There are multiple rules that 
govern the process that are specific to certain models. For tokenization, there are three main 
subword tokenization algorithms: BPE (used by GPT-2 and others), WordPiece (used for 
example by BERT), and Unigram (used by T5 and others); we won’t go into any of these, but if 
you’re curious, you can learn about them here. 

https://huggingface.co/course/chapter6/8?fw=pt
https://huggingface.co/course/chapter6/4?fw=pt#algorithm-overview
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Since tokenization processes are model-specific, if we want to fine-tune the model on new 
data, we need to instantiate the tokenizer using the name of the model, to make sure we use 
the same rules that were used when the model was pretrained. This is all done by the 
AutoTokenizer class: 
 

 
 
Pro-tip: The huggingface library contains tokenizers for all the models. Tokenizers are available 
in a Python implementation or “Fast” implementation which uses the Rust language. 
 
Let’s first convert a sample sentence into tokens: 

 
 
Here, you can see the sentence broken into subwords. In GPT2 and other model tokenizers, 
the space before a word is part of a word; spaces are converted in a special character (the Ġ ) 
in the tokenizer. 
 
Once we have split text into tokens (what we’ve seen above), we now need to convert tokens 
into numbers. To do this, the tokenizer has a vocabulary, which is the part we download when 
we instantiate it with the from_pretrained() method. Again, we need to use the same 
vocabulary used when the model was pretrained. 
 

https://discuss.huggingface.co/t/bpe-tokenizers-and-spaces-before-words/475
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The tokenizer actually automatically chains these operations for us when we use __call__: 

 
 
The tokenizer returns a dictionary with 2 important items: (1) input_ids are the indices 
corresponding to each token in the sentence, and (2) attention_mask indicates whether a 
token should be attended to or not. We are going to ignore the attention_mask for now; if 
you’re curious, you can read more about it here. 
 
Exercise: Try another tokenizer on your own sequence. 

(1)​ What are the differences that you see? (2) Find out what kind of a tokenization 
algorithm your tokenizer uses . 

 
We are going to now tokenize our dataset. We apply a tokenize function to all the splits in our 
“datasets” object.  

https://huggingface.co/docs/transformers/preprocessing#tokenize
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We use the 🤗 Datasets map function to apply the preprocessing function over the entire 
dataset. By setting batched=True, we process multiple elements of the dataset at once and 
increase the number of processes with num_proc=4. Finally, we remove the “questions” 
column because we won’t need it now. 
 
Let’s see what the tokenized_datasets variable looks like. 

 
 

Data Processing 
For causal language modeling (CLM), one of the data preparation steps often used is to 
concatenate the different examples together, and then split them into chunks of equal size. 
This is so that we can have a common length across all examples without needing to pad. So 
Say we have: [ 
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"I went to the yard.<|endoftext|>",​
"You came here a long time ago from the west coast.<|endoftext|>" 

], we might change this to:[ 

"I went to the yard.<|endoftext|>You came here",​
"a long time ago from the west coast.<|endoftext|>" 

]. 
 
Let’s implement this transformation. We are going to use chunks defined by block_size of 128 
(although GPT-2 should be able to process a length of 1024, we might not have the capacity to 
do that locally). 
 
We need to concatenate all our texts together then split the result in small chunks of a certain 
block_size. To do this, we will use the map method again, with the option batched=True. This 
option actually lets us change the number of examples in the datasets by returning a different 
number of examples than we got. This way, we can create our new samples from a batch of 
examples. 
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Note that we duplicate the inputs for our labels. The 🤗 Transformers library will automatically 
be able to use this label to set up the causal language modeling task (by shifting all tokens to 
the right. 
 
We can look at a sample of the lm_dataset now.  
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Note how we can use tokenizer’s decode function to go from our encoded ids back to the 
text. 

 
 
Finally, we will make a smaller version of our training and validation so we can fine-tune our 
model in a reasonable amount of time. 
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Causal language modeling 
Our modeling is going to be relatively straightforward. We need to define training arguments, 
and set up our Trainer. The Trainer class provides an API for feature-complete training in 
PyTorch for most standard use cases. 
 
As part of our training args, we specify that we will push this model to the Hub. The Hub is a 
huggingface platform where anyone can share and explore models, datasets, and demos. 

 
 
We can now evaluate the model. Because we want our model to assign high probabilities to 
sentences that are real, and low probabilities to fake sentences, we seek a model that assigns 
the highest probability to the test set. The metric we use is ‘perplexity’, which we can think of 
as the inverse probability of the test set normalized by the number of words in the test set. 
Therefore, a lower perplexity is better. 
 
 

https://huggingface.co/docs/transformers/v4.21.3/en/main_classes/trainer#transformers.Trainer
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We can now upload our final model and tokenizer to the hub. 

 
 
Woohoo, we can now use our new pushed model 
 
Exercises 
Exercise 1: Now rather than starting with a pre-trained model, start with a model from scratch. 
Exercise 2: Replace DistilGPT with a non-GPT causal language model. 
Exercise 3: Replace the SQuAD dataset with another dataset (except for wikitext). 
 

Generation with our fine-tuned model 
In our final step, we are going to use our fine-tuned model to autocomplete some questions. 
Let’s go ahead and load our saved model first: 

 
 
We can now tokenize some text, including some context and the start of a question: 
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Finally, we can now pass this input into the model for generation: 

 
The generate function is one we haven’t seen before and has a lot of arguments that it takes 
in. The generation isn’t the main focus of our lecture, but if you’re curious, Huggingface has 
great walkthroughs here & here. 
 
Let’s see what the example says: 

 

https://huggingface.co/docs/transformers/v4.21.3/en/task_summary#text-generation
https://huggingface.co/blog/how-to-generate
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And there we have it – our own model used for autocompleting a question! Awesome! 
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