

Lesson 4: Team Standards
Java Edition
Updated January 2025

Table of Contents
Introduction
Section 1 - Formatting and Structure

1.1 Packages
1.2 Classes

1.2a Robot
1.3 Functions
1.4 Class Variables
1.5 Enumerations

1.5a Simple Enumerations
1.5b Complex Enumerations

1.6 Driver Station Dashboard
1.6a SmartDashboard
1.6b MOLib Entry and Option

Section 2 - Naming Conventions
2.1 Package Names
2.2 Class Names
2.3 Function Names
2.4 Variable Names
2.5 Enumeration Names

Section 3 - Comments
3.1 Standard Comments
3.2 JavaDoc Comments
3.3 Miscellaneous Comments

Introduction
This document outlines the general standard practices for

programming that Big MO has developed over the last several
years. It covers everything from how code should be organized to
how names should be structured. These standards are in place to
streamline the process and make it as consistently readable as
possible, without compromising functionality, no matter who
wrote it. This document assumes an understanding of all concepts
included and will not be explaining how they work, only how we
as a team use them.

Any examples of code within this document are written and
colored as closely as they can be to how it will appear in VS
Code, the program we use for writing the actual code. Sections
surrounded by angle brackets such as <type> are required
placeholders while sections surrounded by square brackets such as
[argument] are optional placeholders, typically to be replaced
with references to other parts of code like specific classes,
variable names, or direct values.

Page 2

Section 1 - Formatting and Structure
1.1 Packages

One method to organize your files is through packages. Make
all packages with short but concise names. All of our classes
are broken into various packages and there are several we will
use every year such as subsystem for any mechanical subsystems,
or period for all of the control periods during the game.

1.2 Classes
Almost every class will contain the functions: init(),

initDashboard(), updateDashboard(), and periodic(). This is
standard to initiate anything at startup and to continuously
update the class. Typically, every class will contain its
enumerations and other constants first, followed by all of its
dashboard elements, private variables, the Constructor function
(often private and empty as most classes will be accessed
statically and will handle any initialization in the init()
function instead), the init(), initDashboard(), and
updateDashboard() functions, any private or protected functions,
all public functions, and finally the periodic() function. Try
to group related functions to make it easier to navigate and
read your code.

1.2a Robot

If done correctly, the Robot class should be very bare-bones.
Typically, all it should contain is the creation of the MO Data,
Control Periods, and Subsystems NetworkTables, the control
period and subsystem classes’ init(), intiDashboard(),
updateDashboard(), and periodic() functions, Camera
creation/configuration, and the ButtonScheduler updateValues()
function. All other tasks should be constrained to their
respective sections; Teleoperated should handle all included
subsystems’ periodic() functions, Chassis should handle all
motor configuration within its init() function, and so on.

Page 3

1.3 Functions
A function definition must include its visibility (public,

private, or protected), a return type, an appropriate name and
any applicable parameters.

public void setDrivePower(double powerLeft, double powerRight) {​
​ mtrDrive_L1.set(powerLeft);​
​ mtrDrive_R1.set(powerRight);​
}

Note the space between the arguments and the opening brace,
and how the following lines are tabbed over. No matter the
contents, all functions should be formatted this way. The only
exception is when the body contains a single line. In some cases
where this happens, it is acceptable to write the whole function
on the same line.

public int getCount() { return mCount; }

Note the continued use of spaces to separate the brackets from
the nearby code, especially when it’s so short. This makes it
much easier to read when referencing this code later.

1.4 Class Variables
Every variable belonging to a class must include its

visibility (public, private, or protected), its type, an
appropriate name, and a starting value. There are only a few
exceptions where the variable will not have a starting value
assigned to it, typically when a value will be passed through
the constructor.

public int count = 0;

1.5 Enumerations

1.5a Simple Enumerations

Enumerations are used in two ways. One is very simple and is
just a list of possible values essentially. In this case they
will be just a list and nothing more. Typically, the entire
enumeration can be listed on a single line. If the list is
rather long however, it is recommended to list them each
individually.

Page 4

enum Speed { HIGH, MEDIUM, LOW }​
enum Colors {​
​ RED,​
​ ORANGE,​
​ YELLOW,​
​ GREEN,​
​ BLUE,​
​ PURPLE,​
​ BLACK,​
​ GRAY,​
​ WHITE,​
​ PINK,​
​ BROWN​
}

1.5b Complex Enumerations

In rare cases, enumerations will need additional data to be
stored in them. One such instance in the past was created to
store different angles of an arm. In this case, the enumeration
is also treated like a standard class. These are used when you
want to force the user to use an enumeration to select different
options without directly dealing with the data stored within
them.

At the beginning, the list is much the same except each
element in it starts with the values to be retrieved later.
Following the list, we create the public but final variables to
store this data and create a constructor to pass these values
into the variable

enum ArmAngles {​
​ REVERSE_FLOOR(-10.0),​
​ REVERSE_LOW(-30.0),​
​ REVERSE_HIGH(-45.0),​
​ CENTER(0.0),​
​ FORWARD_HIGH(45.0),​
​ FORWARD_LOW(30.0),​
​ FORWARD_FLOOR(100.0);​
​
​ public final double angle;​
​ ArmAngles(double angle) { this.angle = angle; }​
}

Page 5

1.6 Driver Station Dashboard

1.6a SmartDashboard

Within the WPILibrary, SmartDashboard provides the ability to
push and pull data from the driver station dashboard. In order
to organize these however, the complete path name must be
provided to access them each time you reference them. It is
recommended that you avoid these unless absolutely necessary as
the classes and functions provided in MOLib are much easier to
use.

1.6b MOLib DashboardValue and DashboardSelector

Included with MOLib is an alternative way of connecting to
Network Tables to communicate information to and from the Driver
Station. In order to make use of it, a table must first be
created. The original parent table should be named “MO Data” and
subtables can then be created from them, and more from those, as
many as necessary. Other common subtables are “Control Periods”
and “Subsystems” under which the respective classes will make
their own subtables. This ultimately makes it easier to find the
specific information you are looking for in what will typically
become a very long list. From there, Entries and Options can be
made to actually store the data.

Page 6

Section 2 - Naming Conventions
2.1 Package Names

Packages are used to break up and organize files. The names
for them are very simple on purpose with a single word, all
lowercase. The name should designate either a broad umbrella of
other packages or a very specific group of files.

2.2 Class Names
Class names are written in Pascal Case, meaning that the first

letter of every word is capitalized and there are no spaces.
However, class names should typically be restricted to a single
word if possible. Often, if more words are necessary to make it
distinct, the similar classes should all be moved into a
separate package. Chassis, Teleoperated, and Intake are all good
examples.

2.3 Function Names
Names for functions are written in Camel Case, meaning that

the first letter of each word is capitalized, except the first
one which should be left lowercase. They should be short, but
descriptive, and should be consistent. This means that similar
functions throughout various classes and packages should all
follow the same structure.

Common functions are getters and setters. These are simply
named “get” or “set” followed by what information they are tied
to, such as getCount() or setPower(). Other common functions are
named for the specific action they perform such as raiseArm() or
disableIntake(). In cases like this, it is best to be as
consistent and descriptive as to what action is being performed
as possible. Most commonly this can be one of the following:
raise, lower, extend, retract, enable, disable, or reverse.
These should be followed by the specific mechanism being
manipulated unless being used for the entire subsystem. The
exception to this rule is setters for configuration purposes.
These will be prefixed with “config” such as configDeadzone()
for a controller.

Page 7

2.4 Variable Names
Depending on the context of the variable, the naming scheme

will be slightly different. Variables of simple types (int,
double, boolean, String, etc) are written in Camel Case, meaning
the first letter of each word is capitalized, except for the
first word. Private ones are prefixed with the letter “m” to
indicate that they are private. This counts as the first word
and all subsequent words will be capitalized. Constants of
simple types are written entirely in capital letters and words
are separated by underscores.

Complex Objects such as devices on the robot or driver
controllers, whether final or not, have a special convention.
All of them are prefixed with a three letter abbreviation
indicating what kind of object it is. This is followed by a
single word description of its use, one as specific as possible
is best. A drivetrain motor would use Drive, a limit switch for
the arm in a manipulator would only use Arm, and so on.

A complete list of object prefixes

Button​ ​ ​ btn​ ​ ​ LED Lights​ ​ led
Camera​ ​ ​ cam​ ​ ​ Limelight​​ ​ lml
Compressor​ ​ cmp​ ​ ​ Limit Switch​ ​ lim
Driver Controller​ ctl​ ​ ​ Motor Controller​ mtr
Dial​​ ​ ​ dia​ ​ ​ Photo Eye​​ ​ pho
Digital Input​ ​ dgi​ ​ ​ PID Controller​​ pid
Digital Output​​ dgo​ ​ ​ Potentiometer​ ​ pot
Dashboard Entry​ dsh​ ​ ​ Solenoid​ ​ ​ sol
Encoder​ ​ ​ enc​ ​ ​ Network Table​ ​ tbl
Gyro​​ ​ ​ gyr​ ​ ​ Timer​ ​ ​ tmr
Jumper​ ​ ​ jmp​ ​ ​

If there are multiple objects with a similar purpose, they are

designated with either a letter representing a position, a
number representing order, or a combination thereof. This
designation is separated from the previous part with an
underscore. Suffixes with the same letter should never actually
conflict as they will not be used in the same context.

Page 8

A complete list of directional suffixes

Left​​ ​ ​ L​ ​ ​ Top​ ​ ​ ​ T
Right​ ​ ​ R​ ​ ​ Bottom​ ​ ​ B
Center​ ​ ​ C​ ​ ​ Upper​ ​ ​ U
Front​ ​ ​ F​ ​ ​ Lower​ ​ ​ L
Back​​ ​ ​ B

The only exceptions are Dashboard Entries and PIDs. These
objects should append their specific purpose as well, such as
_Speed, _Distance, _Position, _Power, or _Enabled. Some examples
of objects with varying degrees of complication are:
mtrDrive_L1, limArm_U, pidDrive_L_Distance, dshArm_Speed.

2.5 Enumeration Names #EDIT
Enumerations are treated like standard classes containing a

list of constants. The name of the enumeration is as short, but
descriptive as possible and written in Pascal Case meaning that
the first letter of each word is capitalized. The elements of
the enumeration are considered constants and should also be as
short but descriptive as possible, typically a single word or
two. These are in all caps, words separated by underscores. For
complex enumerations with variables and functions in them, the
standard conventions above apply to these variables and
functions as well.

Page 9

Section 3 - Comments
3.1 Standard Comments

Comments are used to describe what is happening at specific
points in code. Explain confusing sections in as much detail as
possible because it might make sense in the moment, but two
weeks later it will likely be a different story. Plus it will
make it much easier to understand when anyone else looks it over
for any reason. Single line comments are denoted by two
backslashes. Everything following on that line is considered a
comment and is no longer part of the code.

//Single line comments are good for short descriptions

Multi-line comments are denoted by starting with /* and ending
with */. Unlike single line comments, only what is between these
characters is considered a comment. As such they can be inserted
anywhere in code, but typically should be restricted to blocks
in between sections of code.

/*​
 * Multi-line or Block comments are used when a longer​
 * description is necessary or when sections need to be ​
 * separated a bit more.​
 */

Note the spacing used in the multi-line comment. Lining the
asterisks up and spacing the text evenly away from them makes it
a lot easier to read.

3.2 JavaDoc Comments
JavaDoc comments are special multi-line comments that are

typically tied to specific functions. The only written
distinction is the use of two asterisks at the start rather than
the one used in standard multi-line comments. They are used by
the editor to create a popup when these functions are used,
providing extra detail and help with using them.

Within them, a detailed explanation of the functions' purpose
goes first. Be as descriptive as possible with this part,
explain it as you would to another person who has never read any
of your code. After the description, use the various tags to
describe the other elements of the function. The @param tag is
used to describe any parameters passed into the function. Any

Page 10

parameters that should be within a certain range such as those
for motor powers, should start with their minimum and maximum
value in square brackets. Similarly, the @return tag is to
explain what is returned from the function when applicable. Use
@see when there is an outside, but related, element that the
reader should look into such as a special return type or related
class.

/**​
 * A detailed description of what the following function does.​
 * This part should be the longest and could take several lines.​
 * Also supported are HTML tags such as <p> </p> to specifically​
 * designate paragraphs as any new lines or other separations​
 * are not reflected unless explicitly stated through the use of​
 * these tags.​
 * @param <parameter>​ Brief description of the parameter.​
 * @param <parameter>​ [min, max] Followed by description. ​
 * @return​ ​ ​ Brief description of what is returned.​
 *​
 * @see​ ​ ​ ​ <reference>​
 */

Note that these are setup almost identical to standard
multi-line comments where everything is spaced and aligned
vertically. Long sections of the main description are
deliberately broken up into multiple lines to prevent them from
running off the screen. Also note the use of tabs after tags as
this further aligns the descriptions and makes it cleaner and
easier to read. There should be a blank line before any @see
tags that follow at the end to break it up from one large block
of text. {@link <reference>} can be used to direct users to
other sections of related code within the comment itself. Use of
this vs the @see tag is up to the discretion of the author.

3.3 Miscellaneous Comments
There are a few keywords that you can throw into comments that

can further help you understand what needs to be done. A TODO
tag can be inserted anywhere in a comment and everything that
follows on that line will be included in the Problems tab on VS
Code. Similarly, you can use FIXME to indicate something that
needs to be fixed in the future.

//TODO: Description of what needs to be done.​
//FIXME: Description of what needs to be fixed.

Page 11

	Lesson 4: Team Standards
	Java Edition
	Introduction
	Section 1 - Formatting and Structure
	1.1 Packages
	1.2 Classes
	1.2a Robot

	1.3 Functions
	1.4 Class Variables
	1.5 Enumerations
	1.5a Simple Enumerations
	1.5b Complex Enumerations

	1.6 Driver Station Dashboard
	1.6a SmartDashboard
	1.6b MOLib DashboardValue and DashboardSelector

	Section 2 - Naming Conventions
	2.1 Package Names
	2.2 Class Names
	2.3 Function Names
	2.4 Variable Names
	2.5 Enumeration Names #EDIT

	Section 3 - Comments
	3.1 Standard Comments
	3.2 JavaDoc Comments
	3.3 Miscellaneous Comments

