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Abstract

Discovered over 2000 years ago, iron oxides were first found to exhibit
ferromagnetic properties. These magnets are still currently being experimented on in
order to understand why they contain magnetic properties. Inside of all metals are
electrons that have a particular amount and direction of spin. When the spins of the
electrons are able to conform to each other in a spin up state, the material is able to
sustain magnetization. It is determined through experimentation that materials have
specific constants regarding their abilities to sustain magnetization. It is also known that
these constants are only constants in nature when the temperature of the material is
not changing. This phenomenon is known as the Curie-Weiss Law, and in this experiment
it will be proven for a torroid exhibiting a magnetic field.

1. Purpose

The purpose of this experiment was to study the equations that govern the magnetic fields of
ferromagnets. A simple ferromagnet that can be easily manipulated for experimentation is a torroid. By
applying an external DC field to various torroids, as well as a small superimposed AC excitation, we were
able to measure the magnetic fields as a function of time. Relating the functions about torroids and their
magnetic fields, we were able to compare these measurements to the susceptibility of each torroid. Using
the resulting data it was also possible to solve for the energy losses in each experiment. In a separate
exercise we sought out to prove the Curie-Weiss Law for a torroid. To do this, we placed the torroid into a
heater and ran the same experiment as before. By analyzing the resulting relationship between the
temperature and the magnetic susceptibility it would be possible to find the critical temperature at which
the susceptibility dropped to zero. We would be able to show this for both a heating up curve and for a
cooling down curve. Lastly, we could repeat the first exercise except we could change temperature of the
solenoid. By analyzing the results, a relationship between the magnetic susceptibility and temperature
could be recovered.

2. Theory

In order to generate a magnetic field in a torroid a current must flow through the wire that wraps around
the torroid. In the first experiment a small AC excitation is introduced with a field equal to,

H = HO + choswt (2)

The Ho terms is produced by the DC current, while the H1 term is produced by the AC current. These

values are separated by a phase shift of %

From combined Maxwell’s equations for auxiliary fields we know that,

- -

B = (H + M(H)) @
Knowing that M = XH, and that no= 1 + X, we can rewrite equation 2 as,
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B=puH (3)
In exercise 1 we will be measuring values of Vlock_in and IDC, so for the time being, it is best to write

- -
equation 3 for W asa function of the derivative of B with respect to H.

1 dB
=—= 4
r Ho dH @
Sincep = Ry
4B
nw=-—=
dH

(5)
Using each expression for pand X, we also know that,
B

To compare equation 4 to the measured quantities in the experiment, we had to examine figure 3 which

showed how the circuit acted. From the measured quantity of Vlock_in, we know that,

=— where ¢ = B S (7)

lock—in dt ’

By replacing B with H, we see that,

do = puf Hda (8)
For a torroid,
- N I
H = —2X2 \where N is the number of turns in the DC primary coil (9)
0 2mr p.DC
- N 1
— __pACP f . . .
H1 === , Where Np,AC is the number of turns in the AC primary coil (10)

- -
We know that Ho>>H1’ SO

I-_iz Np,DCIDC (11)

2mr

Plugging equation 6 into equation 6 and integrating for outer radius Rz,inner radius R1’ and height t,

do = —Ml (—) (11)
The total flux of the torroid is then the integration of equation 8 for the number of loops of the pickup coil,

pickup’

uN
pickup p

$ = pAC (_) (12)
The inductance of the torroid is given by L = i;, so for simplicity since this value is constant for each
torroid,

uONpickupN

¢ R
Lo = Z—H"’“ln(R—j) (13)



We can then plug equation 9 and 10 back into equation 5, and knowing that only IAC depends on t,

dl
_ AC
Vlock—in - uOLO dt (14)

Since the result we want is p vs.H, we could write equation 11 in terms of L,

IJ'OVI k—i
n=—0 (15)
Loar
This is the equation needed to transform the measured data of V I wvs.tinto pfor the y-axis. To

lock—in’ " DC
transform the x-axis we just use equation 7 where IDC = I,, so that,

1_7 — h (16)
- 2mr

To transform the y-axis the AC current needs to be taken into account
V sin(wt)
AC

I =———=——— where RAC is the resistance of the primary coil (27)

AC RAC

We can use equation 14 in equation 12 and take the derivative, and the result is our expression for the
y-axis,

u[)Vl " _RACt
u - 0CK—1In (18)

LOmVACcos(wt)
Also, since the current is measured throughout one period, cos(wt)=1, and also we know that w = 2nf
so,

IJ'OVI ki RACh
- 0CK—In (19)
K L2nfV,
An important quality that is derived from the hysteresis loops is the power lost per cycle for the solenoid.
It is given by the following equation,

* loop area, where V. iemoia 1S the volume of the magnetic material (20)

loo, noid

w D = VéHdB = VSolenuid

We know from equation 5 that by graphing equation 16 by equation 18 and by integrating for all H we find
the graph of B and H. This relationship of H and B is also important to finding the power loss per cycle as
given by equation 20. Substituting equations together, we see that,

w
— looe
f quH VSulenoid (21)
We can simplify this expression in terms of X by substituting in equation 6. The result is,
w
Juw XHdH = 54— (22)
0 Solenoid
w
2m * o XH = (23)

Solenoid

If we want a relationship between X" and H we needed to use the correct values for this phase. The field H
that is used in this calculation is H=H05in(mt), so 21 is introduced since we are calculating losses per

cycle. The final simplified relation is,

loop

TruOX"HOZ= (24)

Solenoid

Rearranging for the expression in terms of power losses per cycle per volume of the solenoid,
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P
= mu X"H =TC (25

X = where C is the Curie constant and TC is the Curie temperature (26)

=
3. Experiment

3.1 Equipment
The setup for this experiment is dependent on each individual torroid. For exercise 1 we used 4 torroids.
Below is a table of then quantities of each torroid.

Torroid Material NP‘DC Np,AC Npickup Rl(m) Rz(m) t(m)
#7 Magnetics | 15 15 10 .027 .046 .015
ZP44715T
C
#24 Ferroxcub 130 70 60 .0388 .0737 .0128
e
T74/39/13
-3C81
#26 Ferroxcub 30 10 10 .01340 .02242 .00672
e 4C65
#H4 N/A 92 20 20 .0318 .0494 .0064

To understand the origin of the measurements, an image of a generic torroid is shown below.
Figure 1: Torroid labels
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Along with each torroid, we used a WaveTek, WSMT3 Autotransformer, Regulated Power Supply, 34401A
Digital Multimeter, and Model SR950P5P Lock-In Amplifier. These were connected in the arrangement
shown in figure 2 below.

Figure 2: Equipment used for all exercises

For the analysis in each exercise, the way that this equipment was connected is crucial to relating all
measurements. A schematic of the total circuit is shown below.

Figure 3: Schematic of the circuit and each loop
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In exercise 2, we used a heater in order to regulate the temperature of the torroids. The heater we used is
shown in figure 4.

Figure 4: Heater used to regulate torroid temperatures



o i d i
In all exercises we used the program MagneticLab to take measurements, and to analyze the data we used
OriginPro.

3.2 Exercise 1: Magnetic Susceptibility and Energy Losses of Torroids

For this first exercise we sought to compare the magnetic susceptibility p vs. magnetic field H. We
connected each of the four torroids in the arrangement shown in figure 3. Using the program MagneticLab

we were able choose increments of H and t for various step sizes. These step sizes were dependent on a
theoretical value of current that resulted in the maximum values of the magnetic susceptibility. Once
acquiring this data for each torroid, we uploaded all of the data into OriginPro. The data stored included

the time measurements, V for each phase, IDC, VAC, and f. We also know that the value for

lock—in
RAC = 5000Q. Below is an example graph of the raw data of Vlock—in and IDC for torroid #7.

Graph 1: V Vs. IDC for torroid #7 Magnetics ZP44715TC

lock—in
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In order to fully understand the relationship of the magnetic field for each torroid, it was necessary to
transform the x and y-axes. The first step in doing this was to find the value of LO for each torroid using

Idc (A)

equation 12. Below is a table showing this value for each case.

Torroid L - Mo ek In R, )
0 2m R1

#7 Magnetics ZP44715TC 2.48E-7H

#24 Ferroxcube T74/39/13-3C81 6.90E-6H

#26 Ferroxcube 4C65 6.92E-8H

#4 2.26E-7H

Next, we could use equation 10 to transform the x-axis, and equation 18 to transform the y-axis. The result

isagraph of pvs. H

Graph 2: pvs. H for torroid #7 Magnetics ZP44715TC
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Graph 3: pvs. H for torroid #24 Ferroxcube T74/39/13-3C81
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Graph 4: pvs. H for torroid #26 Ferroxcube 4C65
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Using equation 5, by integrating graph’s 2-5, we can then see the graphs of B vs. H for each
torroid.

Graph 6: B vs. H for torroid #7 Magnetics ZP44715TC



B vs. H Coil #7
10 1 /__,_J)
P 3
7
f
5] f
|
f
E [
m 04 ”
/
.4‘/"‘
-5+ ‘//,"
-10 T T T T T
-1000 0 1000

H(A/m)

Graph 7: B vs. H for torroid #24 Ferroxcube T74/39/13-3C81
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Graph 8: B vs. H for torroid #26 Ferroxcube 4C65
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Graph 9: B vs. H for torroid #4
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The following graphs are the torroid B vs. H curves that were available to us online.

We were able to find the BH curves for both Ferroxcube T74/39/13-3C81 and Ferroxcube 4C65.

Graph 10: Actual B vs. H for torroid #24 Ferroxcube T74/39/13-3C81
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Graph 11: Actual B vs. H for torroid #26 Ferroxcube 4C65
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Now that we have graphs that illustrate the relationships between the magnetic fields for each torroid, we
could use equation 19 to solve for the energy losses. In this equation V is the volume of the torroid, which

is given by Vqume=%1r2(R1 + Rz)(R2 - R1)2

To solve for the loop area we used the analysis tool in Origin and integrated graphs 6-9. Below is a graph
showing an example of the output given for loop #7
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Graph 12: Integration of B vs. H for loop #7 Magnetics ZP44715TC
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We repeated this process for the rest of the curves and created a table below with the volume of each
torroid as well as the loop areas and power losses

Torroid Volume Loop-Area W=Vol*Loop-Area
#7 Magnetics ZP44715TC | 7.22E-5m? 407_k.9_ .029J

mSZ
#24 Ferroxcube 3.38E-4m’ 38.2-4L .013)
T74/39/13-3C81 ms
#26 Ferroxcube 4C65 7.19E-6m’ 12854 9.2E-4)

ms
#4 6.21E-5m? 1‘91_"“% 1.19E-4)

ms

A very useful quantity in comparisons between the torroids is the power dissipated per cycle PC. The

quantity is derived by taking the energy loss and multiplying it by the frequency f. Below is a table of those

values.

Torroid Total P =w * f=W*1000Hz
#7 Magnetics ZP44715TC 29W

#24 Ferroxcube T74/39/13-3C81 13W

#26 Ferroxcube 4C65 92W

#4 12W

Graph 12 is a graph of the energy losses as a function of the H field. Below are these graphs for each
torroid. We multiplied the y-axis of each graph by the solenoid area and frequency in order to transform

the axis to PC values.

Graph 13: PC vs. H for torroid #7 Magnetics ZP44715TC
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Graph 14: PC vs. H for torroid #24 Ferroxcube T74/39/13-3C81
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Graph 15: PC vs. H for torroid #26 Ferroxcube 4C65
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3.3 Exercise 2: Temperature Dependence of the Magnetic Susceptibility

For this exercise we sought out to prove the Curie-Weiss Law. This law states that at a critical
temperature, a material loses its ferromagnetic properties. To prove that this occurs, we
connected a torroid in the same arrangement as before. This time, however, we used a heater in
order to raise the temperature of the torroid. In the MagneticLab software there was a second

setting that was able to directly measure the values of the Vloc - and Temperature. From before,

k—i
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we could use equation 18 in order to solve for the magnetic susceptibility of the torroid. In this exercise

we will be using a new torroid. This one is a Ferroxcube 3E8.

Torroid Material Np,DC Np,AC pickup R1 (m) Rz(m) t(m)
Exercise | Ferroxcub 25 20 20 .01345 .02235 .00825
2 e 3E8
torroid
uONpickupN ACt RZ
. . _ P pAC g 2N_ -
Using equation 12 the value for Lo = o In( R )=3.35E-7H

Next, we used equation 18 and 8 to plot a graph of the T values and X values.

Graph 17: X vs. T for Ferroxcube 3E8
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Since we were not able to stir the vegetable oil as it was heated up, this heating process was not
uniform. For this reason, the data curve collected by cooling the sample is preferred for analysis.
According to Curie’s law, we know that the susceptibility of a material goes to 0 at a particular
temperature known as the Curie temperature. This is governed by equation 21, and it is
visualized by the x intercept of graph 11. We graphed the cooling curve X and the inverse of X
versus T and then solved for the intersection of the two curves. This intersection is our Curie
temperature and this is known by manipulating equation 21 to eliminate C.

Graph 18: Cooling curves X and 1/ X vs. T for Ferroxcube 3E8
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Now, by graphing just the cooling X vs. T graph and picking any data point, it would be possible
to solve for the value of C. Below is this graph with a data point chosen randomly.

Graph 19: Cooling curve X vs. T for Ferroxcube 3E8
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According to graph 13, for a temperature of T=364.6K, X=137.2. So knowing these values, and
TC = 385. 5K, we find that,

C=2867.5
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We were also able to find the Curie temperature for a Ferroxcube 3E8 in literature. Below is a
graph of the initial magnetic permeability versus temperature for the solenoid.

Graph 20: Actual pvs. T for Ferroxcube 3E8
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According to the accepted data in graph 16, the Curie temperature is about. Tcz113C = 386K

This value agrees with the experimental value we solved for.

3.4 Exercise 3: Temperature Dependence of the Magnetic Susceptibility

In exercise 1 in this lab, we were able to generate B-H Hysteresis loops for different solenoids. In these
cases the temperature of the solenoids was at room temperature. In exercise 2 in this lab we proved that
at a temperature known as the Curie temperature, a magnetic field cannot be generated in the solenoid.
By combining these two ideas and the setups from these exercises, we sought out to find the dependence
of B-H Hysteresis loops on temperature. Theoretically since at temperatures above the Curie temperature
a magnetic field cannot be generated in the solenoid, so the B-H Hysteresis loop should be at 0 or
negligible.

The procedure for this exercise was to use the same heating method as in exercise 2. Then, using the
MagneticLab software we could generate data for the values of the current and voltage like exercise 1. We
used the same analytic method to convert the measured values and measured constants to result in B-H
Hysteresis loops for each different temperature. The solenoid used is the same as in exercise 2 as well.
Below is the plot of this all together.

Graph 21: B vs. H for Ferroxcube 3E8 at Temperature=388,373,353,343K
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As predicted, when T>TC there is no hysteresis loop. However, as the temperature decreased from the

Curie temperature, the range in B induced in the solenoid decreased.

4. Conclusion

In this experiment we sought out to prove the B-H hysteresis loop for any solenoid. By inducing a current
through the solenoid loops a magnetic field was generated within the solenoid. We successfully were able
to measure this field, and through relevant equations, we proved the predicted result for a ferromagnet.
We then cooled a solenoid and measured the response of the magnetic susceptibility to the temperature.
The result was a graph that illustrated the effect of the loss of magnetism at a specific temperature. This
temperature, the Curie temperature, and concurrent Curie-Weiss law were proven when compared to our
raw data. In proving the relationship between the temperature and magnetic susceptibility, we could then
repeat the experiment in exercise 1 while manipulating the temperature. We expected the data to
resemble a line at B=0 at any temperature greater than our Curie temperature, and the magnitude of the
B to decrease as temperature decreased. This prediction was proven to be true through our theoretical
data. In summary, we had success in proving the responses of magnetic fields within ferromagnets.
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