

Teacher(s)	Hamed Sanusi, Spaulding Karlton, Dr. Giles Jacqueline		Year - Grade	Year 5 -10th Grade	Subject	Mathematics
	Name of Course					
Unit #	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
Unit length (4 to 8 weeks)	4 Weeks	4 Weeks	4 Weeks			
Unit title	"The Power of Polynomials: Unveiling Patterns and Solving Mysteries" Polynomials	"Building the Blocks: Exploring Geometric Foundations, Constructions, and Proofs"? Geometric Foundations, Constructions, and Proof	"Perfectly Aligned: Unlocking the Secrets of Congruence"? Exploring Congruence	"Scaling the Heights: Exploring the Power of Similarity" Similarity	"Triangular Mysteries: Unraveling the Secrets of Right Triangles" Right triangle trigonometry	"Circles in Motion: Unveiling the Geometry of Roundness" Making sense of circles
Learner Profile (Select 2)	Inquirer	Inquirer, Risk-Taker	Inquirer			
Key concept (Select only 1-2)	Logic	Relationships	Relationship, Transformation			
Related concept(s) (Select 2-3)	Representation	Models, Patterns, Representation	Symmetry, Similarity			
Global context + Global context exploration	Globalization and sustainability	Scientific and technical innovation	Scientific and Technical Innovation			
Statement of Inquiry Note: must include the Global Context Exploration, Key Concepts & Related Concepts	Representation of the consumption of a natural resource helps in the justification of logic.	Models help us identify relationships between patterns.				
Current Event or Real Life Connection	Polynomials are used when designing structures like bridges and roller coasters.	Basic Geometry is used in construction.				

			<u>, </u>	 	,
Inquiry		Factual questions			
Questions	Factual Questions	 What are proofs? 			
Factual	 What is the definition of a 	2. What are acute, obtuse,			
	polynomial?	and right angles?			
 Conceptual 	How do you identify the	3. What are complementary			
Debatable	degree of a polynomial?	and supplementary			
	What is the difference	angles?			
	between a monomial,				
	binomial, and trinomial?	Conceptual questions			
		 What is the relationship 			
	Conceptual Questions	between different types			
	 Why is the degree of a 	of angles and shapes?			
	polynomial important in	2. How does geometry			
	determining its behavior?	connect to other areas of			
	2. How do polynomial	mathematics?			
	functions model				
	real-world phenomena?	Debatable questions			
	In what ways do the zeros	1 Can all acometrie			
	of a polynomial relate to	1. Can all geometric			
	its graph?	problems be solved			
		through construction			
	Debatable Questions	alone?			
	 Are polynomials the most 	2. Is geometry more			
	versatile mathematical	useful in everyday life			
	tool for modeling real-life	compared to other			
	problems?	•			
	Should technology replace	branches of			
	manual methods in solving	mathematics?			
	polynomial equations?				
	3. Can all real-world				
	scenarios be accurately				
	represented by polynomial				
	models?				

Subject-group objective(s)/ Assessment Criteria	1. Use appropriate mathematical language (notation, symbols, and terminology) in both oral and written explanations.	Criterion D: Applying Mathematics 1. ID relevant elements of authentic real-life problems. 2. select appropriate mathematics when solving authentic real-life problems. 3. apply the selected mathematics successfully to reach a solution. 4. justify the degree of accuracy of a solution. 5. justify whether a solution makes sense in real life.		
ATL skills + ATL Skill indicators	1. Propose and evaluate a variety of solution Communication 2. Effectively presenting ideas	Information literacy skills 1. Understand and use technology systems Critical-thinking skills 1. Propose and evaluate a variety of solutions		

				1
Content	Students will	Students will		
Topics	 Learn key terms (e.g., 	1. Learn key geometric		
• Skills	binomial, trinomial, monomial, and	terms (e.g., point, line, angle).		
 Knowledge 	polynomials).	2. Measure and calculate		
	2. Learn that polynomials are	perimeter and area.		
	algebraic expressions containing numbers and	3. Identify and classify shapes.		
	variables	4. Use tools for geometric		
	3. Measure and calculate the	constructions.		
	degree of the monomial.	5. Develop reasoning skills		
	 Learn how to add and subtract polynomials. 	for basic proofs.		
	5. Learn how to multiply			
	polynomials.			1