
UNIT-2 

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity 
constraints, querying relational data, logical database design, introduction to views, 
destroying/altering tables and views. Relational Algebra, Tuple relational Calculus, Domain 
relational calculus. 

 

INTEGRITY CONSTRAINTS OVER RELATION 

●​ Database integrity refers to the validity and consistency of stored data. Integrity is usually 
expressed in terms of constraints, which are consistency rules that the database is not 
permitted to violate. Constraints may apply to each attribute or they may apply to 
relationships between tables. 

●​ Integrity constraints ensure that changes (update deletion, insertion) made to the database 
by authorized users do not result in a loss of data consistency. Thus, integrity constraints 
guard against accidental damage to the database. 

EXAMPLE- A brood group must be ‘A’ or ‘B’ or ‘AB’ or ‘O’ only (can not any other values 
else). 

TYPES OF INTEGRITY CONSTRAINTS 

Various types of integrity constraints are- 

1.​ Domain Integrity 

2.​ Entity Integrity Constraint 

3.​ Referential Integrity Constraint 

4.​ Key Constraints 

1. Domain Integrity- 

Domain integrity means the definition of a valid set of values for an attribute. You define data 
type, length or size, is null value allowed , is the value unique or not for an attribute ,the default 
value, the range (values in between) and/or specific values for the attribute. 

2. Entity Integrity Constraint- 

This rule states that in any database relation value of attribute of a primary key can't be null. 

EXAMPLE- Consider a relation "STUDENT" Where "Stu_id" is a primary key and it must not 
contain any null value whereas other attributes may contain null value e.g "Branch" in the 
following relation contains one null value. 



Stu_id Name Branch 

11255234 Aman CSE 

11255369 Kapil EcE 

11255324 Ajay ME 

11255237 Raman CSE 

11255678 Aastha ECE 

3.Referential Integrity Constraint- 

It states that if a foreign key exists in a relation then either the foreign key value must match a 
primary key value of some tuple in its home relation or the foreign key value must be null. 

The rules are: 

1.​ You can't delete a record from a primary table if matching records exist in a related table. 
2.​ You can't change a primary key value in the primary table if that record has related 

records. 
3.​ You can't enter a value in the foreign key field of the related table that doesn't exist in the 

primary key of the primary table. 
4.​ However, you can enter a Null value in the foreign key, specifying that the records are 

unrelated. 

EXAMPLE- 

Consider 2 relations "stu" and "stu_1" Where "Stu_id " is the primary key in the "stu" relation 
and foreign key in the "stu_1" relation. 

Relation "stu" 



Stu_id Name Branch 

11255234 Aman CSE 

11255369 Kapil EcE 

11255324 Ajay ME 

11255237 Raman CSE 

11255678 Aastha ECE 

Relation "stu_1" 

Stu_id Course Duration 

11255234 B TECH 4 years 

11255369 B TECH 4 years 

11255324 B TECH 4 years 



Stu_id Course Duration 

11255237 B TECH 4 years 

11255678 B TECH 4 years 

Examples 

Rule 1. You can't delete any of the rows in the ”stu” relation that are visible since all the ”stu” 
are in use in the “stu_1” relation. 

Rule 2. You can't change any of the ”Stu_id” in the “stu” relation since all the “Stu_id” are in use 
in the ”stu_1” relation. * Rule 3.* The values that you can enter in the” Stu_id” field in the 
“stu_1” relation must be in the” Stu_id” field in the “stu” relation. 

Rule 4 You can enter a null value in the "stu_1" relation if the records are unrelated. 

4.Key Constraints- 

A Key Constraint is a statement that a certain minimal subset of the fields of a relation is a 
unique identifier for a tuple. The types of key constraints- 

1.​ Primary key constraints 
2.​ Unique key constraints 
3.​ Foreign Key constraints 
4.​ NOT NULL constraints 
5.​ Check constraints 

1. Primary key constraints 

Primary key is the term used to identify one or more columns in a table that make a row of data 
unique. Although the primary key typically consists of one column in a table, more than one 
column can comprise the primary key. 

For example, either the employee's Social Security number or an assigned employee 
identification number is the logical primary key for an employee table. The objective is for every 
record to have a unique primary key or value for the employee's identification number. Because 
there is probably no need to have more than one record for each employee in an employee table, 
the employee identification number makes a logical primary key. The primary key is assigned at 
table creation. 

The following example identifies the EMP_ID column as the PRIMARY KEY for the 
EMPLOYEES table: 



CREATE TABLE EMPLOYEE_TBL 

(EMP_ID        CHAR(9)        NOT NULL PRIMARY KEY, 

EMP_NAME       VARCHAR (40)   NOT NULL, 

EMP_ST_ADDR    VARCHAR (20)   NOT NULL, 

EMP_CITY       VARCHAR (15)   NOT NULL, 

EMP_ST         CHAR(2)        NOT NULL, 

EMP_ZIP        INTEGER(5)     NOT NULL, 

EMP_PHONE      INTEGER(10)    NULL, 

EMP_PAGER      INTEGER(10)    NULL); 

2. Unique Constraints 

A unique column constraint in a table is similar to a primary key in that the value in that column 
for every row of data in the table must have a unique value. Although a primary key constraint is 
placed on one column, you can place a unique constraint on another column even though it is not 
actually for use as the primary key. 

CREATE TABLE EMPLOYEE_TBL 

(EMP_ID        CHAR(9)        NOT NULL     PRIMARY KEY, 

EMP_NAME       VARCHAR (40)   NOT NULL, 

EMP_ST_ADDR    VARCHAR (20)   NOT NULL, 

EMP_CITY       VARCHAR (15)   NOT NULL, 

EMP_ST         CHAR(2)        NOT NULL, 

EMP_ZIP        INTEGER(5)     NOT NULL, 

EMP_PHONE      INTEGER(10)    NULL         UNIQUE, 

EMP_PAGER      INTEGER(10)    NULL) 

3. Foreign Key Constraints 

A foreign key is a column in a child table that references a primary key in the parent table. A 
foreign key constraint is the main mechanism used to enforce referential integrity between tables 
in a relational database. A column defined as a foreign key is used to reference a column defined 
as a primary key in another table. 

CREATE TABLE EMPLOYEE_PAY_TBL 

(EMP_ID           CHAR(9)        NOT NULL, 



POSITION           VARCHAR2(15)  NOT NULL, 

DATE_HIRE          DATE          NULL, 

PAY_RATE           NUMBER(4,2)   NOT NULL, 

DATE_LAST_RAISE    DATE          NULL, 

4. NOT NULL Constraints 

Previous examples use the keywords NULL and NOT NULL listed on the same line as each 
column and after the data type. NOT NULL is a constraint that you can place on a table's 
column. This constraint disallows the entrance of NULL values into a column; in other words, 
data is required in a NOT NULL column for each row of data in the table. NULL is generally the 
default for a column if NOT NULL is not specified, allowing NULL values in a column. 

5. Check Constraints 

Check (CHK) constraints can be utilized to check the validity of data entered into particular table 
columns. Check constraints are used to provide back-end database edits, although edits are 
commonly found in the front-end application as well. General edits restrict values that can be 
entered into columns or objects, whether within the database itself or on a front-end application. 
The check constraint is a way of providing another protective layer for the data. 

CREATE TABLE EMPLOYEE_TBL 

(EMP_ID        CHAR(9)        NOT NULL, 

EMP_NAME       VARCHAR2(40)   NOT NULL, 

EMP_ST_ADDR    VARCHAR2(20)   NOT NULL, 

EMP_CITY       VARCHAR2(15)   NOT NULL, 

EMP_ST         CHAR(2)        NOT NULL, 

EMP_ZIP        NUMBER(5)      NOT NULL, 

EMP_PHONE      NUMBER(10)     NULL, 

EMP_PAGER      NUMBER(10)     NULL), 

PRIMARY KEY (EMP_ID), 

CONSTRAINT CHK_EMP_ZIP CHECK ( EMP_ZIP = '46234'); 

 
Relational Algebra 
Relational Algebra is a procedural query language. Relational algebra mainly provides a 
theoretical foundation for relational databases and SQL. The main purpose of using Relational 
Algebra is to define operators that transform one or more input relations into an output relation. 
Given that these operators accept relations as input and produce relations as output, they can be 
combined and used to express potentially complex queries that transform potentially many input 

https://www.geeksforgeeks.org/sql-tutorial/


relations (whose data are stored in the database) into a single output relation (the query results). 
As it is pure mathematics, there is no use of English Keywords in Relational Algebra and 
operators are represented using symbols. 
Fundamental Operators 
These are the basic/fundamental operators used in Relational Algebra. 
1.​ Selection(σ) 
2.​ Projection(π) 
3.​ Union(U) 
4.​ Set Difference(-) 
5.​ Set Intersection(∩) 
6.​ Rename(ρ) 
7.​ Cartesian Product(X) 
1. Selection(σ): It is used to select required tuples of the relations. 
Example: 

A        B        
C     

   

1 2 4 

2 2 3 

3 2 3 

4 3 4 

For the above relation, σ(c>3)R will select the tuples which have c more than 3. 

A        B        
C     

   

1 2 4 

4 3 4 

Note: The selection operator only selects the required tuples but does not display them. For 
display, the data projection operator is used.  
2. Projection(π): It is used to project required column data from a relation.  
Example: Consider Table 1. Suppose we want columns B and C from Relation R. 
π(B,C)R will show following columns. 

https://www.geeksforgeeks.org/basic-operators-in-relational-algebra-2/
https://www.geeksforgeeks.org/select-operation-in-relational-algebra/
https://www.geeksforgeeks.org/difference-between-selection-and-projection-in-dbms/
https://www.geeksforgeeks.org/sql-union-operator/
https://www.geeksforgeeks.org/set-theory-operations-in-relational-algebra/
https://www.geeksforgeeks.org/sql-intersect-clause/
https://www.geeksforgeeks.org/rename-operation-in-relational-algebra/
https://www.geeksforgeeks.org/cartesian-product-operation-in-relational-algebra/


B        C        

2 4 

2 3 

3 4 

Note: By Default, projection removes duplicate data.    
3. Union(U): Union operation in relational algebra is the same as union operation in set theory. 
Example: 
                                                                                                                         FRENCH 

Student_Name   
  Roll_Number     

Ram 01 

Mohan 02 

Vivek 13 

Geeta 17 

                                                                                                                          GERMAN 

Student_Name   
  Roll_Number     

Vivek 13 

Geeta 17 

Shyam 21 

Rohan 25 

Consider the following table of Students having different optional subjects in their course. 

π(Student_Name)FRENCH U π(Student_Name)GERMAN 

https://www.geeksforgeeks.org/set-operations/


Student_Nam
e 

Ram 

Mohan 

Vivek 

Geeta 

Shyam 

Rohan 

Note: The only constraint in the union of two relations is that both relations must have the same 
set of Attributes.    
4. Set Difference(-): Set Difference in relational algebra is the same set difference operation as 
in set theory. 
Example: From the above table of FRENCH and GERMAN, Set Difference is used as follows 
π(Student_Name)FRENCH - π(Student_Name)GERMAN 

Student_Nam
e 

Ram 

Mohan 

Note: The only constraint in the Set Difference between two relations is that both relations must 
have the same set of Attributes.    
5. Set Intersection(∩): Set Intersection in relational algebra is the same set intersection 
operation in set theory. 
Example: From the above table of FRENCH and GERMAN, the Set Intersection is used as 
follows 
π(Student_Name)FRENCH ∩ π(Student_Name)GERMAN 



Student_Nam
e 

Vivek 

Geeta 

Note: The only constraint in the Set Difference between two relations is that both relations must 
have the same set of Attributes.   
6. Rename(ρ): Rename is a unary operation used for renaming attributes of a relation. 
 ρ(a/b)R will rename the attribute 'b' of the relation by 'a'.    
7. Cross Product(X): Cross-product between two relations. Let’s say A and B, so the cross 
product between A X B will result in all the attributes of A followed by each attribute of B. Each 
record of A will pair with every record of B. 
Example:  
                                                                                                                                   A 

Name      Age      
Sex     

  

Ram 14 M 

Sona 15 F 

Kim 20 M 

                                                                                                                             B 

ID      Course      

1 DS 

2 DBMS 

                                                                                                                            A X B 

Name      Age      
Sex   

   
ID     

  
Course   

   

Ram 14 M 1 DS 

Ram 14 M 2 DBMS 



Name      Age      
Sex   

   
ID     

  
Course   

   

Sona 15 F 1 DS 

Sona 15 F 2 DBMS 

Kim 20 M 1 DS 

Kim 20 M 2 DBMS 

Note: If A has ‘n’ tuples and B has ‘m’ tuples then A X B will have ‘ n*m ‘ tuples.    
Derived Operators 
These are some of the derived operators, which are derived from the fundamental operators. 
1.​ Natural Join(⋈) 
2.​ Conditional Join 
1. Natural Join(⋈): Natural join is a binary operator. Natural join between two or more relations 
will result in a set of all combinations of tuples where they have an equal common attribute.  
Example: 
                                                                                                                        EMP 

Name       ID          
Dept_Name   

  

A 120 IT 

B 125 HR 

C 110 Sales 

D 111 IT 

                                                                                                                   DEPT 

Dept_Name      Manager      

Sales Y 

Production Z 

https://www.geeksforgeeks.org/extended-operators-in-relational-algebra/
https://www.geeksforgeeks.org/sql-natural-join/
https://www.geeksforgeeks.org/extended-operators-in-relational-algebra/


Dept_Name      Manager      

IT A 

Natural join between EMP and DEPT with condition : 

EMP.Dept_Name = DEPT.Dept_Name            
                                                                                                    
EMP ⋈ DEPT 

Name      ID          
Dept_Name   

   
Manager   

   

A 120 IT A 

C 110 Sales Y 

D 111 IT A 

2. Conditional Join: Conditional join works similarly to natural join. In natural join, by default 
condition is equal between common attributes while in conditional join we can specify any 
condition such as greater than, less than, or not equal.  
Example: 
                                                                                                                                R 

ID      Sex      
Marks   

  

1 F 45 

2 F 55 

3 F 60 

                                                                                                                               S 

ID      Sex      
Marks   

  

10 M 20 

11 M 22 



ID      Sex      
Marks   

  

12 M 59 

Join between R and S with condition  R.marks >= S.marks 

R.ID 
   R.Sex    

R.Marks 
   

S.ID 
   

S.Sex 
   

S.Marks 
   

1 F 45 10 M 20 

1 F 45 11 M 22 

2 F 55 10 M 20 

2 F 55 11 M 22 

3 F 60 10 M 20 

3 F 60 11 M 22 

3 F 60 12 M 59 

Relational Calculus 
As Relational Algebra is a procedural query language, Relational Calculus is a non-procedural 
query language. It basically deals with the end results. It always tells me what to do but never 
tells me how to do it. 
There are two types of Relational Calculus 

1.​ Tuple Relational Calculus(TRC) 
2.​ Domain Relational Calculus(DRC) 
  
Tuple Relational Calculus (TRC) in DBMS 

●​  
●​  
●​  

Tuple Relational Calculus (TRC) is a non-procedural query language used in relational 
database management systems (RDBMS) to retrieve data from tables. TRC is based on the 

https://www.geeksforgeeks.org/difference-between-relational-algebra-and-relational-calculus/
https://www.geeksforgeeks.org/tuple-relational-calculus-trc-in-dbms/
https://www.geeksforgeeks.org/domain-relational-calculus-in-dbms/


concept of tuples, which are ordered sets of attribute values that represent a single row or record 
in a database table. 
TRC is a declarative language, meaning that it specifies what data is required from the database, 
rather than how to retrieve it. TRC queries are expressed as logical formulas that describe the 
desired tuples. 
Syntax: The basic syntax of TRC is as follows: 
{ t | P(t) } 

where t is a tuple variable and P(t) is a logical formula that describes the conditions that the 
tuples in the result must satisfy. The curly braces {} are used to indicate that the expression is a 
set of tuples. 
For example, let’s say we have a table called “Employees” with the following attributes: 

Employee ID 

Name 

Salary 

Department ID 

To retrieve the names of all employees who earn more than $50,000 per year, we can use the 
following TRC query: 

{ t | Employees(t) ∧ t.Salary > 50000 } 

In this query, the “Employees(t)” expression specifies that the tuple variable t represents a row in 
the “Employees” table. The “∧” symbol is the logical AND operator, which is used to combine 
the condition “t.Salary > 50000” with the table selection. 

The result of this query will be a set of tuples, where each tuple contains the Name attribute of an 
employee who earns more than $50,000 per year. 

TRC can also be used to perform more complex queries, such as joins and nested queries, by 
using additional logical operators and expressions. 

While TRC is a powerful query language, it can be more difficult to write and understand than 
other SQL-based query languages, such as Structured Query Language (SQL). However, it is 
useful in certain applications, such as in the formal verification of database schemas and in 
academic research. 
Tuple Relational Calculus is a non-procedural query language, unlike relational algebra. Tuple 
Calculus provides only the description of the query but it does not provide the methods to solve 
it. Thus, it explains what to do but not how to do it. 
Tuple Relational Query 

https://www.geeksforgeeks.org/what-is-database/
https://www.geeksforgeeks.org/types-of-attributes-in-er-model/
https://www.geeksforgeeks.org/structured-query-language/


In Tuple Calculus, a query is expressed as 

{t| P(t)} 

where t = resulting tuples, ​
P(t) = known as Predicate and these are the conditions that are used to fetch t. Thus, it generates 
a set of all tuples t, such that Predicate P(t) is true for t. 

P(t) may have various conditions logically combined with OR (∨), AND (∧), NOT(¬). ​
It also uses quantifiers:​
∃ t ∈ r (Q(t)) = ”there exists” a tuple in t in relation r such that predicate Q(t) is true. ​
∀ t ∈ r (Q(t)) = Q(t) is true “for all” tuples in relation r. 

Domain Relational Calculus (DRC) 
Domain Relational Calculus is similar to Tuple Relational Calculus, where it makes a list of the 
attributes that are to be chosen from the relations as per the conditions. 
{<a1,a2,a3,.....an> | P(a1,a2,a3,.....an)} 

where a1,a2,…an are the attributes of the relation and P is the condition. 

Tuple Relational Calculus Examples 
Table Customer  

Customer name Street City 

Saurabh A7 Patiala 

Mehak B6 Jalandhar 

Sumiti D9 Ludhiana 

Ria A5 Patiala 

Table Branch  

Branch name Branch City 

ABC Patiala 

https://www.geeksforgeeks.org/domain-relational-calculus-in-dbms/


Branch name Branch City 

DEF Ludhiana 

GHI Jalandhar 

Table Account  

Account 
number Branch name Balance 

1111 ABC 50000 

1112 DEF 10000 

1113 GHI 9000 

1114 ABC 7000 

Table Loan  

Loan number Branch name Amount 

L33 ABC 10000 

L35 DEF 15000 

L49 GHI 9000 



Loan number Branch name Amount 

L98 DEF 65000 

Table Borrower  

Customer name Loan number 

Saurabh L33 

Mehak L49 

Ria L98 

Table Depositor  

Customer name Account number 

Saurabh 1111 

Mehak 1113 

Suniti 1114 

Example 1: Find the loan number, branch, and amount of loans greater than or equal to 10000 
amount. 
{t| t ∈ loan  ∧ t[amount]>=10000} 

Resulting relation:  



Loan number Branch name Amount 

L33 ABC 10000 

L35 DEF 15000 

L98 DEF 65000 

In the above query, t[amount] is known as a tuple variable. 

Example 2: Find the loan number for each loan of an amount greater or equal to 10000.   
{t| ∃ s ∈ loan(t[loan number] = s[loan number]   

                   ∧ s[amount]>=10000)} 

Resulting relation:  

Loan number 

L33 

L35 

L98 

Example 3: Find the names of all customers who have a loan and an account at the bank.   
{t | ∃ s ∈ borrower( t[customer-name] = s[customer-name])    

∧  ∃ u ∈ depositor( t[customer-name] = u[customer-name])} 

 Resulting relation: 



Customer name 

Saurabh 

Mehak 

Example 4: Find the names of all customers having a loan at the “ABC” branch.   
{t | ∃ s ∈ borrower(t[customer-name] = s[customer-name]   

   ∧ ∃ u ∈  loan(u[branch-name] = “ABC” ∧ u[loan-number] = s[loan-number]))} 

Resulting relation:  

Customer name 

Saurabh 

 

Logical Database Design 

Logical database design is the process of determining the logical data structures that are required 
to support information resources within an organization. The logical design process helps you to 
implement a database that satisfies the requirements of your business organization. 
Logical design is critical to the implementation of a corporate database. An incomplete or flawed 
logical design can cause costly changes to the means of data collection, storage, and protection 
later on. By using a well-conceived preliminary design, you can easily implement and test a 
database. A sound logical design therefore helps to ensure a successful implementation. 
A complete and accurate logical design for a database helps to ensure: 

Data independence 
-- The logical design process yields a database model that is independent of program or 
physical storage requirements. This model represents the way data structures appear to 
users. The model does not specify how data structures are maintained or processed by the 
computer. 

Physical database flexibility 
-- Logical design is independent of storage and performance requirements. Therefore, 
you can use it to implement a database that is used with any hardware or software system. 
During the physical design process, the logical design can be tailored to satisfy the needs 
of particular users or to suit a particular data processing environment. 

Integrity 



-- The logical design identifies both the data that is maintained in your corporation and 
the rules of the business. These business rules can be used later to define integrity rules 
for the physical design. 

User satisfaction 
-- The logical design represents data structures in a simple, understandable format. You 
can show the design to users at any stage of development without intimidating them. The 
logical design can be easily modified to incorporate user suggestions and feedback. 

Many viable approaches exist for logical database design. In this section, we 
combine several design techniques, including systems analysis, the 
entity-relationship approach, and normalization. 
The entity-relationship approach was developed by Peter Chen. For more 
information, see  
Entity-Relationship Approach to Information Modeling and Analysis 
, Peter P. Chen, editor, ER Institute (1981). 
By using these techniques, you can create a logical model that consists of: 

●​ Descriptions of the data required by each user application 
●​ A comprehensive picture of the data in a corporation 

Relational Query Language in DBMS 

●​  
●​  
●​  

SQL has its own querying methods to interact with the database. But how do these queries work 
in the database? These queries work similarly to Relational Algebra that we study in 
mathematics. In the database, we have tables participating in relational Algebra. 
Relational Database systems are expected to be equipped with a query language that assists users 
to query the database. Relational Query Language is used by the user to communicate with the 
database user requests for the information from the database. Relational algebra breaks the user 
requests and instructs the DBMS to execute the requests. It is the language by which the user 
communicates with the database. They are generally on a higher level than any other 
programming language. These relational query languages can be Procedural and Non-Procedural. 
Types of Relational Query Language 
There are two types of relational query language: 
●​ Procedural Query Language 
●​ Non-Procedural Language 
Procedural Query Language 
In Procedural Language, the user instructs the system to perform a series of operations on the 
database to produce the desired results. Users tell what data to be retrieved from the database and 
how to retrieve it. Procedural Query Language performs a set of queries instructing the DBMS to 
perform various transactions in sequence to meet user requests. 
Relational Algebra is a Procedural Query Language 
Relational Algebra could be defined as the set of operations on relations. 

https://www.geeksforgeeks.org/introduction-of-relational-algebra-in-dbms/


There are a few operators that are used in relational algebra – 
1.​ Select (sigma): Returns rows of the input relation that satisfy the provided predicate. It is 

unary Operator means requires only one operand. 
2.​ Projection (ℼ): Show the list of those attribute which we desire to appear and rest other 

attributes are eliminated from the table. It seperates the table vertically. 
3.​ Set Difference (-): It returns the difference between two relations . If we have two relations 

R and S them R-S will return all the tuples (row) which are in relation R but not in Relation 
S , It is binary operator. 

4.​ Cartesian Product (X): Combines every tuple (row) of one table with every tuple (row) in 
other table ,also referred as cross Product . It is a binary operator. 

5.​ Union (U): Outputs the union of tuples from both the relations. Duplicate tuples are 
eliminated automatically. It is a binary operator means it require two operands. 

Non-Procedural Language 
In Non Procedural Language user outlines the desired information without giving a specific 
procedure or without telling the steps by step process for attaining the information. It only gives 
a single Query on one or more tables to get .The user tells what is to be retrieved from the 
database but does not tell how to accomplish it. 
For Example: get the name and the contact number of the student with a Particular ID will have 
a single query on STUDENT table. 
Relational Calculus is a Non Procedural Language . 
Relational Calculus exists in two forms: 
1.​ Tuple Relational Calculus (TRC): Tuple Relational Calculus is a non procedural query 

language , It is used for selecting the tuples that satisfy the given condition or predicate . The 
result of the relation can have one or more tuples (row). 

2.​ Domain Relational Calculus (DRC): Domain Relational Calculus is a Non Procedural 
Query Language , the records are filtered based on the domains , DRC uses the list of 
attributes to be selected from relational based on the condition. 

 

 

 

Relational Calculus 
There is an alternate way of formulating queries known as Relational Calculus. Relational 
calculus is a non-procedural query language. In the non-procedural query language, the 
user is concerned with the details of how to obtain the end results. The relational calculus 
tells what to do but never explains how to do. Most commercial relational languages are 
based on aspects of relational calculus including SQL-QBE and QUEL. 

Why it is called Relational Calculus? 
It is based on Predicate calculus, a name derived from branch of symbolic language. A 
predicate is a truth-valued function with arguments. On substituting values for the 
arguments, the function result in an expression called a proposition. It can be either true or 

https://www.geeksforgeeks.org/domain-relational-calculus-in-dbms/
https://www.geeksforgeeks.org/tuple-relational-calculus-trc-in-dbms/
https://www.geeksforgeeks.org/domain-relational-calculus-in-dbms/


false. It is a tailored version of a subset of the Predicate Calculus to communicate with the 
relational database. 

Many of the calculus expressions involves the use of Quantifiers. There are two types of 
quantifiers: 

o​ Universal Quantifiers: The universal quantifier denoted by ∀ is read as for all which means 
that in a given set of tuples exactly all tuples satisfy a given condition. 

o​ Existential Quantifiers: The existential quantifier denoted by ∃ is read as for all which 
means that in a given set of tuples there is at least one occurrences whose value satisfy a 
given condition. 

Before using the concept of quantifiers in formulas, we need to know the concept of Free 
and Bound Variables. 

A tuple variable t is bound if it is quantified which means that if it appears in any 
occurrences a variable that is not bound is said to be free. 

Free and bound variables may be compared with global and local variable of programming 
languages. 

Types of Relational calculus: 

 

1. Tuple Relational Calculus (TRC) 
It is a non-procedural query language which is based on finding a number of tuple 
variables also known as range variable for which predicate holds true. It describes the 
desired information without giving a specific procedure for obtaining that information. The 
tuple relational calculus is specified to select the tuples in a relation. In TRC, filtering 



variable uses the tuples of a relation. The result of the relation can have one or more 
tuples. 

Notation: 

A Query in the tuple relational calculus is expressed as following notation 

1.​ {T | P (T)}   or {T | Condition (T)}      
Where 

T is the resulting tuples 

P(T) is the condition used to fetch T. 

For example: 

1.​ { T.name | Author(T) AND T.article = 'database' }     
Output: This query selects the tuples from the AUTHOR relation. It returns a tuple with 
'name' from Author who has written an article on 'database'. 

TRC (tuple relation calculus) can be quantified. In TRC, we can use Existential (∃) and 
Universal Quantifiers (∀). 

For example: 

1.​ { R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}   
Output: This query will yield the same result as the previous one. 

2. Domain Relational Calculus (DRC) 
The second form of relation is known as Domain relational calculus. In domain relational 
calculus, filtering variable uses the domain of attributes. Domain relational calculus uses 
the same operators as tuple calculus. It uses logical connectives ∧ (and), ∨ (or) and ┓ 
(not). It uses Existential (∃) and Universal Quantifiers (∀) to bind the variable. The QBE or 
Query by example is a query language related to domain relational calculus. 

Notation: 

1.​ { a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}   
Where 

a1, a2 are attributes​
P stands for formula built by inner attributes 

For example: 

1.​ {< article, page, subject > |  ∈ javatpoint ∧ subject = 'database'}   
Output: This query will yield the article, page, and subject from the relational javatpoint, 
where the subject is a database. 

 


	Tuple Relational Calculus (TRC) in DBMS 
	Tuple Relational Query 
	Domain Relational Calculus (DRC) 
	Tuple Relational Calculus Examples 

	Relational Query Language in DBMS 
	Types of Relational Query Language 
	Procedural Query Language 
	Relational Algebra is a Procedural Query Language 

	Non-Procedural Language 

	Relational Calculus 
	Why it is called Relational Calculus? 
	Types of Relational calculus: 
	1. Tuple Relational Calculus (TRC) 
	2. Domain Relational Calculus (DRC) 



