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Educated decision making has traditionally been something that humans have claimed as one 
of their most unique characteristics. In recent years, however, artificial intelligence and machine 
learning has challenged this monopoly by showing an ability to analyze historical data and 
leverage inherent patterns and information for prediction and making decisions. These new 
tools have subsequently been applied in almost every domain imaginable -- and continue to find 
new avenues everyday.  
 
While these advances are clear to see, recent attention has also been drawn to the risk that 
algorithms can raise concerns relating to bias. In domains where the impact of such a decision 
is considerable (criminal recidivism prediction, hiring decisions, etc), the presence of algorithmic 
bias strikes in a two-pronged manner -- first, by virtue of being algorithmic/mathematical in 
nature, it serves to put practitioners at ease with the idea that “math is inherently fair” and 
second, by actually propagating and amplifying historical injustices. This recognition has 
therefore led to a lot of research focusing on identifying and mitigating sources of bias in the 
algorithmic decision making pipeline. 
 
For the sake of clarity of the text, we will use the particular context of algorithmic hiring, as the 
domain of decision making under consideration. We will also assume that the employer is using 
some sort of a classifier to separate candidates into the “hireable” and “rejected” classes. Our 
problem then becomes to understand the questions of accuracy and fairness of the outcomes.  
 
BIAS IN LAW 
 
Now, before we begin explaining some of the techniques that have been developed to address 
the issue, we need to understand that this is a socio-technical topic and therefore new 
developments are heavily influenced by the prevailing law. A key idea is that practitioners really 
have only one reason to address these issues from a non-ethical standpoint: being incriminated 
in a discrimination lawsuit.  
 
US Law has two main criteria for defining discrimination: disparate treatment and disparate 
impact. Disparate treatment is the straightforward idea that any decision which explicitly 
disadvantages a particular protected group (based on race, gender, etc) is unconstitutional and 
therefore a grounds for discrimination. Disparate impact is the more nuanced idea that 
discrimination may sometimes occur even without any explicit reference to the protected group. 
It refers to the consequences of the decision as being unfair.  
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The way that disparate impact is contested is an important part of some of the literature in the 
field of algorithmic de-biasing. While there is no specific numerical formula to define disparate 
impact, the “4/5ths or 80% rule” is often cited as being the grounds for a case to be accepted in 
court. The 80% rule states that the number of individuals of the protected group assigned to the 
advantaged decision (or say, the positive class) must be atleast 80% of the number of people 
assigned that decision from the group with the highest number.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



If a candidate can demonstrate that the employer failed to comply with the 4/5ths rule, the 
employer is then given a chance to justify the disparate impact under the “business necessity 
clause” where they may claim that a certain level of disparate impact is necessary to meet 
performance related constraints. Hence, from the point of view of the employer, these two ideas 
need to be kept in mind when they attempt to debias the classifier. 
 
One problem with the 4/5ths rule is that it is not a convex function of the parameters that the 
classifier model may be using. Therefore, using this definition and incorporating it in machine 
learning algorithms that generally demand convex problems is not straightforward. The 
workaround for this is to use some other function, that closely follows the rule but has the added 
advantage of being convex.  
 
Another issue with both these definitions of discrimination is that they can sometimes be at odds 
with one another. An algorithm that does not consider the protected attribute is clear of the 
disparate treatment charge, but it can get implicated in disparate impact if the outcomes of the 
model are not balanced. However, if the employer takes steps to remove bias, they may end up 
explicitly using the protected identity of a candidate and thus getting implicated in disparate 
treatment.  
 

Key Idea 
“ 
A possible solution for this problem may be found if we can somehow include the 
fairness constraints as part of the classifier training. We can then train the 
classifier to be fair using the protected identity for debiasing but not use it during 
actual testing. 

” 
Such a solution would circumvent this problem and satisfy both the conditions of fairness 
according to the law. 
 
FORMALIZING 
 
The classification problem is then setup with ‘x’ as all the features of the candidate (our 
knowledge representation from available data) except the protected identity, ‘y’ as the binary 
outcome (hired  = 1 or rejected = 0) and ‘z’ as the protected attribute of the candidate 
(race/gender/etc.). Now, consider that the classifier uses a decision boundary, i.e. it attempts to 
find a boundary in the feature space that can separate the two classes (y=1 and y=0) 
 
A view of such a classifier with just two features (x1 and x2) is in the figure below.  



Using this setup, a reasonable measure of fairness can be the correlation between the signed 
distance from the decision boundary (which models “how far” the point is from being classified 
as positive/being hired) and the protected attribute z. If the signed distance is considerably more 
for one group over the other, we can say that one group is consistently closer to being classified 
as being “hireable” over the other. This is related to the notion of disparate impact.  
 
Formally, this is achieved by using the covariance function between z and the distance d(x) 
which is also a function of the model parameters θ.  

Note that, if a decision boundary satisfies the 100% rule, i.e. exactly the same number of 
positive predictions for both the classes, the covariance will be approximately zero. 
 
As described before, we will use this function to change our training for the classifiers, but our 
knowledge of this function will make no difference at test time. Infact, to satisfy disparate 
treatment, we will specifically not use the z value at test time. 
 
 
 
 
 



SOLUTION STRATEGIES 
 
Now, keeping in mind the general idea described above, we want to incorporate this definition of 
fairness in the training process. This in turn can be done in two main ways: 
 
SOLUTION #1: Maximizing accuracy under fairness constraints 
This takes the form: 
 
                                                    maximize accuracy  

such that fairness is satisfied 
​
We usually maximize accuracy by minimizing some defined loss function. Hence, this idea 
reduces to the following formulation where L(θ) defines the loss. 

This idea is to comply with the 4/5ths rule. The parameter ‘c’ controls the disparate impact and 
thus can be set accordingly to achieve the desired “p%” disparate impact. Basically, what this 
says is that as we vary c, we vary the amount of correlation that we allow and hence, the 
amount of disparate impact we treat as acceptable. 
 
SOLUTION #2: Maximize fairness under accuracy constraints 
As before, this takes the reverse form: 
 
                                               maximize fairness OR minimize covariance 

such that accuracy is within control 
 
Formally, this can be written as below.  

 
This idea is related to the “business necessity clause”. Here we say that, we want to minimize 
the level of disparate impact created by the decision while keeping some baseline for the 
performance. Basically, what this says is that as we vary γ, we are varying the utility of the 



classifier or the performance of the whole model itself. Now, since we don’t want to go beneath 
a certain performance level, the minimization itself gives us the best that we can do in terms of 
disparate impact. This can serve as justification for the employer and hence, still be fair in the 
eyes of the law. 
 
RESULTS 
 
Both these solution strategies have the advantage of being convex problems due to our 
formulation of bias and hence have easy and defined ways of implementation for different L(θ)’s. 
We use two popular classifiers: logistic regression and support vector machines to modify using 
our additional constraints and do performance analysis for different c’s and γ’s. 
 
The datasets used for the same are “Adult Income Dataset” (UCI) and the “Bank marketing 
Dataset” (UCI). The Adult dataset contains 45,222 subjects, each with 14 features and a binary 
label which says if the subject’s income is above/below $50K. The binary protected attribute 
here is gender which can be male or female, with females as the protected group. The Bank 
dataset has 41,188 subjects, each with 20 features and a binary label which says if the subject 
has subscribed or not to a term deposit. The protected attribute here is age, and it is binarized 
using the threshold of 25, i.e. ages less than 25 and ages more than 25. 
 



First the results using solution strategy 1 are presented, i.e. maximizing accuracy with fairness 
constraints. The results for the two datasets are in the given graph. The top is for the Adult 
database and the bottom is for the Bank. From graph (a), we can see that as we constraint the 
covariance to be closer to 0, we get increasingly higher loss, or lack of accuracy. From (b), we 
can see that this change in covariance is reliably related to disparate impact, since as we 
constraint the covariance closer to 0, we get lesser disparate impact or satisfaction of a higher 
p% rule. 

In graph (c)  we compare this technique against two other techniques marked as “PS-*” and 
“R-LR” where PS refers to the preferential sampling approach developed in Kamiran and 
Calders (2010) and R refers to the regularization approach developed by Kamishima et.al. 
(2011). We can see that the regularization approach is comparable to the proposed method 
(they are almost theoretically equivalent) and that the proposed approach performs better 
(higher accuracy) than preferential sampling based debiasing consistently. 
 
The advantage that the proposed method has over regularization (2011) is that unlike it, the 
current method does not use protected attribute z during test time hence satisfying both 
disparate treatment and disparate impact. 
 
The results for strategy 2, minimizing disparate impact for given accuracy at various different γ 
are given below: 



From this graph, we can see that as we allow γ to be larger, we are restricting the accuracy but 
increasing the p% rule, i.e. decreasing the disparate impact. The key idea of solution strategy 2 
is not in this variation though, this merely confirms the expectations. The utility of strategy 2 is in 
confirming that this is the “best” that we can do if we allow for a maximum of γ amount of drop in 
accuracy. 
 
CONCLUSIONS 
 
Here we presented a method to reduce bias in a classification setting and basically find an 
intuitive, portable and convex solution strategy for balancing fairness and accuracy. An 
important thing to note is that the utility of this analysis is not limited to the two strategies 
presented. Using the general idea, this can be extended to any supervised learning setting and 
made to use different formulations of bias.  
 
Another useful feature is that it considers all aspects of fairness law which is, in truth, the only 
requirement that a lot of algorithmic decision makers want to fulfil. Hence, unless the law is 
updated, this work will stand the test of time. 
 
There are a few important issues as well, though. First, this technique uses distance based 
classifiers but does not talk at all about robustness to adversaries. Second, its formulation of 
bias is not directly recognizable as a fairness metric. Even though it is generally “related” to the 
idea of fairness, there is still scope to have a much better formulation. Thirdly, and most 
importantly, the underlying assumption of this technique may be flawed. This idea is given in the 
paper: “Fairness and Abstraction in Sociotechnical Systems” discussed below.  
 
 
 
 
 



FURTHER READING 
 
On the broader ideas of fairness and debiasing and the issues that most literature, including this 
one, fails to tackle. 
 

1.​ “Fairness and Abstraction in Sociotechnical Systems”, A. Selbst et.al 2019 
 
The key idea of this paper is that any attempt to “fix”, “solve” or “debias” fairness 
problems by just looking at outcome based fairness measures, and by trying for a 
generalized solution is in itself flawed. The paper claims that by abstracting away the 
social context in which an ML system is deployed, researchers miss important 
information that can lead to fairer outcomes. The paper then goes on to describe 5 traps 
in which fair-ML literature can fall and how each of them reduce the utility and fairness of 
the proposed solution. With regards to the paper at hand, it is very clear that the authors 
have fallen into the most basic trap: the framing trap. 
 

Previous work inspiring and mentioned in this paper. 
 

2.​ “Fairness-aware Classifier with Prejudice Remover Regularizer”, Kamishima et.al. 2011 
 
The key idea of this paper (similar to the one hand) is that fairness is simply a constraint 
that has to be imposed on the learning of the classifier. Unlike this paper, they do not 
consider the law relating to such issues, but instead discuss the causes of such bias. 
Also, instead of forming a convex problem, they directly propose a regularization based 
solution for prediction algorithms that use discriminative probabilistic models. We can 
see strong theoretical similarities between the two papers in spite of the differences in 
formulation, when we note that regularization can simply be viewed as a dual of the 
convex problem. Hence, the present work is some sort of direct extension. 

 
3.​ “Classification with No Discrimination by Preferential Sampling”, Kamiran, Calders 2010 

 
The key idea in this approach is that data objects closer to the decision boundary are 
more likely to be discriminated against since the confidence of the model in their 
classification is low. The authors therefore use a heuristic to resample the database 
based on rankings of the distance from the decision boundary. This is a pre-processing 
approach which, though an interesting innovation at the time, is not well favoured today 
because of its intrusiveness in the data. Also, the results that were obtained using this 
approach were easily bettered using the paper at hand.  

 
Other approaches to this domain 
 

4.​ Censoring Representations with an Adversary, Edwards and Storkey, 2016 
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The key idea of the paper is that the data needs to be de-biased by learning a latent 
embedding of the data specifically tailored to hide all information about the protected 
attribute. This is thus, essentially a pre-processing technique that works well for a variety 
of problems. This latent representation is obtained by using the data to simultaneously 
train an adversary to predict the protected attribute from the latent representation. Its 
ability to do so is then quantified and added to the combined loss.  
 

5.​ “The Variational Fair Autoencoder”, Louizos et.al. 2017 
 
The key idea of this interesting paper is to learn a “purged” representation of the data 
wherein any relation to the sensitive attribute has been removed using the variational 
autoencoders technique. The paper also suggests a regularization technique to remove 
any leftover effect of the protected attribute after the pre-processing. This, however, is 
different from the current work in the idea that it does consider the protected attribute in 
order to get a representation independent of its effect and thus, does not satisfy 
disparate treatment requirements.   
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