Biology | Equation | Units | Notes | |---|--|-------| | Microscope magnification = Magnification of Objective lens x Magnification of eyepiece lens | Express as Nx (Where N is the calculated magnification) | | | Magnification = <u>Size of image</u>
Size of object | Ensure that the units of the image size are the same as the units for the object size. | | | | Magnification is expressed as Nx where N is the calculated magnification (e.g. 100x) | | ## Chemistry | Equation | Units | Notes | |---|--|---| | Neutrons = Atomic mass - Atomic number | None | Find atomic
mass and atomic
number on
periodic table | | Protons = Atomic number | None | Find atomic
number on
periodic table | | Electrons in an atom = Atomic number | None | Find atomic
number on
periodic table. | | Relative atomic mass = (% isotope 1 x mass) + (% isotope 2 x mass) 100 | None | Mass refers to the mass of the individual isotopes. | | Relative formula mass = sum of mass of all atoms in a compound | None | | | Moles = Mass Relative formula mass | Moles = moles
Mass = g | | | Concentration = mass volume | Concentration = g/dm³ Mass = g Volume = dm³ | To convert cm ³ to dm ³ , divide by 1000 | | Concentration = moles volume | Concentration = mols/dm³ Moles = mols Volume = dm³ | To convert cm ³ to dm ³ , divide by 1000 | | Change in energy = (Bond energy of products) - (Bond energy of reactants) | kJ/mol | If the result is negative, the reaction is exothermic. If the result is positive, the reaction is | | | | endothermic. | |--|--|--| | Rate of reaction = Change in quantity time | Units depend on
the experiment.
E.g. if change =
mols and time =
seconds, then rate
is in mols/second | | | Formula of an alkane = C_nH_{2n+2} | n = number of carbon atoms | | | Formula of an alkene = C_nH_{2n} | n = number of carbon atoms | | | R _f = <u>Distance moved by substance</u>
Distance moved by solvent | Distances - Any distance unit | Make sure the units for distance are the same for substance and solvent. | ## **Prefixes** | Prefix | Symbol | Multiplying factor | |--------|--------|--------------------| | Giga | G | 10 ⁹ | | Mega | М | 10 ⁶ | | Kilo | k | 10 ³ | | Deci | d | 10 ⁻¹ | | Centi | С | 10-2 | | Milli | m | 10 ⁻³ | | Micro | μ | 10 ⁻⁶ | | Nano | n | 10 ⁻⁹ | ## **Unit definitions** | Unit | Definition | |-------------|--| | Watt (W) | 1 Watt = 1 Joule of energy transferred per second | | Amperes (A) | 1 Ampere = 1 Coulomb of charge moving past a point in the circuit per second | | Volts (V) | 1 Volt = 1 Joule of energy stored per Coulomb of charge | | Hertz (Hz) | 1 Hertz = 1 wave passing a point per second |