SAMPLE RStudio lab assignment: visualization

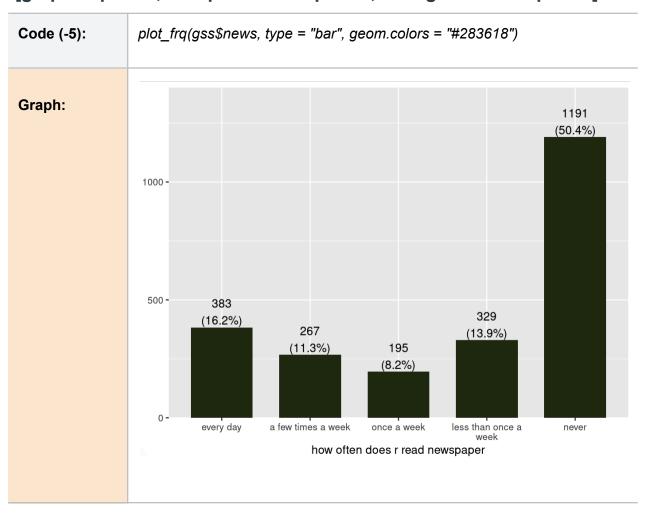
[How to submit an assignment]

[Code templates in R]

[Interpretation templates]

[Variables in GSS]

Note: Do not run or interpret the analyses without opening [Variables in GSS] file, using "What it measures" columns, reading variable type, how the questions were asked, and the response sets.


Assignment instructions

In this assignment, you will follow the procedures for visualizing different graphs.

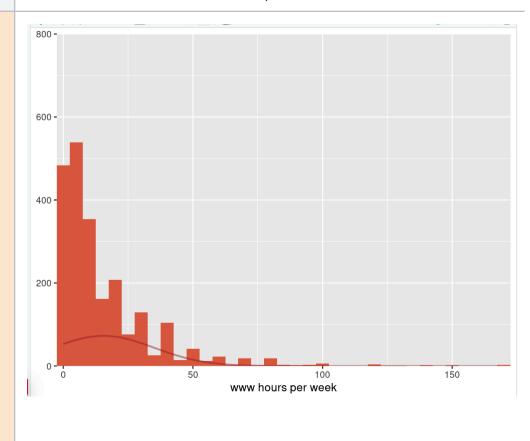
Paste the specific codes you used for each question. When I run the codes you pasted below, it should generate the tables/analyses on my end.

 Create a bar graph for news and change the color (go to https://coolors.co/palettes/trending), and interpret the bars (Same as frequency table interpretation).

[graph: 5 points; interpretation: 5 points; changed color: 5 points]

Interpretation:

The the level of reading newspaper variable shows that 16.2% of the respondents read newspaper everyday; 11.3% of the respondents read newspaper a few times a week; 8.2% of the respondents read newspaper once a week; 13.9% of the respondents read newspaper less than once a week; 50.4% of the respondents never read newspaper.


2) Create a histogram for **wwwhr** and change the color (go to https://coolors.co/palettes/trending). It must be a different color than the bar graph and the original color on the script file.

[graph: 10 points, changed color: 5 points]

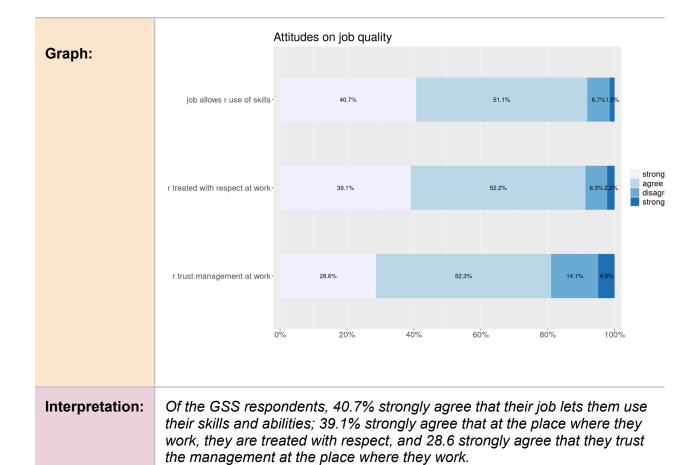
Code (-5):

plot_frq(gss\$wwwhr, type = "hist", geom.colors = "#e76f51", normal.curve = TRUE, normal.curve.color = "#9b2226")

Graph:

3) Create a stacked bar graph for multiple variables.

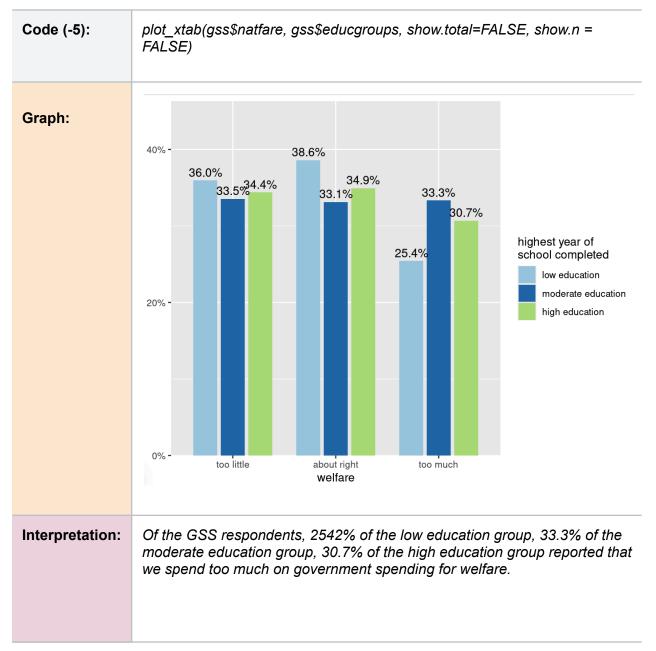
Use the following variables: Do you strongly agree, agree, disagree, or strongly disagree with each of these statements: **myskills** (My job lets me use my skills and abilities), **respect** (At the place where I work, I am treated with respect), **trustman** (I trust the management at the place where I work).


Change the title of the graph to "Attitudes on job quality."

- change font size of x-axis labels to 15
- change font size of y-axis labels to 15
- change font size of plot title to 22
- change font size of legend to 15

Interpret the percentages of "strongly agree." [graph: 5 points; interpretation: 3 points - interpret "strongly agree" category; title changed: 3 points; font sizes changed: 4 points]

```
Gode (-5):


graph <- gss %>% select (myskills, respect, trustman) %>%
plot_stackfrq(sort.frq = "first.asc", coord.flip = TRUE, geom.colors =
"Blues", show.total = FALSE,
title = "Attitudes on job quality")
graph + theme( axis.text.x = element_text(size=15), # change font size of x-axis labels
axis.text.y = element_text(size=15), # change font size of y-axis labels
plot.title=element_text(size=22), # change font size of plot title legend.text = element_text(size=15)) # change font size of legend
```


- 4) Create a stacked bar graph by different groups.
 - 4a) First, recode **educ** into three categories. The new variable name will be **educgroups**
 - 0 to 10 will be 1 [low education]
 - 11 to 12 will be 2 [moderate education]
 - 13 to 20 will be 3 [high education]

4b) Then, create a stacked bar graph by different groups by using *natfare* and *educgroups*. Paste the graph and interpret the "too much" category by the new (recoded) education group categories. [graph: 10 points, interpretation: 5 points - interpret "too much" category]

5) Create a scatterplot.

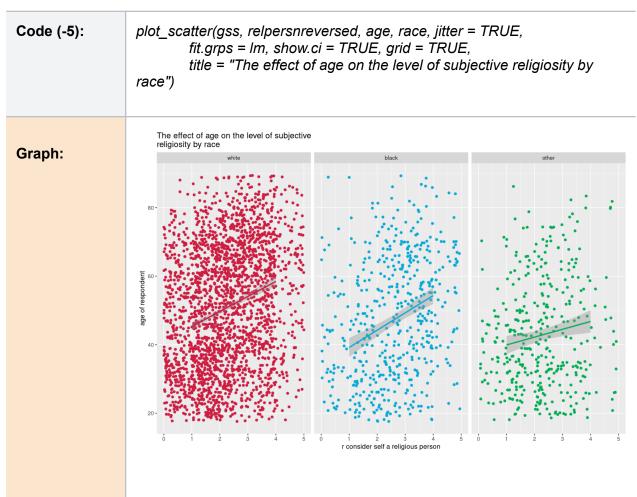

5a) First, create a frequency table of *relpersn* [table: 5 points]

Table:	r con	r consider self a religious person (x) < numeric>					
	val	label	frq	raw.prc	valid.prc	cum.prc	
	1	very religious	488	13.77	13.93	13.93	
	2	moderately religious	1124	31.72	32.08	46.00	
	3	slightly religious	841	23.73	24.00	70.01	
	4	not religious at all	1051	29.66	29.99	100.00	
	NA	NA	40	1.13	NA	NA	

- 5b) Then, recode *relpersn* so that high values will indicate high levels of subjective religiosity. The new variable name will be relpersnreversed. Use relpersnreversed in the scatter plot below [recoding: 10 points].
 - 1 will 4 [very religious]
 - 2 will 3 [moderately religious]
 - 3 will 4 [slightly religious]
 - 4 will 1 [not religious at all)]

Code (-5):	gss\$relpersnreversed <- rec(gss\$relpersn, rec = "1=4 [very religious];
	2=3 [moderately religious]; 3=2 [slightly religious]; 4=1 [not religious at all]", append = FALSE)

5c) Create a scatterplot by using *relpersnreversed* and **age** by *race*. (scatterplot with two continuous variables by groups). Change the title of the scatterplot to "*The effect of age on the level of subjective religiosity by race*". Paste the graph [graph: 25 points]

