
Embedded Systems Development Using
mbed Tools

The purpose of this class is to get the student acquainted with embedded systems using mbed.

Embedded systems are all around us every day, from the clock in your car to the controller in
the microwave and the blender. mbed is a highly productive architecture and set of tools that
focus on developer productivity and efficiency. The entry point is http://developer.mbed.org - the
developer community. There you’ll find hardware platforms, component libraries and a
web-hosted IDE and compiler. This means that it works on all operating systems (Linux, Mac
and Windows). This is free for developers and the software is available under the commercially
friendly Apache 2.0 license.

In this workshop we will cover:

● The mbed online tools and developer community.[IA1]

● Programming in C/C++ : variables, loops and functions.

● Using the terminal for output and debug.

● Digital vs Analog - what's the difference and when to use each one.

● The mbed SDK APIs:

○ DigitalIn and DigitalOut.

○ AnalogIn and AnalogOut.

○ Wait.

○ Ticker.

○ Pulse Width Modulation (PWM).

Pre-Class

http://developer.mbed.org

●​ Install driver (Windows only)
http://developer.mbed.org/handbook/Windows-serial-configuration

●​ Update board firmware (optional) http://developer.mbed.org/platforms/

How to Use the Website

First things first: the majority of the mbed platform is online. This means you can use it on any
operating system - Windows, OSX, Linux and Unix - It doesn't matter; as long as it has a web
browser you’re good to go. Go to https://developer.mbed.org/ and follow these steps:

1.​ Register for an account.
2.​ Select your board on the Platforms page (top left).
3.​ Import a program into the online compiler (see

http://developer.mbed.or/teams/mbed_example/).
4.​ Compile code.
5.​ Download binary to computer (automatically on each compile).
6.​ Load binary onto board (drag and drop to USB).

Programming Starter: Variables, Loops and Functions

There are three basic programming concepts that are key to programming: the variable, the
loop and the function. Don’t worry if this section is a little overwhelming, there are lots of good
sample programs on the website to get you started.

Variables

Variables are a thing that you can store a value to or read a value from. In the C language there
are many different variable types, but the four we will focus on in this class are int, bool, float
and char.

Integers (int)

●​ Whole numbers between 0 - 2^31.
●​ Numbers like 0, 1, 2, 3, 4, 111, 222 and 333 are all integers.

http://mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/platforms/
https://developer.mbed.org/
http://developer.mbed.or/teams/mbed_example/)

●​ Integers do not contain anything after the decimal point. All numbers are rounded down
to the lowest whole number. For example, 4.56 would be saved as 4 and 2.99 would be
saved as 2.

●​ Int was once defined differently depending on the hardware, which was a big problem.
Then a language revision happened and it’s now an explicit option. As of C99 (an old C
version) you can specify the number of bits an integer takes up:

int ambiguous size

int8_t 8 bits

int16_t 16 bits

int32_t 32 bits

Floating Point (float) [IA1]

●​ Numbers before and after the decimal point. Fractions are a great example of what
floating point numbers are used for.

●​ Numbers like 0.45, 7.88 and 0.001 are floats.

Boolean (bool)

● ​ Contains two values: true (1) or false (0).

● ​ Booleans are useful for things that can only have two states, high or low, on or off, true
or false. It happens often enough to justify having its own type.

Characters (char)

● ​ Characters are anything you can type on your keyboard surrounded by quotation marks.
For example, “A”, “4” and “~” are all valid representations of characters.

● ​ A bunch of characters put together is called a string. For example, “mbed rules!” is a
string.

● ​ There are special characters, such as the new line “\n” and return characters “\r” and
even the tab character “\t”, that move the cursor around the screen. There are also
special characters to change the text color, insert tabs, make the bell sound and so on.
Google “ASCII special characters in C” for more information.

Example: Variables

int xInt;​ ​ // no initialization, value is random
int yInt = 0; ​​ // initialized to 0

float xInt;​ ​ // no initialization, value is random
float yfloat = 0;​ // Initialized to 0
float zfloat = 3.14;​ // Initialized to 3.14

bool xBool;​ ​ // no initialization, value is random
bool yBool = true;​ // initialized to true, has int value 1
bool zBool = false;​ // initialized to false, has int value 0

char xChar;​ ​ // no initialization, value is random
char yChar = "A";​ // initialized to "A"

This code snippet is an
example of declaring
different variable types.

Loops

Loops are a piece of code that executes more than once. There are many kinds of loops, some
go for a certain number of iterations, some go on forever, and some go until something happens
(a condition is met). The most common type of loop is the while loop.

While Loops

The while loop executes a piece of code while a condition is true. The syntax for a while loop
looks like this:

while(expression){

 // execute some code.

}

The above code executes over and over again while the expression is true. In C “true” is any
number greater than 0, or the boolean value true.

Example: While Loop

int x = 10;

// wait for 10 seconds
while(x){
 wait(1) // wait for 1 second
 x = x-1;
}
// continue to execute other code

For example this code waits for x seconds and
then continues.

Functions

A function is a group of statements that together perform a task. Every C program has at least
one function, main(), and all the most trivial programs can define additional functions:

rtype FuntionName(vtype vname){

​ // function code goes here

}

The rtype is the type of the variable the function returns. The vtype is the type of the variable
passed to the function. To keep it simple we are only going to use functions that are passed and
return variables of type void, which is a fancy way of saying nothing.

Every program has a special function called main(). This function name is special and tells the
compiler to start running the application from that function. Applications therefore start with
main(), and if or when the code gets to the end of main() it stops running.

Using the Terminal for Output and Debugging

It would be nice if everything just worked, unfortunately this is rarely the case. Sometimes things
go wrong in the program. This is always the programmer’s fault. Well, not always - but you
should operate under this assumption. Blaming tools will solve less than 0.1% of your problems.
When something really bad happens you will get the siren lights telling you the microcontroller
has crashed. Luckily we have the ability to print messages out to the computer telling it what's
going on.

To do print statements you need two things:

1. printf statements in the code to send the data from the microcontroller to the computer.

2. A terminal program on the computer listening to the microcontroller and displaying the
data.

Note: If you’re on Windows, make sure you install the serial driver or the microcontroller will not
show up.

PuTTY

Wwhat is PuTTY? There's no intro or definition.

To set up Putty:

1.​ Open putty:

2.​ Select the Serial connection type:

​

3.​ Modify the serial line parameter to match the device’s connection to your computer:
a.​ Windows: Go to Start -> Control Panel -> System -> Hardware -> Device

Manager -> Ports. The name will be ''mbed Serial Port (COMx)'', where ''x'' is the
number of the COM port allocated to the device.

b.​ Mac OS X: Use the command ls /dev/tty.usbmodem*
c.​ Linux: Use the command ls /dev/ttyACM*

4.​ Check the Speed parameter. All mbed microcontrollers default to 9600, and this is also
the default on PuTTY, so you shouldn’t have to edit this parameter.

5.​ If you want, you can save your session for future use. This is useful if you use the
connection more than once a day or use multiple microcontrollers (as each will have its
own COM/tty port).

6.​ Click Open to access the terminal. It will look like this:

Great! Now we have an open terminal, but no information on it. We need to send information
from the microcontroller to the terminal using printf statements.

Add the Example_printf program to your workspace, compile and load it to the board. For
reference the code is provided below and at
developer.mbed.org/teams/TechShop/code/Example_printf.

If this process seems too hard, here is a tool to do this automatically for you (windows only):
http://developer.mbed.org/users/sam_grove/code/open_mbed/

Example
Print ‘Hello World’ with a new line:

#include "mbed.h"

int main() {
 printf("Hello World!\n\r");
 while(1){
 // Do nothing
 };
}

http://developer.mbed.org/teams/TechShop/code/Example_printf
http://developer.mbed.org/teams/TechShop/code/Example_printf
http://developer.mbed.org/users/sam_grove/code/open_mbed/
http://developer.mbed.org/users/sam_grove/code/open_mbed/

This snippet of code will print “Hello World” followed by a new line to the terminal.

To print the value of variables to the terminal you use a special character, the ‘%’, followed by a
letter for what variable type you are trying to print.

· int = ‘%d’

· float = ‘%f’

· char = ‘%c’

· string = ‘%s’

· bool = ‘%d’ (0 or 1 are integers so it maps)

· hex = ‘%x’

For example, lets create an integer variable ‘x’ and give it the value 5, then print it.

#include "mbed.h"

int main() {
 int x = 5;
 printf("%d",x);
 while(1){
 // Do nothing
 };
}

If you run the above snippet multiple times you will see that each value appears directly after the
previous. To get a new line you have to print the newline characters “\n\r” after the value. Try it.

The printf statement can print any number of characters. The catch is printf is slow, so if you
put many instances of it in your program it will slow it down. There is also a function called
scanf that lets you take input from the terminal so you can create interactive programs; this is
beyond the scope of this class but is something to check out on your own.

Analog vs Digital

There are two types of signals, analog and digital. Analog signals are processed by converting
them to a value captured at a single point in time. The range of numbers is determined by the
precision of the analog to digital converter (2^8, 2^12, etc). These are represented as a raw
value (int) or normalized as a percentage of VCC / GNC (float)

Digital signals have two distinct values, 0 or 1. The voltage represented by this signal is defined
by the voltage of a circuit usually referred to as VCC. Digital is really good for turning things on
and off, communication and control. The problem is most things are not digital, most things we
want to interact with are analog. Sound, temperature, and pressure just to name a few. All
analog things exist on a sliding scale with infinite precision, but for ease of use we break them
up into finite blocks so we can measure them.

Analog is squiggly with an infinite
smoothness. To use analog in a computer we
approximate the smooth line into a whole
bunch of skinny rectangles. This x axis of the
rectangle is the amount of time it takes to
record a sample.

Digital Signals are square, they are either on
or off, 1 or 0.

I2C, SPI, UART are all digital communication
protocols.

mbed SDK APIs

Let’s start doing things! What follows are some of the more useful APIs that mbed has built up.
For a full list see http://developer.mbed.org/handbook.

Digital In and Out

The DigitalIn and DigitalOut types are used for declaring a pin a digital input or output. In
general you write to digital outputs and read from digital inputs. A common example of a digital
input is a button. A common example of a digital output is a LED. Try playing with the code
snippets below.

Example: button developer.mbed.org/teams/mbed_example/code/DigitalIn_HelloWorld_Mbed

#include "mbed.h"​
 ​
DigitalIn enable(p5);​
DigitalOut led(LED1);​
 ​
int main() {​
 while(1) {​
 if(enable) {​
 led = !led;​
 }​
 wait(0.25);​
 }​
}

Blink LED1 when enable signal is
high.

Example: flash LED (developer.mbed.org/teams/mbed_example/code/DigitalOut_HelloWorld)
#include "mbed.h"​
​
DigitalOut myled(LED1);​
​
int main() {​
 while(1) {​
 myled = 1; // turn myled on​
 wait(0.2);​
 myled = 0; // turn myled off​
 wait(0.2);​
 }​
}

Flash LED1 on and off

Challenge: How could you simplify the above program?

Analog In and Out

http://mbed.org/handbook/Homepage
http://developer.mbed.org/teams/mbed_example/code/DigitalIn_HelloWorld_Mbed/
http://mbed.org/teams/mbed_example/code/DigitalOut_HelloWorld/

The AnalogIn and AnalogOut types are used for declaring a pin an analog input or output. In
the mbed SDK API analog values are read in a range from 0.0 to 1.0 . A common example of an
analog input would be a slide potentiometer. A good example of an analog output would be the
intensity of a buzzer or the volume of a speaker. Try playing with the code snippets below.

Example: flash LED based on input voltage
developer.mbed.org/teams/mbed_example/code/AnalogIn_HelloWorld_Mbed/

#include "mbed.h"​
 ​
AnalogIn ain(p19);​
DigitalOut led(LED1);​
 ​
int main() {​
 while (1){​
 if(ain > 0.3) {​
 led = 1;​
 } else {​
 led = 0;​
 }​
 }​
}

Turn on LED if analog voltage is > 30%
of supply voltage. Remember the mbed
API uses a percentage from 0 to 1 so
.3 is 30%. The voltage on this pin
would be VCC * 0.3 or 3.3 * 0.3.

Example: sawtooth wave
developer.mbed.org/teams/mbed_example/code/AnalogOut_HelloWorld_mbed/

#include "mbed.h"​
 ​
AnalogOut signal(PTE30);​
 ​
int main() {​
 while(1) {​
 for(float i=0.0; i<1.0; i+=0.1) {​
 signal = i;​
 wait(0.1);​
 } ​
 }​
}

Create a sawtooth wave by ramping up the
analog output from 0% to 100% by 10%
increments, then drop to zero and repeat. This
will create a sawtooth wave. Note that PTE30
is board-specific and not all boards have
analog output. To see if your board supports
PTE30, see the Platforms page of your board.

Wait

http://developer.mbed.org/teams/mbed_example/code/AnalogIn_HelloWorld_Mbed/
http://developer.mbed.org/teams/mbed_example/code/AnalogOut_HelloWorld_mbed/

Sometimes you need to wait on something and do nothing else, for a determined period of time.
There is a really nifty function called wait() that does just that. The wait() function is a busy wait
(see below). That means it spins its wheels while waiting and does nothing else but wait. The
wait() function takes a floating point number that represents the amount of time to wait in
seconds. So 1.0 is a 1 second wait and 0.001 is a 1 millisecond wait. The wait() function is
designed to be used for times in the milliseconds and seconds range. The maximum time you
can wait is 2^31 microseconds or about 30 minutes. For longer times consider using the timer()
or real time clock functionality. For some examples of the wait() function see the code snippets
below.

Example: wait five seconds between each LED flash

#include "mbed.h"

DigitalOut led(LED1);

int main(void)
{
 while(1){
 led = 0;
 wait(5);
 led = 1;
 wait(5);
 }
}

This code snippet is a good example of how
to use the wait function to wait a determined
amount of time between actions.

Busy Wait

Busy Wait is a concept in programming that waits for something and does nothing else until the
thing being waited on happens. This is done with while loops. During a busy wait nothing else is
being done, the chip is spinning its wheels wasting energy and processing time.

Example: wait for button press before continuing

#include "mbed.h"

DigitalIn button(USER_INPUT1);
DigitalOut led(LED1);

int main(void)
{
 int input = button; // read button

 // loop forever
 while(1){
 // busy wait flash led until button press
 while(input == 0){
 led != led;

This code snippet will busy-wait until a
button is pressed.

 wait(.2);
 }
 printf("Button Pressed!\n\r");

 }
}

Ticker

The Ticker class is really handy for setting up events that happen at a fixed interval. The ticker
class is a ‘set it and forget it’ type thing; once set up it will run on its own and the program can
go off and do something else. The ticker works by taking a floating point time variable in
seconds and a function to call when the counter reaches 0. The ticker will automatically reset
itself and call the function each time. See the following code snippets for a good example.

Example: flash LEDs using a ticker
http://developer.mbed.org/teams/mbed_example/code/Ticker_HelloWorld/

#include "mbed.h"​
 ​
Ticker flipper;​
DigitalOut led1(LED1);​
DigitalOut led2(LED2);​
 ​
void flip() {​
 led2 = !led2;​
}​
 ​
int main() {​
 led2 = 1;
 // init callback and time (2s)​
 flipper.attach(&flip, 2.0);​
 ​
 // spin in a main loop.
 //flipper will interrupt it to call flip​
 while(1) {​
 led1 = !led1;​
 wait(0.2);​
 }​
}

This code snippet initializes a callback (flip)
to be called every two seconds. The Ticker
object is called flipper. To get a ticker object
to call a function you have to attach the
object to the function.

Note: Ticker events are called in interrupt context. That is outside the context of this
lecture, but you should remember that they should be executed as quickly as possible.
Wait() and printf are discouraged.

http://developer.mbed.org/teams/mbed_example/code/Ticker_HelloWorld/

PWM : Pulse Width Modulation

PWMs are a special kind of digital waveform. PWMs are characterized by the period of the
signal and the duty cycle. The duty cycle is the percentage of the cycle that the signal spends in
the high state (aka 1). The period of the PWM is the time that a single cycle of waveform takes
(two consecutive matching edges). The frequency of the PWM is how many times the period
happens in a second, measured in Hertz (Hz).

This is an example of PWM waves with
different duty cycles. Notice that the duty
cycle is the amount of time the signal spends
in the high (or on) state.

PWMs are often used to transfer average power. For example if you have a 5V pin and you
send a PWM signal with a 20% duty cycle it would transfer an effective one volt across the line.
If you run a 5v line with a 100% PWM you would get the full 5v transferred across the line. This
technique can be used for running motors faster or slower and for dimming LEDs by providing
average power over time. See the code snippets below for how to use the PWM APIs.

Note: Not all pins are 5v tolerant. Make sure the voltage levels are compatible, otherwise things
will break, blow up, sizzle and emit the magic blue smoke, not necessarily in that order.

Example: PWM hello world

http://developer.mbed.org/teams/mbed_example/code/PwmOut_HelloWorld/

#include "mbed.h"​
 ​
PwmOut led(LED1);​
 ​

This code will flash a
LED on for two seconds

http://developer.mbed.org/teams/mbed_example/code/PwmOut_HelloWorld/

int main() {​
 // specify period first​
 led.period(4.0f); // 4 second period​
 led.write(0.50f); // 50% duty cycle, relative to period​
 //led = 0.5f; // shorthand for led.write()​
 //led.pulsewidth(2); // alternative to led.write, set duty
 // cycle time in seconds​
 while(1);​
}

and off for two seconds.

The PWM can be
specified by duty cycle %
of period time or by
absolute duty cycle time
in seconds.

More Cool Stuff
All of the information included in this workshop can be found in various forms on the mbed.org
website. Below are some key points to jump off from.

●​ Handbook page - http://mbed.org/handbook/Homepage
○​ This page has a good listing of the APIs and getting started help

●​ Training Code example - http://mbed.org/teams/mbed_example

○​ This page has all the code examples for the official API’s
●​ For common questions see http://mbed.org/questions/
●​ See the youtube page for videos on using mbed

Also try using the search bar; you can find a lot of really cool projects by searching for it.
Leverage the large community of code on mbed.org to minimize development time!

http://mbed.org/handbook/Homepage
http://mbed.org/teams/mbed_example
http://mbed.org/questions/
https://www.youtube.com/channel/UCNcxd73dSceKtU77XWMOg8A

	Variables
	Integers (int)
	Floating Point (float) [IA1]
	Boolean (bool)
	Characters (char)

	Loops
	While Loops

	Functions
	PuTTY

