ROSE-SRv6 tutorial on Linux - Part 1

Manual creation of SRv6 tunnels in the data plane

ROSE Project Technical Report

Authored by: Paolo Lungaroni, Andrea Mayer, Stefano Salsano
Version: 1.3

Date: 2020:11:07

This demo has also been run during the HPSR 2020 tutorial: "Segment Routing over IPv6
(SRV6) and the Network Programming Model" (program here).

This tutorial is based on the rose-srv6 VM that can be downloaded here.

To give us feedback you can open issues on our github repository, or contact the ROSE
team here.

Using Mininet, we deploy the topology depicted in the figure hereafter, then we will add a
bidirectional SRv6 tunnel (actually, two unidirectional tunnels!). In the second part of this
tutorial (available here) we will use the Controller to setup the tunnels.

h32 h51 h52 h53
Dashboard \ Aran g o M iq‘w h33 \i\ \T//i

i\/i‘

ontroller / R4

=7

“ 2 R5
- lo: fcff:5::1/128 ‘\ =~
lo: fcff:4::1/128 =
lo: fcffs /128
=X hdc3

~ Io feff:2::1/128 - Ré

lo: fcff:6::1/128

hde1
. R1
e T~ o lo: fcff:8::1/128 = /
h13 - (- hdc2
—~ lo: feff:1::1/128 R7
xi £d00:0:81::2
<= lo: fcff:7::1/128
h12 i ‘
£d00:0:11::2 o ha3
h81
8 h82

Link to repository for the given topology
(https://github.com/netgroup/rose-srv6-tutorial.git)

To start the mininet simulation, click the “Terminal Emulator” icon and enter in the tutorial
folder typing:

https://hpsr2020.ieee-hpsr.org/program/tutorials/
https://github.com/netgroup/rose/blob/master/docs/rose-vm.md
https://github.com/netgroup/rose-vm/issues
https://netgroup.github.io/rose/rose-contacts.html
https://docs.google.com/document/d/1izO3H8dUt7VoemXtcH-RG4cL127tG9m48edOdFFmktU
https://www.draw.io/?page-id=J9w6RV8opG_2WJOp4QM1&scale=auto#G1BnzbsuEpvA3uBNfi-l9xWqG1N0aWO_Nh

$ cd ~/workspace/rose-srvé6-tutorial/nets/8routers-isis-ipvé6/

To start the mininet simulation:

$ sudo bash starter.sh

After creating the network topology, mininet shows the prompt command line through which
we are able to interact with the nodes.

r
x Terminal - rose@rose-srv6: ~/workspace/draft-srvé-tutorial/nets/8routers-isis-ipvé - + X

File Edit View Terminal Tabs Help

r3-rd:rd-r3

53-r5 r5-hdc3:hdc3-r5 r5-rb6:ré

3-hdc2:hdc2-r8

As soon as Mininet has successfully loaded the network topology (nodes, links, etc), ISIS
routing daemons running on top of routers (r1,r2,..., r8) start to advertise routes with their
neighbors.

We can take a look at the main routing table of the router r1 through the following command:

mininet> gterm rl
ip -6 route show

-
~ "Node: r1” - +

File Edit View Terminal Tabs Help

root@rose-srv6:/home/rose/workspace/rose-srv6-tutorial/nets/8routers-isis-ipv6# ip -6 route show
fcf@:0:1:2::/64 dev rl-r2 proto kernel metric 256 pref medium
fcf0:0:2:3::/64 nhid via Te80::T8b2:46ff:TeBa:9337 dev rl-r2 proto isis metric pref medium
fcfo: :/64 nhid via fe80::f8b2:46ff:fe8a:9337 dev rl-r2 proto isis metric pref medium
:/64 nhid via fe80::f8b2:46ff:feBa: dev rl-r2 proto isis metric pref medium
11 /64 nhid via fe80::T8b2:46Tf:Te8a: dev rl-r2 proto isis metric pref medium
::1/64 nhid via fe80::T8b2:46ff:TeBa: dev rl-r2 proto isis metric pref medium
::/64 nhid via fe80::f8b2:46ff:fe8a: dev rl-r2 proto isis metric pref medium
:/64 nhid via feB80::fB8b2:46ff:feBa: dev rl-r2 proto isis metric pref medium
:/64 nhid via fe80::T8b2:467f:Te8a: dev rl-r2 proto isis metric pref medium
nhid via fe80::T8b2:46TT:TeBa: dev rl-r2 proto isis metric pref medium
: lo proto kernel metric 256 pref medium
(1 /48 nhid 16 via feB80::f8b2:46ff:feB8a:9337 dev rl-r2 proto isis metric 20 pref medium
1:/32 nhid 16 via fTeB0::f8b2:46ff:feB8a:9337 dev rl-r2 proto isis metric 20 pref medium
1:/32 nhid 16 via TeB0::T8b2:46fT:TeB8a:9337 dev rl-r2 proto isis metric 20 pref medium
1:/32 nhid 16 via fe80::f8b2:46ff:fe8a:9337 dev rl-r2 proto isis metric 20 pref medium
:1::/48 nhid 16 via fe80::f8b2:46ff:feB8a:9337 dev rl-r2 proto isis metric 20 pref medium
1:/32 nhid 16 via feB80::f8b2:46ff:feB8a:9337 dev rl-r2 proto isis metric 20 pref medium
1:/32 nhid 16 via TeB80::T8b2:46fT:Te8a:9337 dev rl-r2 proto isis metric 20 pref medium
1:1/32 nhid 16 via TeB0::T8b2:46fT:fTeB8a:9337 dev rl-r2 proto isis metric 20 pref medium
:1::/48 nhid 16 via fe80::f8b2:46ff:fe8a:9337 dev rl-r2 proto isis metric 20 pref medium
1:/32 nhid 16 via feB80::f8b2:46ff:feB8a:9337 dev rl-r2 proto isis metric 20 pref medium
:11::/64 dev rl-hll proto kernel metric 256 pref medium
:12::/64 dev rl-hl2 proto kernel metric 256 pref medium
:0:13::/64 dev rl-hl3 proto kernel metric 256 pref medium
::/64 dev rl-hl2 proto kernel metric 256 pref medium
::/64 dev rl-hl3 proto kernel metric 256 pref medium
1:/64 dev rl-r2 proto kernel metric 256 pref medium
::/64 dev rl-hll proto kernel metric 256 pref medium
root@rose-srv6:/home/rose/workspace/rose-srv6-tutorial/nets/8routers-isis-ipv6# JJ

The figure shows the main routing table of the router r1. In particular, the routes with the
addressing schema fcf0:0:x:y::/64 are advertised from the routers (r2,r3,...,,r8) using the ISIS
protocol. Such addresses are associated with the interfaces of the routers that are used by
the routers themselves to communicate with each other.

As you may notice, routes set by the ISIS demon are identified by the "proto isis" keyword.

Conversely, the fcff:x::/32 represents the address of router x and it is associated with the
loopback interface. The loopback interface allows you to reach the router avoiding to directly
specify one of its interfaces.

Routes associated with local interfaces are marked with the "proto kernel" keyword because
they are directly handled by the Linux kernel and not by the ISIS routing daemon.

Our purpose is to contact the h81 node from the h11 node as shown in the picture below:

ha2 h51 h52 h53
h h
3 33
\ / R4
- L]
/ S \ /
B R RILF. .
T . it e hd3
hde1 A A

- — A1 . |ua1z-- /.__

h13 — hdc2
H/,f’ o et-1:1/128 o
- B pp—— L LUK R s ‘
h12 T
MOCIZ . -
h81
he2

To enter in the console of h11 node, run:

mininet> gterm hll

r

v "Node: h11" - +

File Edit WView Terminal Tabs Help

root@rose-srv6:/home/rose/workspace/draft-srv6-tutorial/nets/8routers-isis-ipv6
1

To ping the h81 node (ip address: fd00:0:81::2), enter the following command:

ping -c 3 fd00:0:81::2

b "Node: h11" ==
File Edit WView Terminal Tabs Help

root@rose-srv6:/home/rose/workspace/draft-srv6-tutorial/nets/8routers-isis-ipv6
3 fd0O:0:81::2
:0:81::2(fd00:0:81::2) 56 data bytes
:0:11::1 icmp seq=1 Destination unreachable: No route
:0:11::1 icmp seq=2 Destination unreachable: No route
:0:11::1 icmp seq=3 Destination unreachable: No route

--- fd00:0:81::2 ping statistics ---
3 packets transmitted, © received, +3 errors, 100% packet loss, time 2032ms

root@rose-srv6:/home/rose/workspace/draft-srv6-tutorial/nets/8routers-isis-ipv6
1

As we can see, the 3 ping requests fail. The reason is that node h11 does not know how to
reach the node h81 which is located in a different network that is not directly accessible.

To connect the two nodes we create a Segment Routing tunnel, which starts on the R1 (the
gateway of h11) and ends on the R8 (the gateway of h81). Note that core network is

configured so that each router X is able to reach any other router Y and vice versa.

SR tunnels are uni-directionals and this means that we need to configure the functions for
the encap and decap operations on both R1 and R8.

For entering in the R1 console:

mininet> gterm rl

We configure the encap operation, typing in r1:

ip -6 route add £d00:0:81::2 encap segb6 mode encap segs
fcff:d::1,fcff:8::100 dev rl-r2

And for the decap operation in r1:

ip -6 route add fcff:1::100 encap segb6local action End.DT6

table main dev rl-r2

r

M "Node: r1" - o+ x

File Edit Wiew Terminal Tabs Help

root@rose-srvb:/home/rose/workspace/draft-srvbe-tutorial/nets/8routers-isis-ipv6
ip -6 route add fdO0@:0:81::2 encap segb mode encap segs fcff:4::1,fcff:8::100
dev rl-r2
root@rose-srvb:/home/rose/workspace/draft-srvb-tutorial/nets/8routers-isis-ipvb
ip -6 route add fcff:1::100 encap seg6local action End.DT6 table main dev rl-
r
roit@rose-erB:/home/rosefworkspacefdraft-srv6-tut0ria1fnetsf8router5-isis-ipo
#

If you want to check the routes installed in the node r1, you can look at the SRv6 tunnel
routes:

ip -6 route show

v "Node: r1’ - o+ x

File Edit View Terminal Tabs Help

root@rose-srv6:/home/rose/workspace/draft-srvé-tutorial/nets/8routers-isis-ipv6# ip -6 route show
HH ::/64 dev rl-r2 proto kernel metric 256 pref medium
[¢] :/64 nhid 16 via fe80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
¢} :/64 nhid 16 via fe80::d0@le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
[¢] :/64 nhid 16 via fe80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
¢} :/64 nhid 16 via fe80::d0@le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
[¢] 1:/64 nhid 16 via feB80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
¢} ::/64 nhid 16 via fe80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
[¢] 1:/64 nhid 16 via feB80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
¢} ::/64 nhid 16 via fe80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
[¢] 1:/64 nhid 16 via fe80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
1::100 encap segblocal action End.DT6 table © dev rl-r2 metric 1024 pref medium
1::/32 dev lo proto kernel metric 256 pref medium
2:1::/48 nhid 16 via fe80::d@le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
12::/32 nhid 16 via fe80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
3::
4
5
5
6
7
8
8
[¢]
[¢]
[¢]
[¢]

POUD LR IWR

nhid 16 via fe80 0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
id 16 via fe80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
:/48 nhid 16 via fTe80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
:/32 nhid 16 via fe80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
id 16 via fe80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
id 16 via Te80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
id 16 via fe80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
32 nhid 16 via fe80::d0le:17ff:fe3e:9e65 dev rl-r2 proto isis metric 20 pref medium
1:/64 dev rl-hll proto kernel metric 256 pref medium
:/64 dev rl-hl2 proto kernel metric 256 pref medium
:/64 dev rl-hl3 proto kernel metric 256 pref medium
::2 encap segb mode encap segs 2 [fcff:4::1 fcff:8::100] dev rl-r2 metric 1024 pref medium
dev rl-hl2 proto kernel metric 256 pref medium
dev rl1-hl3 proto kernel metric 256 pref medium
dev rl-r2 proto kernel metric 256 pref medium
dev rl-hll proto kernel metric 256 pref medium
root@rose-srv6:/home/rose/workspace/draft-srv6-tutorial/nets/8routers-isis-ipv6# I

Virtual Routing and Forwarding (VRF) in Linux @
Virtual Routing and Forwarding (VRF) is a technology in Linux that allows

multiple instances of a routing table to coexist within the same router. This enables
separation of routing domains for different tenants or services, allowing them to have

overlapping IP addresses and routes without interference.

Each VRF can maintain its own set of routes and IP addresses, making it ideal for
scenarios where isolation is required, such as in multi-tenant environments.

Creating a VRF
To create a VRF device in Linux, you can use the following command:

ip link add vrfl00 type vrf table 100
This command creates a VRF named vrf100 and associates it with routing table 100.
Enslave network device to a VRF
In the Linux kernel, the concept of enslaving a network device to a VRF (Virtual Routing
and Forwarding) allows for the segregation of network traffic and routing tables. When a

network device is enslaved to a VRF, it becomes part of that specific routing domain,
meaning that any incoming or outgoing packets on that device will be routed based on the

routes defined in the VRF’s associated routing table. If a network device is not enslaved to
a VREF, it will not perform automatic routing lookups against the master VRF.
Consequently, traffic received on that device won't be routed according to the routes
defined in the VREF, leading to potential misrouting or dropped packets.

To enslave a network device to a master VRF using the iproute2 utility, you can use the
following command:

ip link set dev hll-rl master vrfl00

This command effectively associates the specified network device (h11-r1) with the
designated VRF (vrf100), enabling proper routing based on the VRF's routing table.

End.DT6 in VRF Mode

The SRv6 End.DT6 behavior can be configured to utilize the routing table associated with
a specific VRF. However, it is crucial that the VRF is set to "Strict Mode" for this operation.

Strict Mode

Strict Mode enforces a one-to-one relationship between VRFs and routing tables. This
means:

1) A specific routing table can only be associated with one VRF;
2) A specific VRF cannot share its routing table with any other VRF.

This mode is important for ensuring that routing decisions are unambiguous and that
there’s no overlap between VRFs.

Enabling Strict Mode

The strict mode can be enabled or disabled by modifying the strict._ mode parameter
through the sysctl command:

sysctl -w net.vrf.strict mode=1
Deploying SRv6 End.DT6 in VRF Mode

Once the VRF is configured with Strict Mode enabled, you can deploy the SRv6 End.DT6
in VRF mode with the following command:

ip -6 route add fcff:1::100 encap segblocal action End.DT6 \
vrftable 100 dev vrfl00

Vice-versa, we configure the R8 router entering into the R8 console by typing:

mininet> gterm r8

and then:

ip -6 route add fd00:0:11::2 encap segb mode encap segs
fcff:d::1,fcff:1::100 dev r8-r6

ip -6 route add fcff:8::100 encap seg6local action End.DT6

table main dev r8-ro6

-
v "Node: rg" - -

File Edit Wiew Terminal Tabs Help
root@rose-srvb:/home/rose/workspace/draft-srvbe-tutorial/nets/8routers-isis-ipv6
ip -6 route add fdO0:0:11::2 encap segb mode encap segs fcff:4::1,fcff:1::100
dev ré-r6
root@rose-srvb:/home/rose/workspace/draft-srvb-tutorial/nets/8routers-isis-ipvb
ip -6 r a fcff:8::100 encap segblocal action End.DT6 table main dev r8-ré6
roit@rose—srvﬁ:[homeirose/workspaceldraft—srv6—tut0ria1fnets/8r0uters—isis—ipvﬁ
#

Hereafter, the installed routes in the R8 router:

T "Node: r8' -+ x

File Edit View Terminal Tabs Help
125 nhid 26 via feB80::946a:b7ff:fe23:e69b dev r8-r7 proto isis metric medium

3 nhid 26 via feB80::946a:b7ff:fe23:e69b dev r8-r7 proto isis metric medium
7 nhid 26 via feB80::946a:b7ff:fe23:e69b dev r8-r7 proto isis metric medium
4. nhid 22 via feB80::3032:3bff:fefb:8ddf dev r8-r6 proto isis metric medium
;55 nhid 22 via feB80::3032:3bff:fefb:8ddf dev r8-r6 proto isis metric medium
6:: nhid 22 via feB80::3032:3bff:fefb:8ddf dev r8-r6 proto isis metric medium
6:: nhid 22 via feB0::3032:3bff:fefb:8ddf dev r8-rb6 proto isis metric medium
HY nhid 27 proto isis metric 20
ne&thop via fe80::3032:3bff:fefb:8ddf dev r8-r6 weight 1
nexthop via feB0::946a:b7ff:fe23:e69b dev r8-r7 weight 1 pref medium
:6:8::/64 dev r8-r6 proto kernel metric 256 pref medium
:7:8::/64 dev r8-r7 proto kernel metric 256 pref medium
/32 nhid 26 via feB80::946a:b7ff:fe23:e69b dev r8-r7 proto isis metric 20 pref medium
:1::/48 nhid 26 via feB80::946a:b7ff:fe23:e69b dev r8-r7 proto isis metric 20 pref medium
11/32 nhid 26 via feB80::946a:b7ff:fe23:e69b dev r8-r7 proto isis metric 20 pref medium
1:/32 nhid 27 proto isis metric 20
nexthop via fe80::3032:3bff:fefb:8ddf dev r8-r6 weight 1
nexthop via fe80::946a:b7ff:fe23:e69b dev r8-r7 weight 1 pref medium
1:/32 nhid 22 via feB80::3032:3bff:fefb:8ddf dev r8-r6 proto isis metric 20 pref medium
1::/48 nhid 22 via feB0::3032:3bff:fefb:8ddf dev r8-r6 proto isis metric 20 pref medium
::/32 nhid 22 via fe80::3032:3bff:fefb:8ddf dev r8-r6 proto isis metric 20 pref medium
- nhid 22 via fe80::3032:3bff:fefb:8ddf dev r8-r6 proto isis metric 20 pref medium
nhid 26 via fe80::946a:b7ff:fe23:e69b dev r8-r7 proto isis metric 20 pref medium
encap segblocal action End.DT6 table 0 dev r8-r6 metric 1024 pref medium
:l :/48 dev r8-hdc2 proto kernel metric 256 pref medium
::/32 dev lo proto kernel metric 256 pref medium
:11::2 encap segb mode encap seqs 2 [fcff:4::1 fcff:1::100] dev r8-rb6 metric 1024 pref medium
:81::/64 dev r8-h8l1 proto kernel metric 256 pref medium
:82::/64 dev r8-h82 proto kernel metric 256 pref medium
:83::/64 dev r8-h83 proto kernel metric 256 pref medium
1:/64 dev r8-r6 proto kernel metric 256 pref medium
1:/64 dev r8-r7 proto kernel metric 256 pref medium
1:/64 dev r8-h81 proto kernel metric 256 pref medium
1:/64 dev r8-h82 proto kernel metric 256 pref medium
1:/64 dev r8-h83 proto kernel metric 256 pref medium
1:/64 dev r8-hdc2 proto kernel metric 256 pref medium
root@rose-srv6:/home/rose/workspace/draft-srv6-tutorial/nets/8routers-isis-ipv6# l

At the end of the configuration process, the two tunnels are established and we can check if
h11 reaches the node h81 using the ping command:

ping -c 3 fd00:0:81::2

r hl
M "Mode: h11" - + x

File Edit Wiew Terminal Tabs Help

root@rose-srvb:/home/rose/workspace/draft-srvbe-tutorial/nets/8routers-isis-ipv6
ping -c 3 fd00:0:81::2

PING fd00:0:81::2(fd00:0:81::2) 56 data bytes

64 bytes from fd00:0:81::2: icmp seg=1 ttl=63 time=0.226 ms

64 bytes from fd00:0:81::2: icmp seqg=2 ttl=63 time=0.119 ms

64 bytes from fd00:0:81::2: icmp_seqg=3 ttl=63 time=0.103 ms

--- fd00:0:81::2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2046ms

rtt min/avg/max/mdev = 0.103/0.149/0.226/0.054 ms
roit@rose—srvﬁ:[homeirose/workspaceldraft—srv6—tut0ria1fnets/8r0uters—isis—ipvﬁ
#

And now... It works!

We can capture the traffic on R8 router using the wireshark packet analyzer by typing:

mininet> gterm r8

and then:

wireshark 2>/dev/null &

For the curious: i) 2>/dev/null redirects stderr (fd 2) to the black hole (discard any output
error of this command) and ii) &« makes the command run in the background.

Using wireshark, we can observe:
1) the R8 incoming traffic sent by the node r11 which has been encapsulated by the
router R1 in a Segment Routing packet; (run the capture on the interface r8-r6)

- *18-r6 -+ x
File Edit View Go Capture Analyze Statistics Telephony Wireless Toals Help
T =S W = e 3 =
AdEJeomRhRB QesEg e EaqarE
\I|Am:y3:\ splay filter ... <Ctrl-/> -]+

Destination

Protocol Lengtt Info

2.658774235
3 2.658802673

ICMPvG
ICMPvE

» [Frame 2: 108 bytes on wire (1584 bits), 108 hytes captur’en (1584 bits) on interface r8-ré,
» Ethernet II, Src: 32:32:3b:fb:8d:df (32 d:df), Dst:
~ Internet Protocol Versien 6, Src: fcf@: :1 Dst fcffi8::100
o118 . = Version: 6
» . OBBB 0060 .
e 0011 1101 0111 1@10 9010
Payload Length 144
Next Header: Routing Header for IPVE (43)
Hop Limit: 59
Source: fcf@:0:

Traffic Class:
Flow Label: 0x3d7a2

1

Destination: fcff:
~ Routing Header for IPin (Segment Routing)
Next Header: IPv6 (41)
Length: 4
[Length: 49 bytes]
Type: Segment Routing (4)
Seqments Left: @
First segment: 1
Flags: 0x00
Reserved: 0680
Address[@]: fcff:8::100
Address[1]: fcff:4::
C [Segmenls m 'lraversal GrdeT]

D4310431333232 3b fb 8d df 86 dd 60 03 1122
a2 B0 9@ 2b 3b fc f@ B0 G0 66 B1 GO 02 60 60 +;

a2 00 40 3a 40 d 00 00 00 00 11 00 0O 00 0O B H R

Ge B0 G@ 00 @0 e4 1b B0 G0 GO 6O 66 60 10 11 "

13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 !
23 24 25 26 27 28 29 2a 2b 2c 2d Z2e 2f 30 31 “EPER'() *+,-./01
33 34 35 36 37 234567

O 7 wireshark_ré-r6_20200511044633_Wh3893.pcapng

108 Echo (ping) request id
198 Echo (ping) reply id=0xfadc, seq

©x00 (DSCP: CSB®, ECN: Not-ECT)

hiop 64 (reply in
hop 11mit=62 (request in .

i
c6:b4:31:b4:31:aa (ch:b4:31:b4:31:aa)

Packets: 4 - Displayed: 4 (100.0%) : Dropped: 0 (0.0%)

Profile: Default

2) the original plain IPv6 packet (sent by the node h11) which has been extracted by the
Segment Routing packet and sent to the destination h81 (start the capture on the

interface r8-h81).

e *r8-h81 -+ X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

7 = a = 8 =
aAm EORG QesEFLEQAQAQE
(W]Apply a display filter ... <Ctrl-/> =9+
No. Time Source Destination Protacol Lengtt Info

1 0.080000000
2 0.080009582

ICHPVG
ICHPVG

Frame 1: 118 bytes on wire (944 bits), 118 bytes captured (944 bits) on interface r8-hai
Ethernet II, Src: 2a:a@:ea:c7:c5:c@ (2a:a@:ea:c7:c5:c@), Dst:
Internet Protocol Version 6, Src: fde@:6:11::2, Dst: Tdee:@:81:
Xkl . = Version: 6
[GBBB 0000

‘

= Traffic Class: ©xe@ (DSCP: CS@, ECN: Not-ECT)

L iee ... 0011 1101 8111 1610 0010 - Flow Label: Ox3d7a2
Payload Length:
Next Heade er

6.
ICMP\IG (58)

: deO 0:
Destination: fde@:@:81::2
Internet Control Message Protocol wi

12

El

ca 6a 27 Oe 80 cd 2a a@ ea c7 c5 c@ 86 dd 60 03
00 00 60 11 00 00 00 0O @:?

90 00 09 00 @0 00 10 11 A .- o
1a 1b 1c 1d e 1f 20 21 !
ESKE' () *+,-./01
234567

@ 7 wireshark rg8-h81_20200511044628 g65nSV.pcapng

118 Echo (ping) request id:
118 Echo (ping) reply id=f 0xfa3c. seq

, id 0
ca:6a:27:0e:80:cd (ca:6a:27:0e:80:cd)
2

Packets: 2 - Displayed: 2 (100.0%) - Dropped: 0 (0.0%)

When the packet is received by the r81 node, it replies with a “ping reply” which is
encapsulated by the R8 gateway in a SRv6 packet using the SRv6 reverse tunnel.

Profile: Default

The packet reaches the router R1 which decaps the inner “ping reply” forwarding it to the
h11.

Porting 8routers-isis testbed to named network
netns

The 8-router ISIS testbed was carefully reconstructed while ensuring that all dependencies
on Zebra and IS-IS dynamic routing daemons were eliminated. The objective of this
reconstruction was to establish a more controlled and reproducible self-contained testing
environment.

In order to enhance configurability and streamline the setup process, the provided script
incorporates adjustable setting variables. These variables facilitate the implementation of
specific SRv6 policies, which are essential for establishing Layer 3 Virtual Private Networks
(L3VPNSs) between host nodes.

ha2 h51 h52 h53
h31 .l

h33
[T . \\\\\M ‘ ’H//f{f
- H m _
/ R3 hoc oA -1 28 *¢‘15 e |:/
(F - =S -

: hded

J 'H i i3 1 128 o e 1128

del

ﬁ A1 \ L,
. o belf 17128 /

H
- / e e 1mue/ ‘ \

]

—

2

e00:0:11:22

h11 - he3a
ha1
IIBZ

To log-in to the testbed machine
ssh ubuntu@160.80.105.58
ubuntul@pal-r3-s08:~$ 1lxc exec hawaii-tutorial bash

root@hawaii-tutorial:~# screen -x

root@hawaii-tutorial:~#

root@hawaii-tutorial:~# cd ~/hawaii/rose-srvé-tutorial/nets/8routers-named-netns/
root@hawaii-tutorial:~/[...]/8routers—-named-netns# ./named-ns-8r.sh

Implemented L3VPN services as follows:

src — dst | Policy encap | topology

h11 < h81 | "r1,h81,srh,r3 r5,r8" plain h11-r1-r2-r3-r4-r5-r6-r8-h81

h81 < h11 | "r8,h11,srh,,r1" plain [h81-r8-r6-r4-r3-r2-r1-h1

h12 < h82 | "r1,h82,red,r5 r7,r8" csid h12-r1-r2-r3-r4-r5-r6 -r8 - h82

h82 < h12 | "r8,h12,red,,r1" csid h82-r8-r6-r4-r3-r2-r1-h12

h13 < h83 | "r1,h83,red,r2 r7 r4 r5,r8" csid h13-r1-r2-r7- r6-r4-r5-r6-r8 - h83

h83 < h13 ["r8,h13,srh,r7 r6 r5r3 r2,r1" | plain h83-r8-r7-r6-r4-r3-r2-r1-h13
where in:

- green is an srv6 encap node

- black is an srv6 unaware node
- red is an srv6 aware node

- blue is an srv6 decap node

	ROSE-SRv6 tutorial on Linux - Part 1
	
	Link to repository for the given topology (https://github.com/netgroup/rose-srv6-tutorial.git)
	
	Porting 8routers-isis testbed to named network netns
	
	Implemented L3VPN services as follows:

