بسم الله الرحمن الرحيم

سأصليه سقر * وما أدريك ما سقر * لا تبقي ولا تذر * لواحة للبشر * عليها تسعة عشر

Basmala consists of 19 letters grouped in 4 total words

Word Position

Arabic Spelling

GV of individual letters

Unique Letters Values

GV of Word

Unique GV of Word

1

ب س مـ

2 60 40

2     60 40

102

102

2

ا ل ل ه

1 30 30 5

1     30  5

66

36

3

ا ل ر ح مـ ن

1 30 200 8 40 50

200 8  50

329

258

4

ا ل ر ح ى مـ

1 30 200 8 10 40 

10

289

10

                                                                      SUM

786

406



GV: is an abbreviation for gematrical value. It is a decimal numeral system in which the 28 letters of the Arabic alphabet are assigned numerical values. They have been used in the Arabic-speaking world before the revelation of the Quran, during it and until about two centuries after it. So, it has been widely-known since before the 8th century Arabic numerals. In modern Arabic, the word abjadīyah means 'alphabet' in general. For more information : Click here


Overview:-


In this section, we will present many formulas, based on serials, reversed serial, and power, all based on Basmala basic properties, like word values, letters values, total value, sometimes combined with other aspects, like word positions, letters positions, or verse number, to produce long, or very long numbers that are multiples of 19.

The most basic long numbers that fit with the 19-multiple mathematical system, are the serials of (102) and (786) respectively. Both serials are multiples of 19, and both of them simply refer to values of first word, and the total value of Basmala as first verse respectively. Another example confirm previous facts in other section. For example in fact (14) here, we will find a fact that was shown in Formula1234 section, which is simply, positioning letters values, due to their appearance in each word


1    2,60,40

2    1,30,30,5

3    1,30,200,8,40,50

4    1,30,200,8,10,40


This simple formula is a multiple of 19. If we added, after each of the 4 formula parts, the serial of each letter`s value, as we see in detail, in fact 14, we will get a long number, that is still a multiple of 19.



These long-numbers formulas, give more credibility, to the Basmala, for being a divine statement, designed specifically, to be revealed in the computer`s age, where only computers, can calculate those formulas, and conform them to be among the 19-multiple system. Nobody in the age of Quran can calculate such long numbers, and for sure, nobody can manage to design a statement, with intern mathematical properties, to conform with such long numbers.


* In this section we will use three expressions

serial: refer to a serial of a number, for example serial (8) means 12345678
serial_r: refer to reversed serial of a number, for example serial_r (8) means 87654321
^: this icon refers in mathematics to the power of a number, for example 2^4, means 2 to the power of 4, which means 2x2x2x2 = 16

Long Numbers Formulas:-


No

Formula

Description

1

Serial 102

2

Serial 786

3

1 1,2,3,4,.....,100,101,102 
2
101,100,99,....68,67,66    

3 67,68,69,.....,327,328,329  

4 328,327,....,291,290,289


* This Connective Serial, contains serials, and reversed serials, as values of words are ascending or descending.

- In first word we write the serial of (102) ascending from nothing, for it is the 1st word, therefore it begins with the first number ascending from 0, which is (1).

- In second word we write a reversed serial of (66) descending from (101) the next number descending from (102)

- In third word we write the serial of (329) ascending from (67) the next number ascending from (66)

- In fourth word we write the serial of (289) descending from (328) the next number descending from (329)

4

1 1..2   3..60   59..40

2 39..1 2..30   (30)        29..5

3 4..1   2..30   31..200  199..8    9..40    41..50

4 49..1 2..30   31..200  199..8    8,9,10  11..40

* Following the previous fact rule, we do the same in each word, but with letters value

- In the first letter value (2), it is ascending from nothing, for it is the first letter, therefore it begins, with first number ascending from (0), which is (1)


- In the second letter value (60), it is ascending from the first number after (2), which is (3)

- In the third letter value (40), we write the serial of (40), descending from the first number descending from (60), which is (59)


- In the fourth letter, in the second word, we write the serial of (1), descending from the first number descending after (40), which is (39)

- And so on….

5

1

2,40,60

2,60,40

2

1,5,30,30

1,30,5,30

1,30,30,5

3

1,8,30,40,50,200

1,8,30,40,200,50

1,8,30,50,40,200

1,8,30,50,200,40

1,8,30,200,40,50

1,8,30,200,50,40

1,8,40,30,50,200

1,8,40,30,200,50

1,8,40,50,30,200

1,8,40,50,200,30

1,8,40,200,30,50

1,8,40,200,50,30

1,8,50,30,40,200

1,8,50,30,200,40

1,8,50,40,30,200

1,8,50,40,200,30

1,8,50,200,30,40

1,8,50,200,40,30

1,8,200,30,40,50

1,8,200,30,50,40

1,8,200,40,30,50

1,8,200,40,50,30

1,8,200,50,30,40

1,8,200,50,40,30

1,30,8,40,50,200

1,30,8,40,200,50

1,30,8,50,40,200

1,30,8,50,200,40

1,30,8,200,40,50

1,30,8,200,50,40

1,30,40,8,50,200

1,30,40,8,200,50

1,30,40,50,8,200

1,30,40,50,200,8

1,30,40,200,8,50

1,30,40,200,50,8

1,30,50,8,40,200

1,30,50,8,200,40

1,30,50,40,8,200

1,30,50,40,200,8

1,30,50,200,8,40

1,30,50,200,40,8

1,30,200,8,40,50

4

1,8,10,30,40,200

1,8,10,30,200,40

1,8,10,40,30,200

1,8,10,40,200,30

1,8,10,200,30,40

1,8,10,200,40,30

1,8,30,10,40,200

1,8,30,10,200,40

1,8,30,40,10,200

1,8,30,40,200,10

1,8,30,200,10,40

1,8,30,200,40,10

1,8,40,10,30,200

1,8,40,10,200,30

1,8,40,30,10,200

1,8,40,30,200,10

1,8,40,200,10,30

1,8,40,200,30,10

1,8,200,10,30,40

1,8,200,10,40,30

1,8,200,30,10,40

1,8,200,30,40,10

1,8,200,40,10,30

1,8,200,40,30,10

1,10,8,30,40,200

1,10,8,30,200,40

1,10,8,40,30,200

1,10,8,40,200,30

1,10,8,200,30,40

1,10,8,200,40,30

1,10,30,8,40,200

1,10,30,8,200,40

1,10,30,40,8,200

1,10,30,40,200,8

1,10,30,200,8,40

1,10,30,200,40,8

1,10,40,8,30,200

1,10,40,8,200,30

1,10,40,30,8,200

1,10,40,30,200,8

1,10,40,200,8,30

1,10,40,200,30,8

1,10,200,8,30,40

1,10,200,8,40,30

1,10,200,30,8,40

1,10,200,30,40,8

1,10,200,40,8,30

1,10,200,40,30,8

1,30,8,10,40,200

1,30,8,10,200,40

1,30,8,40,10,200

1,30,8,40,200,10

1,30,8,200,10,40

1,30,8,200,40,10

1,30,10,8,40,200

1,30,10,8,200,40

1,30,10,40,8,200

1,30,10,40,200,8

1,30,10,200,8,40

1,30,10,200,40,8

1,30,40,8,10,200

1,30,40,8,200,10

1,30,40,10,8,200

1,30,40,10,200,8

1,30,40,200,8,10

1,30,40,200,10,8

1,30,200,8,10,40

In this very long number, we write word positions from 1 to 4, succeeded, by all possible arrangements, of letters values, beginning from the smallest, until the value corresponding with the letters value of this word.

EX:- the 1st word, contains 3 letters, which are (2,60,40), first possible arrangement of those values is (2,40,60) then (2,60,40) which are the values, corresponding with the word referring to BISM, therefore we stop.

The 2nd word contains 4 letters, which are (1,30,30,5), first possible arrangement is (1,5,30,30), and second arrangement is (1,30,5,30), and third arrangement is (1,30,30,5), which are the values, corresponding with the word referring, to ALLAH, therefore we stop.

And so on….

6

1

2,40,60

2,60,40

012,021,102

2

1,5,30,30

1,30,5,30

1,30,30,5

66

3

1,8,30,40,50,200

1,8,30,40,200,50

1,8,30,50,40,200

1,8,30,50,200,40

1,8,30,200,40,50

1,8,30,200,50,40

1,8,40,30,50,200

1,8,40,30,200,50

1,8,40,50,30,200

1,8,40,50,200,30

1,8,40,200,30,50

1,8,40,200,50,30

1,8,50,30,40,200

1,8,50,30,200,40

1,8,50,40,30,200

1,8,50,40,200,30

1,8,50,200,30,40

1,8,50,200,40,30

1,8,200,30,40,50

1,8,200,30,50,40

1,8,200,40,30,50

1,8,200,40,50,30

1,8,200,50,30,40

1,8,200,50,40,30

1,30,8,40,50,200

1,30,8,40,200,50

1,30,8,50,40,200

1,30,8,50,200,40

1,30,8,200,40,50

1,30,8,200,50,40

1,30,40,8,50,200

1,30,40,8,200,50

1,30,40,50,8,200

1,30,40,50,200,8

1,30,40,200,8,50

1,30,40,200,50,8

1,30,50,8,40,200

1,30,50,8,200,40

1,30,50,40,8,200

1,30,50,40,200,8

1,30,50,200,8,40

1,30,50,200,40,8

1,30,200,8,40,50

239,293,329

4

1,8,10,30,40,200

1,8,10,30,200,40

1,8,10,40,30,200

1,8,10,40,200,30

1,8,10,200,30,40

1,8,10,200,40,30

1,8,30,10,40,200

1,8,30,10,200,40

1,8,30,40,10,200

1,8,30,40,200,10

1,8,30,200,10,40

1,8,30,200,40,10

1,8,40,10,30,200

1,8,40,10,200,30

1,8,40,30,10,200

1,8,40,30,200,10

1,8,40,200,10,30

1,8,40,200,30,10

1,8,200,10,30,40

1,8,200,10,40,30

1,8,200,30,10,40

1,8,200,30,40,10

1,8,200,40,10,30

1,8,200,40,30,10

1,10,8,30,40,200

1,10,8,30,200,40

1,10,8,40,30,200

1,10,8,40,200,30

1,10,8,200,30,40

1,10,8,200,40,30

1,10,30,8,40,200

1,10,30,8,200,40

1,10,30,40,8,200

1,10,30,40,200,8

1,10,30,200,8,40

1,10,30,200,40,8

1,10,40,8,30,200

1,10,40,8,200,30

1,10,40,30,8,200

1,10,40,30,200,8

1,10,40,200,8,30

1,10,40,200,30,8

1,10,200,8,30,40

1,10,200,8,40,30

1,10,200,30,8,40

1,10,200,30,40,8

1,10,200,40,8,30

1,10,200,40,30,8

1,30,8,10,40,200

1,30,8,10,200,40

1,30,8,40,10,200

1,30,8,40,200,10

1,30,8,200,10,40

1,30,8,200,40,10

1,30,10,8,40,200

1,30,10,8,200,40

1,30,10,40,8,200

1,30,10,40,200,8

1,30,10,200,8,40

1,30,10,200,40,8

1,30,40,8,10,200

1,30,40,8,200,10

1,30,40,10,8,200

1,30,40,10,200,8

1,30,40,200,8,10

1,30,40,200,10,8

1,30,200,8,10,40

289

This example is exactly like the previous example, we only also add after, the possible arrangements of the letters, the possible permutations of the digits of whole word value, from smallest until word value

EX:- 1st word whole value is (102), therefore we add after letters arrangements, (012,021,102) which are the three possible permutations from smallest permutation (012) until the correct value of the word which (102)

- And so on….

7

3,102
3^102

4,66
4^66

6,329
6^329

6,289

6^289

8

786^786

786

9

102^102
102

10

786^786

102^102

66^66
329^329
289^289

11

1.serial(786)


1.serial(102)

2.serial(66)

3.serial(329)

4.serial(289)

12

1.3.serial(102)

2.4.serial(66)

3.6.serial(329)

4.6.serial(289)


1.serial(786)

(1,2,3,4) refer to word positions


(3,4,6,6) refer to word letters counts


(1) at the end of formula refers to verse number

13

786

1.3.serial(102)

2.4.serial(66)

3.6.serial(329)

4.6.serial(289)

14

1     2 60 40

serial 2 . serial 60 . serial 40

2     1 30 30 5

serial 1 . serial 30 . serial 30 . serial 5

3     1 30 200 8 40 50

serial 1 . serial 30 . serial 200 . serial 8 . serial 40 . serial 50

4     1 30 200 8 10 40

serial 1 . serial 30 . serial 200 . serial 8 . serial 10 . serial 40

15

1     serial 3 . serial 102

serial 2 . serial 60 . serial 40

2     serial 4 . serial 66

serial 1 . serial 30 . serial 30 . serial 5

3     serial 6 . serial 329

serial 1 . serial 30 . serial 200 . serial 8 . serial 40 . serial 50

4     serial 6 . serial 289

serial 1 . serial 30 . serial 200 . serial 8 . serial 10 . serial 40

16

1     123 . serial 102

serial 2 . serial 62 . serial 102

2     4567 . serial 168

serial 103 . serial 133. serial 163. serial 168

3     8910111213 . serial 497

serial 169 . serial 199 . serial 399 . serial 407 . serial 447 . serial 497

4     141516171819 . serial 786

serial 498 . serial 528 . serial 728 . serial 736 . serial 746 . serial 786

(123, 4567, 8910111213, 141516171819) refer to letters position from 1 to 19 corresponding to each word`s position

(102,168,497,786) refer to word cumulative values

(2,62,102 103,133,163,168 169,199,399,407,447,497 498,528,728,736,746,786) refer to letters cumulative values

17

786

serial 102

serial 2 . serial 60 . serial 40

serial 66

serial 1 . serial 30 . serial 30 . serial 5

serial 329

serial 1 . serial 30 . serial 200 . serial 8 . serial 40 . serial 50

serial 289

serial 1 . serial 30 . serial 200 . serial 8 . serial 10 . serial 40

18

serial 102

serial 2 . serial 60 . serial 40

1

serial 66

serial 1 . serial 30 . serial 30 . serial 5

2

serial 329

serial 1 . serial 30 . serial 200 . serial 8 . serial 40 . serial 50

3

serial 289

serial 1 . serial 30 . serial 200 . serial 8 . serial 10 . serial 40

4

786

19

serial_r 786

serial_r 102

serial_r 66

serial_r 329

serial_r 289

20

1 102

serial 2 . serial 60 . serial 40

2 66

serial 1 . serial 30 . serial 5

3 329

serial 200 . serial 8 . serial 50

4 289

serial 10

(2,60,40   1,30,5   200,8,50   10)

refer to the 10 unique letters values as they appeared in each word