UNIT-2

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity
constraints, querying relational data, logical database design, introduction to views,
destroying/altering tables and views. Relational Algebra, Tuple relational Calculus, Domain
relational calculus.

INTEGRITY CONSTRAINTS OVER RELATION

e Database integrity refers to the validity and consistency of stored data. Integrity is usually
expressed in terms of constraints, which are consistency rules that the database is not
permitted to violate. Constraints may apply to each attribute or they may apply to
relationships between tables.

e Integrity constraints ensure that changes (update deletion, insertion) made to the database
by authorized users do not result in a loss of data consistency. Thus, integrity constraints
guard against accidental damage to the database.

EXAMPLE- A brood group must be ‘A’ or ‘B’ or ‘AB’ or ‘O’ only (can not any other values
else).
TYPES OF INTEGRITY CONSTRAINTS
Various types of integrity constraints are-
1. Domain Integrity
2. Entity Integrity Constraint
3. Referential Integrity Constraint
4

Key Constraints

1. Domain Integrity-

Domain integrity means the definition of a valid set of values for an attribute. You define data
type, length or size, is null value allowed , is the value unique or not for an attribute ,the default
value, the range (values in between) and/or specific values for the attribute.

2. Entity Integrity Constraint-
This rule states that in any database relation value of attribute of a primary key can't be null.

EXAMPLE- Consider a relation "STUDENT" Where "Stu_id" is a primary key and it must not
contain any null value whereas other attributes may contain null value e.g "Branch" in the
following relation contains one null value.

Stu_id

11255234

11255369

11255324

11255237

11255678

3.Referential Integrity Constraint-

Name

Aman

Kapil

Ajay

Raman

Aastha

Branch

CSE

EcE

ME

CSE

ECE

It states that if a foreign key exists in a relation then either the foreign key value must match a
primary key value of some tuple in its home relation or the foreign key value must be null.

The rules are:

1. You can't delete a record from a primary table if matching records exist in a related table.
2. You can't change a primary key value in the primary table if that record has related

records.

3. You can't enter a value in the foreign key field of the related table that doesn't exist in the

primary key of the primary table.

4. However, you can enter a Null value in the foreign key, specifying that the records are

unrelated.

EXAMPLE-

Consider 2 relations "stu" and "stu_1" Where "Stu_id " is the primary key in the "stu" relation

and foreign key in the "stu_1" relation.

Relation "stu"

Stu_id Name Branch

11255234 Aman CSE
11255369 Kapil EcE
11255324 Ajay ME
11255237 Raman CSE
11255678 Aastha ECE
Relation "stu 1"
Stu_id Course Duration
11255234 B TECH 4 years
11255369 B TECH 4 years

11255324 B TECH 4 years

Stu_id Course Duration

11255237 B TECH 4 years

11255678 B TECH 4 years

Examples

Rule 1. You can't delete any of the rows in the “’stu” relation that are visible since all the “’stu”
are in use in the “stu_1” relation.

Rule 2. You can't change any of the ”Stu_id” in the “stu” relation since all the “Stu_id” are in use
in the ”stu_1” relation. * Rule 3.* The values that you can enter in the” Stu_id” field in the
“stu_1” relation must be in the” Stu_id” field in the “stu” relation.

Rule 4 You can enter a null value in the "stu_1" relation if the records are unrelated.
4.Key Constraints-

A Key Constraint is a statement that a certain minimal subset of the fields of a relation is a
unique identifier for a tuple. The types of key constraints-

Primary key constraints
Unique key constraints
Foreign Key constraints
NOT NULL constraints
Check constraints

Nk W=

1. Primary key constraints

Primary key is the term used to identify one or more columns in a table that make a row of data
unique. Although the primary key typically consists of one column in a table, more than one
column can comprise the primary key.

For example, either the employee's Social Security number or an assigned employee
identification number is the logical primary key for an employee table. The objective is for every
record to have a unique primary key or value for the employee's identification number. Because
there is probably no need to have more than one record for each employee in an employee table,
the employee identification number makes a logical primary key. The primary key is assigned at
table creation.

The following example identifies the EMP _ID column as the PRIMARY KEY for the
EMPLOYEES table:

CREATE TABLE EMPLOYEE_TBL

(EMP ID CHAR(9) NOT NULL PRIMARY KEY,
EMP NAME VARCHAR (40) NOT NULL,
EMP ST ADDR VARCHAR (20) NOT NULL,

EMP CITY VARCHAR (15) NOT NULL,

EMP ST CHAR(2) NOTNULL,

EMP ZIP INTEGER(5) NOT NULL,

EMP PHONE INTEGER(10) NULL,

EMP PAGER INTEGER(10) NULL);

2. Unique Constraints

A unique column constraint in a table is similar to a primary key in that the value in that column

for every row of data in the table must have a unique value. Although a primary key constraint is
placed on one column, you can place a unique constraint on another column even though it is not
actually for use as the primary key.

CREATE TABLE EMPLOYEE_TBL

(EMP ID CHAR(Y) NOTNULL PRIMARY KEY,
EMP NAME VARCHAR (40) NOT NULL,
EMP ST ADDR VARCHAR (20) NOT NULL,

EMP CITY VARCHAR (15) NOT NULL,

EMP ST CHAR(2) NOT NULL,

EMP ZIP INTEGER(5) NOT NULL,

EMP PHONE INTEGER(10) NULL UNIQUE,
EMP PAGER INTEGER(10) NULL)

3. Foreign Key Constraints

A foreign key is a column in a child table that references a primary key in the parent table. A
foreign key constraint is the main mechanism used to enforce referential integrity between tables
in a relational database. A column defined as a foreign key is used to reference a column defined
as a primary key in another table.

CREATE TABLE EMPLOYEE _PAY TBL
(EMP_ID CHAR(9) NOT NULL,

POSITION VARCHARZ2(15) NOT NULL,
DATE HIRE DATE NULL,

PAY RATE NUMBER(4,2) NOT NULL,
DATE LAST RAISE DATE NULL,

4. NOT NULL Constraints

Previous examples use the keywords NULL and NOT NULL listed on the same line as each
column and after the data type. NOT NULL is a constraint that you can place on a table's
column. This constraint disallows the entrance of NULL values into a column; in other words,
data is required in a NOT NULL column for each row of data in the table. NULL is generally the
default for a column if NOT NULL is not specified, allowing NULL values in a column.

5. Check Constraints

Check (CHK) constraints can be utilized to check the validity of data entered into particular table
columns. Check constraints are used to provide back-end database edits, although edits are
commonly found in the front-end application as well. General edits restrict values that can be
entered into columns or objects, whether within the database itself or on a front-end application.
The check constraint is a way of providing another protective layer for the data.

CREATE TABLE EMPLOYEE TBL

(EMP_ID CHAR(9) NOT NULL,

EMP NAME VARCHAR2(40) NOT NULL,

EMP ST ADDR VARCHAR2(20) NOT NULL,

EMP _CITY VARCHAR2(15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP NUMBER(5) NOT NULL,

EMP PHONE NUMBER(10) NULL,

EMP PAGER NUMBER(10) NULL),

PRIMARY KEY (EMP_ID),

CONSTRAINT CHK_EMP_ZIP CHECK (EMP_ZIP ='46234");

Relational Algebra

Relational Algebra is a procedural query language. Relational algebra mainly provides a
theoretical foundation for relational databases and SQL. The main purpose of using Relational
Algebra is to define operators that transform one or more input relations into an output relation.
Given that these operators accept relations as input and produce relations as output, they can be
combined and used to express potentially complex queries that transform potentially many input

https://www.geeksforgeeks.org/sql-tutorial/

relations (whose data are stored in the database) into a single output relation (the query results).
As it is pure mathematics, there is no use of English Keywords in Relational Algebra and
operators are represented using symbols.

Fundamental Operators

These are the basic/fundamental operators used in Relational Algebra.

1. Selection(c)

2. Projection(m)
3. Union(U)
4. Set Difference(-)
5. Set Intersection(N)
6. Rename(p)
7. Cartesian Product(X)
1. Selection(o): It is used to select required tuples of the relations.
Example:
C

A B

1 2 4

2 2 3

3 2 3

4 3 4

For the above relation, 6(¢>3)R will select the tuples which have ¢ more than 3.

C
A B
1 2 4
4 3 4

Note: The selection operator only selects the required tuples but does not display them. For
display, the data projection operator is used.

2. Projection(m): It is used to project required column data from a relation.

Example: Consider Table 1. Suppose we want columns B and C from Relation R.

n(B,C)R will show following columns.

https://www.geeksforgeeks.org/basic-operators-in-relational-algebra-2/
https://www.geeksforgeeks.org/select-operation-in-relational-algebra/
https://www.geeksforgeeks.org/difference-between-selection-and-projection-in-dbms/
https://www.geeksforgeeks.org/sql-union-operator/
https://www.geeksforgeeks.org/set-theory-operations-in-relational-algebra/
https://www.geeksforgeeks.org/sql-intersect-clause/
https://www.geeksforgeeks.org/rename-operation-in-relational-algebra/
https://www.geeksforgeeks.org/cartesian-product-operation-in-relational-algebra/

2 4
2 3
3 4

Note: By Default, projection removes duplicate data.
3. Union(U): Union operation in relational algebra is the same as union operation in set theory.
Example:

FRENCH
Student Name
Roll_Number
Ram 01
Mohan 02
Vivek 13
Geeta 17
GERMAN

Student_Name
Roll_ Number

Vivek 13
Geeta 17
Shyam 21
Rohan 25

Consider the following table of Students having different optional subjects in their course.

n(Student Name)FRENCH U n(Student Name)GERMAN

https://www.geeksforgeeks.org/set-operations/

Student_Nam
e

Ram

Mohan

Vivek

Geeta

Shyam

Rohan

Note: The only constraint in the union of two relations is that both relations must have the same
set of Attributes.

4. Set Difference(-): Set Difference in relational algebra is the same set difference operation as
in set theory.

Example: From the above table of FRENCH and GERMAN, Set Difference is used as follows
n(Student Name)FRENCH - n(Student Name)GERMAN

Student_Nam
e

Ram

Mohan

Note: The only constraint in the Set Difference between two relations is that both relations must
have the same set of Attributes.

5. Set Intersection(N): Set Intersection in relational algebra is the same set intersection
operation in set theory.

Example: From the above table of FRENCH and GERMAN, the Set Intersection is used as
follows

n(Student Name)FRENCH N n(Student Name)GERMAN

Student_Nam
e

Vivek

Geeta

Note: The only constraint in the Set Difference between two relations is that both relations must
have the same set of Attributes.

6. Rename(p): Rename is a unary operation used for renaming attributes of a relation.

p(a/b)R will rename the attribute 'b' of the relation by 'a'.

7. Cross Product(X): Cross-product between two relations. Let’s say A and B, so the cross
product between A X B will result in all the attributes of A followed by each attribute of B. Each
record of A will pair with every record of B.

Example:
A
Sex
Name Age
Ram 14 M
Sona 15 F
Kim 20 M
B
ID Course
1 DS
2 DBMS
AXB
Sex ID Course
Name Age
Ram 14 M 1 DS

Ram 14 M 2 DBMS

Sex 1ID Course

Name Age
Sona 15 F 1 DS
Sona 15 F 2 DBMS
Kim 20 M 1 DS
Kim 20 M 2 DBMS

Note: If A has ‘n’ tuples and B has ‘m’ tuples then A X B will have ‘ n*m ° tuples.

Derived Operators

These are some of the derived operators, which are derived from the fundamental operators.

1. Natural Join(X)

2. Conditional Join

1. Natural Join(™): Natural join is a binary operator. Natural join between two or more relations
will result in a set of all combinations of tuples where they have an equal common attribute.
Example:

EMP
Dept_Name
Name ID

A 120 IT

B 125 HR

C 110 Sales

D 111 IT

DEPT

Dept_Name Manager

Sales Y

Production Z

https://www.geeksforgeeks.org/extended-operators-in-relational-algebra/
https://www.geeksforgeeks.org/sql-natural-join/
https://www.geeksforgeeks.org/extended-operators-in-relational-algebra/

Dept_Name Manager

IT A

Natural join between EMP and DEPT with condition :
EMP.Dept Name = DEPT.Dept_Name

EMP x DEPT
Dept Name Manager
Name ID
A 120 IT A
C 110 Sales Y
D 111 IT A

2. Conditional Join: Conditional join works similarly to natural join. In natural join, by default
condition is equal between common attributes while in conditional join we can specify any
condition such as greater than, less than, or not equal.

Example:
R
Marks
ID Sex
1 F 45
2 F 55
3 F 60
S
Marks
1D Sex
10 M 20

11 M 22

Marks
ID Sex

12 M 59

Join between R and S with condition R.marks >= S.marks

R.ID R.Marks S.ID S.Sex S.Marks
R.Sex
1 F 45 10 M 20
1 F 45 11 M 22
2 F 55 10 M 20
2 F 55 11 M 22
3 F 60 10 M 20
3 F 60 11 M 22
3 F 60 12 M 59

Relational Calculus

As Relational Algebra is a procedural query language, Relational Calculus is a non-procedural
query language. It basically deals with the end results. It always tells me what to do but never
tells me how to do it.

There are two types of Relational Calculus

1. Tuple Relational Calculus(TRC)
2. Domain Relational Calculus(DRC)

Tuple Relational Calculus (TRC) in DBMS

Tuple Relational Calculus (TRC)is a non-procedural query language used in relational
database management systems (RDBMS) to retrieve data from tables. TRC is based on the

https://www.geeksforgeeks.org/difference-between-relational-algebra-and-relational-calculus/
https://www.geeksforgeeks.org/tuple-relational-calculus-trc-in-dbms/
https://www.geeksforgeeks.org/domain-relational-calculus-in-dbms/

concept of tuples, which are ordered sets of attribute values that represent a single row or record
in a database table.

TRC is a declarative language, meaning that it specifies what data is required from the database,
rather than how to retrieve it. TRC queries are expressed as logical formulas that describe the
desired tuples.

Syntax: The basic syntax of TRC is as follows:

{tIP()

where t is a tuple variable and P(t) is a logical formula that describes the conditions that the
tuples in the result must satisfy. The curly braces {} are used to indicate that the expression is a
set of tuples.

For example, let’s say we have a table called “Employees” with the following attributes:

Employee ID

Name

Salary

Department ID

To retrieve the names of all employees who earn more than $50,000 per year, we can use the
following TRC query:

{ t | Employees(t) A t.Salary > 50000 }

In this query, the “Employees(t)” expression specifies that the tuple variable t represents a row in
the “Employees” table. The “A” symbol is the logical AND operator, which is used to combine
the condition “t.Salary > 50000” with the table selection.

The result of this query will be a set of tuples, where each tuple contains the Name attribute of an
employee who earns more than $50,000 per year.

TRC can also be used to perform more complex queries, such as joins and nested queries, by
using additional logical operators and expressions.

While TRC is a powerful query language, it can be more difficult to write and understand than
other SQL-based query languages, such as Structured Query Language (SQL). However, it is
useful in certain applications, such as in the formal verification of database schemas and in
academic research.

Tuple Relational Calculus is a non-procedural query language, unlike relational algebra. Tuple
Calculus provides only the description of the query but it does not provide the methods to solve
it. Thus, it explains what to do but not how to do it.

Tuple Relational Query

https://www.geeksforgeeks.org/what-is-database/
https://www.geeksforgeeks.org/types-of-attributes-in-er-model/
https://www.geeksforgeeks.org/structured-query-language/

In Tuple Calculus, a query is expressed as

{tl P}

where t = resulting tuples,
P(t) = known as Predicate and these are the conditions that are used to fetch t. Thus, it generates
a set of all tuples t, such that Predicate P(t) is true for t.

P(t) may have various conditions logically combined with OR (V), AND (A), NOT(—).
It also uses quantifiers:

3t €r (Q(t)) = "there exists” a tuple in t in relation r such that predicate Q(t) is true.
vV t €r(Q(t)) = Q(t) is true “for all” tuples in relation r.

Domain Relational Calculus (DRC)

Domain Relational Calculus is similar to Tuple Relational Calculus, where it makes a list of the
attributes that are to be chosen from the relations as per the conditions.

{<al,a2,a3,.....an> | P(al,a2,a3,.....an)}

where al,a2,...an are the attributes of the relation and P is the condition.

Tuple Relational Calculus Examples
Table Customer

Customer name Street City
Saurabh A7 Patiala
Mehak B6 Jalandhar
Sumiti D9 Ludhiana
Ria A5 Patiala
Table Branch

Branch name Branch City

ABC Patiala

https://www.geeksforgeeks.org/domain-relational-calculus-in-dbms/

Branch name Branch City

DEF Ludhiana

GHI Jalandhar

Table Account

Account
number Branch name Balance
1111 ABC 50000
1112 DEF 10000
1113 GHI 9000
1114 ABC 7000
Table Loan

Loan number Branch name Amount

L33 ABC 10000

L35 DEF 15000

L49 GHI 9000

Loan number Branch name Amount

L98 DEF 65000

Table Borrower

Customer name Loan number

Saurabh L33
Mehak L49
Ria L98

Table Depositor

Customer name Account number

Saurabh 1111
Mehak 1113
Suniti 1114

Example 1: Find the loan number, branch, and amount of loans greater than or equal to 10000
amount.
{t| t € loan A t[amount]>=10000}

Resulting relation:

Loan number Branch name Amount

L33 ABC 10000
L35 DEF 15000
L98 DEF 65000

In the above query, tfamount] is known as a tuple variable.

Example 2: Find the loan number for each loan of an amount greater or equal to 10000.
{t| 3 s € loan(t[loan number] = s[loan number]

A s[amount]>=10000)}

Resulting relation:

Loan number

L33

L35

L98

Example 3: Find the names of all customers who have a loan and an account at the bank.
{t| 3 s € borrower(t[customer-name] = s[customer-name])

A 3 u € depositor(tfcustomer-name] = u[customer-name])}

Resulting relation:

Customer name

Saurabh

Mehak

Example 4: Find the names of all customers having a loan at the “ABC” branch.
{t| 3 s € borrower(t[customer-name] = s[customer-name]

A 3 u € loan(u[branch-name] = “ABC” A u[loan-number] = s[loan-number]))}

Resulting relation:

Customer name

Saurabh

Logical Database Design

Logical database design is the process of determining the logical data structures that are required
to support information resources within an organization. The logical design process helps you to
implement a database that satisfies the requirements of your business organization.

Logical design is critical to the implementation of a corporate database. An incomplete or flawed
logical design can cause costly changes to the means of data collection, storage, and protection
later on. By using a well-conceived preliminary design, you can easily implement and test a
database. A sound logical design therefore helps to ensure a successful implementation.

A complete and accurate logical design for a database helps to ensure:

Data independence
-- The logical design process yields a database model that is independent of program or
physical storage requirements. This model represents the way data structures appear to
users. The model does not specify how data structures are maintained or processed by the
computer.

Physical database flexibility
-- Logical design is independent of storage and performance requirements. Therefore,
you can use it to implement a database that is used with any hardware or software system.
During the physical design process, the logical design can be tailored to satisfy the needs
of particular users or to suit a particular data processing environment.

Integrity

-- The logical design identifies both the data that is maintained in your corporation and
the rules of the business. These business rules can be used later to define integrity rules
for the physical design.

User satisfaction
-- The logical design represents data structures in a simple, understandable format. You
can show the design to users at any stage of development without intimidating them. The
logical design can be easily modified to incorporate user suggestions and feedback.
Many viable approaches exist for logical database design. In this section, we
combine several design techniques, including systems analysis, the
entity-relationship approach, and normalization.
The entity-relationship approach was developed by Peter Chen. For more
information, see
Entity-Relationship Approach to Information Modeling and Analysis
, Peter P. Chen, editor, ER Institute (1981).
By using these techniques, you can create a logical model that consists of:

e Descriptions of the data required by each user application
e A comprehensive picture of the data in a corporation

Relational Query Language in DBMS

SQL has its own querying methods to interact with the database. But how do these queries work
in the database? These queries work similarly to Relational Algebra that we study in
mathematics. In the database, we have tables participating in relational Algebra.

Relational Database systems are expected to be equipped with a query language that assists users
to query the database. Relational Query Language is used by the user to communicate with the
database user requests for the information from the database. Relational algebra breaks the user
requests and instructs the DBMS to execute the requests. It is the language by which the user
communicates with the database. They are generally on a higher level than any other
programming language. These relational query languages can be Procedural and Non-Procedural.
Types of Relational Query Language

There are two types of relational query language:

e Procedural Query Language

e Non-Procedural Language

Procedural Query Language

In Procedural Language, the user instructs the system to perform a series of operations on the
database to produce the desired results. Users tell what data to be retrieved from the database and
how to retrieve it. Procedural Query Language performs a set of queries instructing the DBMS to
perform various transactions in sequence to meet user requests.

Relational Algebra is a Procedural Query Language

Relational Algebra could be defined as the set of operations on relations.

https://www.geeksforgeeks.org/introduction-of-relational-algebra-in-dbms/

There are a few operators that are used in relational algebra —

1. Select (sigma): Returns rows of the input relation that satisfy the provided predicate. It is
unary Operator means requires only one operand.

2. Projection (1r): Show the list of those attribute which we desire to appear and rest other
attributes are eliminated from the table. It seperates the table vertically.

3. Set Difference (-): It returns the difference between two relations . If we have two relations
R and S them R-S will return all the tuples (row) which are in relation R but not in Relation
S, It is binary operator.

4. Cartesian Product (X): Combines every tuple (row) of one table with every tuple (row) in
other table ,also referred as cross Product . It is a binary operator.

5. Union (U): Outputs the union of tuples from both the relations. Duplicate tuples are
eliminated automatically. It is a binary operator means it require two operands.

Non-Procedural Language

In Non Procedural Language user outlines the desired information without giving a specific

procedure or without telling the steps by step process for attaining the information. It only gives

a single Query on one or more tables to get .The user tells what is to be retrieved from the

database but does not tell how to accomplish it.

For Example: get the name and the contact number of the student with a Particular ID will have

a single query on STUDENT table.

Relational Calculus is a Non Procedural Language .

Relational Calculus exists in two forms:

1. Tuple Relational Calculus (TRC): Tuple Relational Calculus is a non procedural query
language , It is used for selecting the tuples that satisfy the given condition or predicate . The
result of the relation can have one or more tuples (row).

2. Domain Relational Calculus (DRC): Domain Relational Calculus is a Non Procedural
Query Language , the records are filtered based on the domains , DRC uses the list of
attributes to be selected from relational based on the condition.

Relational Calculus

There is an alternate way of formulating queries known as Relational Calculus. Relational
calculus is a non-procedural query language. In the non-procedural query language, the
user is concerned with the details of how to obtain the end results. The relational calculus
tells what to do but never explains how to do. Most commercial relational languages are
based on aspects of relational calculus including SQL-QBE and QUEL.

Why it is called Relational Calculus?

It is based on Predicate calculus, a name derived from branch of symbolic language. A
predicate is a truth-valued function with arguments. On substituting values for the
arguments, the function result in an expression called a proposition. It can be either true or

https://www.geeksforgeeks.org/domain-relational-calculus-in-dbms/
https://www.geeksforgeeks.org/tuple-relational-calculus-trc-in-dbms/
https://www.geeksforgeeks.org/domain-relational-calculus-in-dbms/

false. It is a tailored version of a subset of the Predicate Calculus to communicate with the
relational database.

Many of the calculus expressions involves the use of Quantifiers. There are two types of
quantifiers:

o Universal Quantifiers: The universal quantifier denoted by V is read as for all which means
that in a given set of tuples exactly all tuples satisfy a given condition.

o Existential Quantifiers: The existential quantifier denoted by 3 is read as for all which
means that in a given set of tuples there is at least one occurrences whose value satisfy a
given condition.

Before using the concept of quantifiers in formulas, we need to know the concept of Free
and Bound Variables.

A tuple variable t is bound if it is quantified which means that if it appears in any
occurrences a variable that is not bound is said to be free.

Free and bound variables may be compared with global and local variable of programming
languages.

Types of Relational calculus:

Relational Calculus

Types of Relational Calculus

v | v
Tuple Relational Domain Relational
Model (TRC) Model (TRC)

1. Tuple Relational Calculus (TRC)

It is a non-procedural query language which is based on finding a number of tuple
variables also known as range variable for which predicate holds true. It describes the
desired information without giving a specific procedure for obtaining that information. The
tuple relational calculus is specified to select the tuples in a relation. In TRC, filtering

variable uses the tuples of a relation. The result of the relation can have one or more
tuples.

Notation:
A Query in the tuple relational calculus is expressed as following notation

1. {TIP (M} or{T | Condition (T)}
Where

T is the resulting tuples
P(T) is the condition used to fetch T.
For example:

1. {T.name | Author(T) AND T.article = 'database' }
Output: This query selects the tuples from the AUTHOR relation. It returns a tuple with
'name' from Author who has written an article on 'database’.

TRC (tuple relation calculus) can be quantified. In TRC, we can use Existential (3) and
Universal Quantifiers (V).

For example:

1. {R[3T € Authors(T.article='database’ AND R.name=T.name)}
Output: This query will yield the same result as the previous one.

2. Domain Relational Calculus (DRC)

The second form of relation is known as Domain relational calculus. In domain relational
calculus, filtering variable uses the domain of attributes. Domain relational calculus uses

the same operators as tuple calculus. It uses logical connectives A (and), V (or) and 1

(not). It uses Existential (3) and Universal Quantifiers (V) to bind the variable. The QBE or
Query by example is a query language related to domain relational calculus.

Notation:

1. {al, a2 a3, ..,an|P(al, a2 a3, .. ,an)}
Where

al, a2 are attributes
P stands for formula built by inner attributes

For example:

1. {<article, page, subject > | € javatpoint A subject = 'database'}
Output: This query will yield the article, page, and subject from the relational javatpoint,
where the subject is a database.

	Tuple Relational Calculus (TRC) in DBMS
	Tuple Relational Query
	Domain Relational Calculus (DRC)
	Tuple Relational Calculus Examples

	Relational Query Language in DBMS
	Types of Relational Query Language
	Procedural Query Language
	Relational Algebra is a Procedural Query Language

	Non-Procedural Language

	Relational Calculus
	Why it is called Relational Calculus?
	Types of Relational calculus:
	1. Tuple Relational Calculus (TRC)
	2. Domain Relational Calculus (DRC)

