
ROSE-SRv6 tutorial on Linux - Part 1
Manual creation of SRv6 tunnels in the data plane

ROSE Project Technical Report
Authored by: Paolo Lungaroni, Andrea Mayer, Stefano Salsano
Version: 1.3
Date: 2020:11:07

This demo has also been run during the HPSR 2020 tutorial: "Segment Routing over IPv6
(SRV6) and the Network Programming Model" (program here).

This tutorial is based on the rose-srv6 VM that can be downloaded here.

To give us feedback you can open issues on our github repository, or contact the ROSE
team here.

Using Mininet, we deploy the topology depicted in the figure hereafter, then we will add a
bidirectional SRv6 tunnel (actually, two unidirectional tunnels!). In the second part of this
tutorial (available here) we will use the Controller to setup the tunnels.

Link to repository for the given topology
(https://github.com/netgroup/rose-srv6-tutorial.git)
To start the mininet simulation, click the “Terminal Emulator” icon and enter in the tutorial
folder typing:

https://hpsr2020.ieee-hpsr.org/program/tutorials/
https://github.com/netgroup/rose/blob/master/docs/rose-vm.md
https://github.com/netgroup/rose-vm/issues
https://netgroup.github.io/rose/rose-contacts.html
https://docs.google.com/document/d/1izO3H8dUt7VoemXtcH-RG4cL127tG9m48edOdFFmktU
https://www.draw.io/?page-id=J9w6RV8opG_2WJOp4QM1&scale=auto#G1BnzbsuEpvA3uBNfi-l9xWqG1N0aWO_Nh

$ cd ~/workspace/rose-srv6-tutorial/nets/8routers-isis-ipv6/

To start the mininet simulation:

$ sudo bash starter.sh

After creating the network topology, mininet shows the prompt command line through which
we are able to interact with the nodes.

As soon as Mininet has successfully loaded the network topology (nodes, links, etc), ISIS
routing daemons running on top of routers (r1,r2,..., r8) start to advertise routes with their
neighbors.

We can take a look at the main routing table of the router r1 through the following command:

mininet> gterm r1​
ip -6 route show

The figure shows the main routing table of the router r1. In particular, the routes with the
addressing schema fcf0:0:x:y::/64 are advertised from the routers (r2,r3,...,,r8) using the ISIS
protocol. Such addresses are associated with the interfaces of the routers that are used by
the routers themselves to communicate with each other.
As you may notice, routes set by the ISIS demon are identified by the "proto isis" keyword.

Conversely, the fcff:x::/32 represents the address of router x and it is associated with the
loopback interface. The loopback interface allows you to reach the router avoiding to directly
specify one of its interfaces.

Routes associated with local interfaces are marked with the "proto kernel" keyword because
they are directly handled by the Linux kernel and not by the ISIS routing daemon.

Our purpose is to contact the h81 node from the h11 node as shown in the picture below:

To enter in the console of h11 node, run:

mininet> gterm h11

To ping the h81 node (ip address: fd00:0:81::2), enter the following command:

ping -c 3 fd00:0:81::2

As we can see, the 3 ping requests fail. The reason is that node h11 does not know how to
reach the node h81 which is located in a different network that is not directly accessible.

To connect the two nodes we create a Segment Routing tunnel, which starts on the R1 (the
gateway of h11) and ends on the R8 (the gateway of h81). Note that core network is
configured so that each router X is able to reach any other router Y and vice versa.

SR tunnels are uni-directionals and this means that we need to configure the functions for
the encap and decap operations on both R1 and R8.

For entering in the R1 console:

mininet> gterm r1

We configure the encap operation, typing in r1:

ip -6 route add fd00:0:81::2 encap seg6 mode encap segs
fcff:4::1,fcff:8::100 dev r1-r2

And for the decap operation in r1:

ip -6 route add fcff:1::100 encap seg6local action End.DT6
table main dev r1-r2

If you want to check the routes installed in the node r1, you can look at the SRv6 tunnel
routes:

ip -6 route show

 Virtual Routing and Forwarding (VRF) in Linux

Virtual Routing and Forwarding (VRF) is a technology in Linux that allows
multiple instances of a routing table to coexist within the same router. This enables
separation of routing domains for different tenants or services, allowing them to have
overlapping IP addresses and routes without interference.

Each VRF can maintain its own set of routes and IP addresses, making it ideal for
scenarios where isolation is required, such as in multi-tenant environments.

Creating a VRF

To create a VRF device in Linux, you can use the following command:

 # ip link add vrf100 type vrf table 100

This command creates a VRF named vrf100 and associates it with routing table 100.

Enslave network device to a VRF

In the Linux kernel, the concept of enslaving a network device to a VRF (Virtual Routing
and Forwarding) allows for the segregation of network traffic and routing tables. When a
network device is enslaved to a VRF, it becomes part of that specific routing domain,
meaning that any incoming or outgoing packets on that device will be routed based on the

routes defined in the VRF’s associated routing table. If a network device is not enslaved to
a VRF, it will not perform automatic routing lookups against the master VRF.
Consequently, traffic received on that device won't be routed according to the routes
defined in the VRF, leading to potential misrouting or dropped packets.

To enslave a network device to a master VRF using the iproute2 utility, you can use the
following command:

 # ip link set dev h11-r1 master vrf100

This command effectively associates the specified network device (h11-r1) with the
designated VRF (vrf100), enabling proper routing based on the VRF's routing table.

End.DT6 in VRF Mode

The SRv6 End.DT6 behavior can be configured to utilize the routing table associated with
a specific VRF. However, it is crucial that the VRF is set to "Strict Mode" for this operation.

Strict Mode

Strict Mode enforces a one-to-one relationship between VRFs and routing tables. This
means:

1)​ A specific routing table can only be associated with one VRF;
2)​ A specific VRF cannot share its routing table with any other VRF.​

This mode is important for ensuring that routing decisions are unambiguous and that
there’s no overlap between VRFs.

Enabling Strict Mode

The strict mode can be enabled or disabled by modifying the strict_mode parameter
through the sysctl command:

 sysctl -w net.vrf.strict_mode=1

Deploying SRv6 End.DT6 in VRF Mode

Once the VRF is configured with Strict Mode enabled, you can deploy the SRv6 End.DT6
in VRF mode with the following command:

 # ip -6 route add fcff:1::100 encap seg6local action End.DT6 \​
 vrftable 100 dev vrf100

Vice-versa, we configure the R8 router entering into the R8 console by typing:

mininet> gterm r8

and then:

ip -6 route add fd00:0:11::2 encap seg6 mode encap segs
fcff:4::1,fcff:1::100 dev r8-r6

ip -6 route add fcff:8::100 encap seg6local action End.DT6
table main dev r8-r6

Hereafter, the installed routes in the R8 router:

At the end of the configuration process, the two tunnels are established and we can check if
h11 reaches the node h81 using the ping command:

ping -c 3 fd00:0:81::2

And now… It works!

We can capture the traffic on R8 router using the wireshark packet analyzer by typing:

mininet> gterm r8

and then:

wireshark 2>/dev/null &

For the curious: i) 2>/dev/null redirects stderr (fd 2) to the black hole (discard any output
error of this command) and ii) & makes the command run in the background.

Using wireshark, we can observe:

1)​ the R8 incoming traffic sent by the node r11 which has been encapsulated by the
router R1 in a Segment Routing packet; (run the capture on the interface r8-r6)

2)​ the original plain IPv6 packet (sent by the node h11) which has been extracted by the
Segment Routing packet and sent to the destination h81 (start the capture on the
interface r8-h81).

When the packet is received by the r81 node, it replies with a “ping reply” which is
encapsulated by the R8 gateway in a SRv6 packet using the SRv6 reverse tunnel.

The packet reaches the router R1 which decaps the inner “ping reply” forwarding it to the
h11.

Porting 8routers-isis testbed to named network
netns

The 8-router ISIS testbed was carefully reconstructed while ensuring that all dependencies
on Zebra and IS-IS dynamic routing daemons were eliminated. The objective of this
reconstruction was to establish a more controlled and reproducible self-contained testing
environment.
In order to enhance configurability and streamline the setup process, the provided script
incorporates adjustable setting variables. These variables facilitate the implementation of
specific SRv6 policies, which are essential for establishing Layer 3 Virtual Private Networks
(L3VPNs) between host nodes.

To log-in to the testbed machine
ssh ubuntu@160.80.105.58
ubuntu@pa1-r3-s08:~$ lxc exec hawaii-tutorial bash
root@hawaii-tutorial:~# screen -x
root@hawaii-tutorial:~#
root@hawaii-tutorial:~# cd ~/hawaii/rose-srv6-tutorial/nets/8routers-named-netns/
root@hawaii-tutorial:~/[...]/8routers-named-netns# ./named-ns-8r.sh

Implemented L3VPN services as follows:

src ↔ dst Policy encap topology

h11 ↔ h81 "r1,h81,srh,r3 r5,r8" plain h11 - r1 - r2 - r3 - r4 - r5 - r6 - r8 - h81

h81 ↔ h11 "r8,h11,srh,,r1" plain h81 - r8 - r6 - r4 - r3 - r2 - r1 - h11

h12 ↔ h82 "r1,h82,red,r5 r7,r8" csid h12 - r1 - r2 - r3 - r4 - r5 - r6 - r8 - h82

h82 ↔ h12 "r8,h12,red,,r1" csid h82 - r8 - r6 - r4 - r3 - r2 - r1 - h12

h13 ↔ h83 "r1,h83,red,r2 r7 r4 r5,r8" csid h13 - r1 - r2 - r7 - r6 - r4 - r5 - r6 - r8 - h83

h83 ↔ h13 "r8,h13,srh,r7 r6 r5 r3 r2,r1" plain h83 - r8 - r7 - r6 - r4 - r3 - r2 - r1 - h13

where in:

-​ green is an srv6 encap node
-​ black is an srv6 unaware node
-​ red is an srv6 aware node
-​ blue is an srv6 decap node

	ROSE-SRv6 tutorial on Linux - Part 1
	
	Link to repository for the given topology (https://github.com/netgroup/rose-srv6-tutorial.git)
	
	Porting 8routers-isis testbed to named network netns
	
	Implemented L3VPN services as follows:

