| Unit Number and Name | Unit 4 Congruence | | | |---|---|---------------|--| | Unit Question | What does it mean for geometric figures to be congruent? | | | | Essential
Questions: | How do we know when two geometric figures are congruent? How do we prove a statement is true? How do different properties define a quadrilateral? What relationships form different classifications within the class of quadrilaterals? | | | | Initial Task1
day | Students will engage in various problem solving strategies in this <u>Same Size</u> , <u>Same Shape Task</u> . | | | | Big Ideas | Objectives
Reached | EQs Addressed | Evidence of Understandings | | Big Idea 1:
Polygons are
comprised of
triangles. | G.2D.1.3
G.2D.1.6 | EQ 2 | Explore and prove relationships about interior and exterior angles of polygons Apply knowledge about triangles to generate and test conjectures polygons Use diagonals to partition figures into triangles to determine the the sum of the interior angles of a polygon Find the value of missing interior and exterior angles in a polygon Explore and prove relationships about polygons Find the area and perimeter of polygons Explore and prove relationships of regular polygons | | | | | Apply knowledge about triangles to generate and test conjectures about regular polygons Find the value of missing interior and exterior angles in a regular polygon Find the area and perimeter of a regular polygon | |--|----------|---|---| | | | Big Idea 1 should
take about 4-5
fifty minute class
periods. | Core Resource 1 | | Big Idea 2:
Congruent
polygons are
defined by
their
congruent
angles and
sides. | G.2D.1.7 | EQ1
EQ 2 | Describe qualities that make two polygons congruent or incongruent Identify corresponding parts (angles and sides) of polygons by annotating Use notation to signify congruence Use examples and non-examples to justify that corresponding parts of congruent polygons congruent Explore whether equal perimeters or areas mean figures are congruent (or vice versa: if figures are congruent then decide if their perimeters or areas are equal) | | | | Big Idea 2 should
take about 4-5 fifty
minute class
periods. | Big Idea 2 Core Resource | | Big Idea 3:
Congruent | G.2D.1.8 | EQ1 | Prove two triangles are congruent | | corresponding | | 0 | Identify corresponding congruent parts and apply the criteria of SSS, | |----------------|--|---------------------------|--| | angles and | | 0 | | | sides are used | | | SAS, ASA, or AAS | | to prove | | 0 | Prove two right triangles are congruent when corresponding | | triangles are | | | Hypotenuse-Leg (HL) are congruent | | congruent. | | Justify | the minimum requirements that show two triangles are congruent Make conjectures about the minimum corresponding parts of the | | | | | triangle needed to construct a congruent triangle | | | | | ■ Experiment with constructions to support these claims | | | | | ■ Give examples, non examples, or counterexamples about these | | | | | claims | | | | 0 | Justify that when all corresponding sides of two triangles are | | | | | congruent (SSS) there is sufficient evidence to show that these two | | | | | triangles are congruent | | | | 0 | Justify that when two corresponding sides and the included angle are | | | | | congruent (SAS) there is sufficient evidence to show that these two | | | | | triangles are congruent | | | | | Justify why the angle <u>has to be</u> the included angle of the | | | | | corresponding sides (SSA does not work) | | | | | ■ Establish the the minimum criteria necessary to prove two right | | | | | triangles are congruent using the hypotenuse and a leg (HL) | | | | | | | | | 0 | Justify that when two corresponding angles and the included side of | | | | | two triangles are congruent (ASA) there is sufficient evidence to show | | | | | that these two triangles are congruent | | | | | | | | | | Justify that when two corresponding angles and the non-included side of two triangles are congruent (AAS) there is sufficient evidence to show that these two triangles are congruent | |--|----------|---|---| | | | Big Idea should
take about 4-5 fifty
minute class
periods. | Big Idea 3 Core Resource | | Formative
Assessment | | After big ideas 1, 2, and 3 the formative assessment should take about one fifty minute class period. | Analyzing Conditions for Congruency | | Big idea 4: Quadrilaterals can be classified by their sides, diagonals and angle measures. | G.2D.1.4 | EQ3 | Distinguish trapezoids, parallelograms, rectangles, kites, rhombuses, and squares using properties of their sides and angles Identify and use properties that result in quadrilaterals being part of the same "family" Examples: rectangle, square, and rhombus are all parallelograms Explore and prove relationships about interior and exterior angles of quadrilaterals Justify that interior angles of a quadrilateral always add up to 360° using examples and non-examples Explore and prove relationships about angles and sides of a parallelogram Identify and justify congruent angles and sides of a parallelogram Prove opposite sides and angles of a parallelogram are congruent Apply properties of parallel lines cut by a transversal | | | | Prove same side/consecutive interior angles of a parallelogram are | |--------------|--|---| | | | supplementary | | | | Prove a given figure is a square, rectangle, or rhombus | | | | Apply properties of parallelograms, parallel lines, and triangle | | | | congruence criteria | | | | Find the measure of a missing value or measurements | | | | Investigate the relationship between the diagonals of a quadrilateral and its other characteristics | | | | Prove diagonals of parallelograms bisect each other | | | | Prove the converse statement (if diagonals bisect each other | | | | then it is a parallelogram) | | | | Prove diagonals of rectangles are congruent | | | | Investigate diagonals of an isosceles trapezoid and use them | | | | show the converse statement is false (if diagonals are | | | | congruent, then it is a rectangle) | | | | Prove diagonals of a rhombus perpendicularly bisect one another | | | | Demonstrate perpendicular diagonals do not necessarily bisect | | | | one another (ex: kites) | | | | Find the measure of the missing length of a diagonal | | | Big Idea 4 sho
take about 3-4
minute class
periods. | | | Reengagement | Take a day or
to revisit cond
students strug | epts | | | | with in the formative assessments. | | |-------------------------|-------------|---|-----------------------------| | Summative
Assessment | | | Unit 4 Summative Assessment | | Essential Terms: | ASA- (Angle | e Sum le Sum ng Parts Side, Side) Angle, Side) , Side, Angle) , Angle, Side) I | |