Biology

Equation	Units	Notes
Microscope magnification = Magnification of Objective lens x Magnification of eyepiece lens	Express as Nx (Where N is the calculated magnification)	
Magnification = <u>Size of image</u> Size of object	Ensure that the units of the image size are the same as the units for the object size.	
	Magnification is expressed as Nx where N is the calculated magnification (e.g. 100x)	

Chemistry

Equation	Units	Notes
Neutrons = Atomic mass - Atomic number	None	Find atomic mass and atomic number on periodic table
Protons = Atomic number	None	Find atomic number on periodic table
Electrons in an atom = Atomic number	None	Find atomic number on periodic table.
Relative atomic mass = (% isotope 1 x mass) + (% isotope 2 x mass) 100	None	Mass refers to the mass of the individual isotopes.
Relative formula mass = sum of mass of all atoms in a compound	None	
Moles = Mass Relative formula mass	Moles = moles Mass = g	
Concentration = mass volume	Concentration = g/dm³ Mass = g Volume = dm³	To convert cm ³ to dm ³ , divide by 1000
Concentration = moles volume	Concentration = mols/dm³ Moles = mols Volume = dm³	To convert cm ³ to dm ³ , divide by 1000
Change in energy = (Bond energy of products) - (Bond energy of reactants)	kJ/mol	If the result is negative, the reaction is exothermic. If the result is positive, the reaction is

		endothermic.
Rate of reaction = Change in quantity time	Units depend on the experiment. E.g. if change = mols and time = seconds, then rate is in mols/second	
Formula of an alkane = C_nH_{2n+2}	n = number of carbon atoms	
Formula of an alkene = C_nH_{2n}	n = number of carbon atoms	
R _f = <u>Distance moved by substance</u> Distance moved by solvent	Distances - Any distance unit	Make sure the units for distance are the same for substance and solvent.

Prefixes

Prefix	Symbol	Multiplying factor
Giga	G	10 ⁹
Mega	М	10 ⁶
Kilo	k	10 ³
Deci	d	10 ⁻¹
Centi	С	10-2
Milli	m	10 ⁻³
Micro	μ	10 ⁻⁶
Nano	n	10 ⁻⁹

Unit definitions

Unit	Definition
Watt (W)	1 Watt = 1 Joule of energy transferred per second
Amperes (A)	1 Ampere = 1 Coulomb of charge moving past a point in the circuit per second
Volts (V)	1 Volt = 1 Joule of energy stored per Coulomb of charge
Hertz (Hz)	1 Hertz = 1 wave passing a point per second