\ina|COG

Gentre for Digital Governance

Citizen Centric Smart Governance (CCSG)

Specifications, Guidelines and
Recommendations for Designing Data Models
and APIs-V 2.0

Draft document for discussion
Smart Cities Mission
Ministry of Housing and Urban Affairs (MoHUA)

And

Centre for Digital Governance (CDG)
National Institute of Urban Affairs (NIUA),
New Delhi

November 2020

\ina|COG

T T _—
Mty f Housing an Uan s Gentre for Digital Governance

Specifications, Guidelines and Recommendations
for Designing Data Models and APIs

Introduction

This document derives from the NUIS Strategy and Approach Paper and CCSG Open
Standards — Strategy and Approach v2.0 and aims to provide granular details of designing
CCSG standards.

To achieve maximum mileage from the initiative in a short period, while maintaining the
evolvability of standards in a manner that future enhancements are easy to perform, it is
necessary to leverage existing tools, techniques and methodologies. The sections below aim to
prioritise the key areas of standards creation, lay out the approach to design, and recommend
key tools, techniques, and methods to be adopted by CCSG standards creation group.

As categorised in the parent document - CCSG Open Standards — Strategy and Approach v2.0,
potential focus areas are:

e Knowledge and Process standards

e Technology standards (Software/Hardware/Data)

This document focuses in detail on guidance for two major parts of Technology Standards -
Data Models and APIs. It describes technology standards at two levels:

e abstract specifications, which translate the parentguidelines into conceptual rules
e design specifications, which further translate the conceptual rules into recommendations,
requirements, and prohibitions for Data Model and API designers

CCSG- Specifications, Guidelines and Recommendations for Page 2 of 13

Designing Data Models and APls -V 2.0

\ina|COG

o

Mty f Housing an Uan s Gentre for Digital Governance

Abstract Specifications - Data Models and APIs

This section aims to contextualize and extend the NUIS’ key guiding principles described in the
NUIS Strategy and Approach paper to the design of Data Models and APIs for CCSG domains.
Below is the list of guidelines that Data Models and APIs should follow:

Open
In order to maintain technology and vendor neutrality, Data Models and APlIs -

e Should be published under most unrestricted license (Creative Commons:CCO, BY and
BY-SA, or MIT)

e Should not assume/require choice of any proprietary technology
Should be designed and ratified through a multi-stakeholder process

e Should be developed/reviewed/adopted by a group of experts through a
consensus-based process

Evolvable
To adapt to changing needs over time, Data Models and APIs -

e Should be versioned with backward compatibility of at least up to 1 major version. The
Domain Working Groups (DWGs) should strive to release one major version upgrade
every year.

e Should be protocol agnostic, thereby allowing for innovation in protocols, and also
support solution use cases over multiple protocols (e.g. governance application over
chat interfaces). In other words they should follow The Rule of Least Power'. In order to
achieve this, Data models and APIs should carry all the necessary information —

o request metadata e.g. authentication token, device information, signatures
o response metadata e.g. response signatures, processing status, correlations ids
o error data e.g. error codes, message etc.

e in its own structures, rather than depending on protocol-specific fields/headers to carry

such information.

Extendable

Given the diversity of India’s urban systems, it is important to ensure that standards do not limit
the ability of solution providers to develop solutions that meet local needs. Further to enable
innovation, standards should not be restrictive in their specification and application. Thus

'"When designing computer systems, one is faced with a choice between using a more or less powerful
language for publishing information, for expressing constraints, or for solving some problem. The "Rule of
Least Power" suggests choosing the least powerful language suitable for a given purpose. This increases
flexibility: the less powerful the language, the more you can do with data stored in that language. For

additional information, see https://www.w3.0rg/2001/tag/doc/leastPower.html

CCSG- Specifications, Guidelines and Recommendations for Page 3 of 13

Designing Data Models and APls -V 2.0

https://smartnet.niua.org/sites/default/files/resources/nuis_master_doc_07.01.19_v5_0.pdf
https://www.w3.org/2001/tag/doc/leastPower.html
https://www.w3.org/2001/tag/doc/leastPower.html

T T _—
Mty f Housing an Uan s Gentre for Digital Governance

\ina|COIG

standards need to be extendable to enable ecosystem actors to innovate and build locally
relevant solutions. Therefore, Data Models and APIs-

Should extend from existing international/national standards like National Municipal
Accounting Manual (NMAM) wherever possible

Should allow adding optional business extension elements

Such extension elements should be clearly documented in the same manner as base
models and APIs and made available on a public repository

Minimalistic

To enable ecosystem actors to easily adopt standards while empowering them to innovate, Data
Models and APls -

Should have minimal mandatory fields in data models

Should require only most fundamental API operations to enable faster compliance while
fulfilling needed functional requirements. Consistent pattern in APl operations on various
entities makes them simple to adopt.

Should avoid including attributes/APIs needed for specific solutions that are not yet
known to be applicable to wider solutions.

Balance Data Privacy with Data Empowerment

To leverage the power of data while ensuring safe usage, Data Models and APIs -

Should require minimal personally identifiable information (PIl) to be collected
mandatorily thereby reducing risk to Pll data

Should provide policy based access control to enable creation, modification and sharing
of data as needed

Should include provision for data anonymization and proxy fields for PIl and other
sensitive data

Provide for non-repudiability

To ensure right attribution for the data, Data Models and APlIs -

Should declare access mechanisms for APls
Should provide for digital signatures
Should provide APIs for accessing data access information

Unbundled

To provide the most fundamental building blocks while ensuring minimalism, extensibility and
evolvability, Data Models and APls -

Should limit the mandatory information in data models

CC5G- Specifications, Guidelines and Recommendations for

Page 4 of 13

Designing Data Models and APls -V 2.0

\ina|COG

T T _—
Mty f Housing an Uan s Gentre for Digital Governance

e Should require minimal foundational APIs. API standards should not mandate composite
APIs (ones that can be decomposed into foundational ones)

Design Specifications - Data Models and APIs

This section provides recommendations, rules, and prohibitions for Data Model and API
designers, so as to ensure that the data models and APIs they create are compliant with the
guiding principles for CCSG Open Standards — Strategy and Approach Paper. The sub-sections
below can be mapped on to one or more of the guiding principles; collectively, they ensure that
any Data Model and API created as part of the CCSG platform will be smoothly interoperable
with the platform as a whole, and in compliance with the guiding principles.

As these sub-sections are written primarily as guidance for Data Model and API designers, a
basic level of technical knowledge on the part of the reader is presumed. Readers may refer to
the Glossary in the appendix for brief explanations of technical terms.

Given the complexity of various aspects of the urban domain, a few additional rules and
requirements - i.e. in addition to the meta-standard - are required to manage Data Models and
APIs in keeping with the CCSG open standards. These specifications (rules and requirements)
are provided below:

Data Models

1. Data Models should be broken down to simpler fundamental units (models) as far as
possible. E.g. A property assessment model is basically Property model and
Assessment model with assessment model referring to property model.

2. Data models should include a Universally Unique Identifier (UUID) field which should
uniquely identify the object of respective entity type within the respective domain.

3. Data models should require minimal mandatory fields to enable maximal inclusion. As a
thumb rule, wherever unsure whether a field is absolutely required in all scenarios, it
should be made optional.

4. Data models should extend/ reuse/ adopt international/ national models wherever
available/applicable e.g. Open311 for citizen services like grievances and schema.org for
general model definitions.

5. Data models should be extensible i.e. they should allow a way to capture extra
information that was not initially included during the model design. To achieve this:

o It may provide a simple map of key-value pairs. Future versions of the data
model may choose to create mandatory/optional names attributes in the data
models after researching wider applicability of such fields.

o Data Models should allow for namespacing in field names to indicate the
source/reason/category of the extended fields.

CCSG- Specifications, Guidelines and Recommendations for Page 5 of 13

Designing Data Models and APls -V 2.0

http://wiki.open311.org/GeoReport_v2/
https://schema.org

\ina|COG

T T _—
Mty f Housing an Uan s Gentre for Digital Governance

6. It is recommended that all timestamps be captured in Unix epoch time. APls may define
display format property to indicate the human readable format most suitable for display.

Multitenancy

Given the variety of organizational contexts in the urban domain, APls SHOULD specify the
organization context in which they are functioning. Knowledge of this information helps in
providing relevant controls over creation, modification and access to the data thereby increasing
trust in the data fidelity.

To achieve this, all APIs should support multi-tenancy by including tenant id (id for the
organization) in their data models. To address the variety of tenant contexts e.g. geographical
(ULB, State, regions, zones), functional (departments, sub departments), tenant id should use
the concept of namespaces to uniquely identify the organizational unit without any ambiguity.
Web addresses on the internet are good examples of such namespace references to the
resources on the web. For the purpose of urban APIs, the following namespace pattern is
proposed- [function@]geographicalunit[/resource], where

1. Function is the department within urban context, e.g. municipal, electricity, etc.
2. Geographical unit is namespaced reference to the urban geography, e.g.
in.pb.chandigarh (basically country.state.city).
3. Resource is a resource or sub function with main function is 1, e.g. property tax, or
water charges within municipal function.
[] indicates that these components are optional. E.g. an API dealing with only municipal context
may not need the function/department name to be specified, similarly resource may be deduced
from the model context.

Data Modification

In order to keep APIs simple and allow rebundling in various contexts, APIs should be atomic
and support most fundamental operations. In order to achieve this -

1. All registries should minimally support following operations -

a. Create - create a new entity

b. Update - update an entity, this can include complete replacement as well update
of selected fields

c. Delete - to delete the entity from the system. This operation irrecoverably
removes the entity from the system hence special care should be applied in using
and implementing this API.

d. Cancel/Deactivate - to mark an entity as inactive in the systems.

2. All data modification APls should clearly describe the access control roles and policies
(Policy may include the needed workflow information helping in scenarios like consent
based data modification). Access/Modification of roles and policies themselves should
be access controlled and audited.

CCSG- Specifications, Guidelines and Recommendations for Page 6 of 13

Designing Data Models and APls -V 2.0

\ina|COG

T T _—
Mty f Housing an Uan s Gentre for Digital Governance

3. All data modification APl access should require information needed for auditing the

operation, including
a. Who accessed the API, under what access role
b. When was it accessed
c. What modifications were performed

4. Audit information should be preserved for the retention period required by the operator’s
policies. While different operators may choose different retention periods for the audit
information, it is recommended that it is at least one year to provide enough window to
settle any queries.

5. In case above registry operations do not cover fundamental operations for an entity,
providers should clearly mention the business/domain use case and provide additional
APlIs.

6. APIs should support asynchronous data modification to support application
responsiveness and performance.

Data Search

As one of the most basic and most frequent operations, data search APIs need to be
responsive, robust, secure and respect privacy while enabling needed functionality. In order to
achieve these search APlIs -

1. Search APIs should declare the access control mechanism and role.
2. All search should be audited (Who, when, which API, what criteria) to help with

a. Improving the product - observability
b. Audit for illegal uses
c. Audit for access to PIl data whenever demanded in clear
3. Search Criteria - should provide search filter capabilities on-
a. UUIDs and Unique field combinations of the entities
b. Entity creation and modification timestamps
c. Needed directed searches applicable to the domain. This is to prevent bulk
access to the data in order to overcome lack of search facility on crucial fields.
E.g. Property Tax may need a use case to search the Property and Assessments
based on mobile number of the property owner. In absence of providing mobile
number as the criteria system may be misused to download all properties with
their owner information (Also consider point 2 below for such bulk search needs)
- hence such misuse should be avoided by providing directed searches on key
parameters.
4. Search Results -
a. Primary functional role of search APIs is to help the consumer achieve the goal
faster while balancing between data access and data privacy/security. In order to
achieve this -

CCSG- Specifications, Guidelines and Recommendations for Page 7 of 13

Designing Data Models and APls -V 2.0

\ina|COG

T T _—
Mty f Housing an Uan s Gentre for Digital Governance

i. Search APIs should limit the number of records returned in the search to
make searches secure and respect data privacy. While the number of
records to return may be configurable it is recommended that API do not
return more than 10 records.

ii. Search results should by default Mask or Anonymize or Encrypt the PII or
other sensitive data. Access to clear PIl data should be provided on
individual record basis and under additional access control.

iii. Open Search APIs should never contain Pll data in clear.

5. Asynchronous search support - APIs should support asynchronous search capabilities
wherein search results are generated and accessed asynchronously. Asynchronous
search capabilities can help use cases like

a. On behalf of search - search is initiated by role X, but the results are delivered
to/accessible to role Y

b. Workflow driven search - Search request is approved by another role before
results are accessible/delivered to the originator of the request.

6. Source Field Filter - Search APIs should provide mechanisms to return only needed
fields in the response to help save network bandwidth. Without this filter by default APIs
should return all fields of its model.

7. Wherever applicable APIs should offer search on the Combination of structured and
unstructured data

8. Search APIs should also enable searching audit history of -

a. Changes to the Data
b. Searches Audits (as mentioned in point 2 in this section)

Transport Protocol Agnostic Behavior

In order to support a wide variety of use cases the APIs should be protocol agnostic, i.e. they
should not depend on communication protocol specific mechanisms (e.g. HTTP headers) to
carry needed information. In particular:

1. APIs should not depend on protocol specific verbs to signal operations (e.g. PUT, POST,
GET). In order to satisfy this, it is recommended that API specification use the following
path scheme to indicate fundamental operations -

Create - /<uri>/_create

Update - /<uri>/_update

Delete - /<uri>/_delete
Cancel/Deactivate - /<uri>/_cancel

® o 60 T o

Search - /<uri>/_search
<uri> here refers to the Uniform Resource Identifier as described in RFC 3986 and _

(underscore) is used as a mechanism to indicate the operation name. This path scheme
can be extended further for additional operations an APl may need to define.

CCSG- Specifications, Guidelines and Recommendations for Page 8 of 13

Designing Data Models and APls -V 2.0

https://tools.ietf.org/html/rfc3986

T T _—
Mty f Housing an Uan s Gentre for Digital Governance

\ina|COG

2. Protocol specific layer can be offered as a plug over the protocol agnostic microservice

body

3. API requests should always include RequestHeader along with the API's business
details in its body. Following should be the main constituents of RequestHeader -

a.

®© Qo0 T

f.

Authentication and Authorization details, e.g. JWT Auth Token, API Key
Client generated Request message Id

Device Details - device id, device signature, device type etc

APl info - version, id, path etc

Request Signature (Optional)

Additional Info (Optional) e.g. callback urls, channel, source

4. A Response should always contain ResponseHeader along with the API's business
details in its body. Following should be the main constituents of ResponseHeader -

a.
b.
c.

Client’'s Request Message id
Response Message id from Server
Processing Status

i. Completed

ii. Accepted (in case of asynchronous processing)

ii. Failed
Response Signature (Optional)
Error (Optional) - Error details from the API, actual response object may not be
returned
Information (Optional) - Additional information from the API that may be utilized to
further optimize the interaction.
Debug (Optional) - Debug information when requested by client.
Additional Info (Optional) e.g. status url (to find out the current status of an
asynchronous processing response), additional links to perform special functions
like file uploads etc.

5. In case of an Error in handling the operation, API should return the error status in
ResponseHeader along with additional error details in the Error object.

6. API standards should allow indicating the need to access debug info in case of error. In
which case the ResponseHeader should additionally carry Debug objects with
debuggable information of the error. To ensure security and performance, servers should
implement this under a policy based control.

File Handling

1. File upload/download should also be handled via declared APls

2. Should use secure file transmission mechanism (like HTTPS) with authentication
controls

3. Should support access control and audit mechanisms for storage as well as file access

CC5G- Specifications, Guidelines and Recommendations for

Page 9 of 13

Designing Data Models and APls -V 2.0

\ina|COIG

My “T“"Tldm Gentre for Digital Governance
4. Should provide for file validation mechanisms like file type validations, file size
validations etc.
Bulk Data Handling

Bulk Data handling - Most modern systems allow bulk creation/ updation through asynchronous
batch processes that leverage existing APIs to handle the create/ update. Therefore,

1.

It is recommended that bulk data is handled using implementation specific asynchronous
batch layers on top of standard Data Model/APIs designs.

Bulk data operations should be able to provide access control and workflow mechanisms
of their own in addition to the underlying API layer

API evolution and Versioning

In an evolving system like CCSG standards it is necessary to mark the APIls with semantic
versioning to help solution providers implement and publish their compliance for interoperability.

Following are the main strategies to handle API evolutions and required backward compatibility

1.

2.

3.

Evolution APIs and Data Models should support N-1 major version backward
compatibility. To achieve this
a. Inclusion of new Mandatory fields should always come with default values
thereby not failing the API consumers that have not been upgraded to new
version.
b. Removal of existing mandatory fields should be performed by moving the field to
optional in the new version and then optionally removed in further major versions.
API path should include API version thereby allowing multiple APIls versions to co-exist
in the same time period. Older API paths that are really required to be sunset can return
relevant error messages indicating consumers to move to higher versions.
Version numbers of APIs should be specified in APl version as per OpenAPI 3.0
specifications. OpenAPI 3.0 uses SemVer 2.0 as its versioning scheme. SemVer is a
simple set of rules and requirements aka specification that dictates how version numbers
are assigned and incremented.

Recommended tools and techniques

Meta-Standard for Specifying Data Model and API Standard

CCSG standards team recommends that APIs are defined using OpenAPI 3.0 Specification.
OpenAPI Specification (formerly Swagger Specification) is language-agnostic API description
format for APls. An OpenAPI specification file allows one to describe an entire API, including:

Data model (entities)

CC5G- Specifications, Guidelines and Recommendations for

Page 10 of 13

Designing Data Models and APls -V 2.0

https://semver.org
https://swagger.io/docs/specification/about/

\ina|COG

T T _—
Mty f Housing an Uan s Gentre for Digital Governance

e Available operations on the resources - service endpoints. These can be accompanied
with detailed descriptions and usage information.

e Input and output for each operation

e Authentication and authorization information

e Contact information, versions, license, terms of use and other information
OpenAPI allows APIs to describe their own structure, providing the needed flexibility to model
complex urban domains.

API specifications in OpenAPI 3.0 are written in YAML or JSON - both these formats are easy to
learn and readable to both humans and machines. When properly defined, a consumer can
understand and interact with the APIs with a minimal knowledge about their implementation
logic.

Recommended tool for using OpenAPI 3.0 - Swagger

OpenAPI specifications also have a set of open source tools built around them called Swagger
that help with designing, building, documenting and consuming these APIs thus making it easy
for providers to adopt. The major swagger tools include:

e Swagger Editor — browser-based editor where you can write OpenAPI specs.

e Swagger Ul — renders OpenAPI specs as interactive APl documentation.
e Swagger Codegen — generates server stubs and client libraries from an OpenAPI spec.

OpenAPIl and Swagger also have a vibrant ecosystem of other open source and commercial
tools that can help in faster adoption of APIs.

Collaboration and Maintenance

Data models and API definitions for a vast and complex domain like CCSG will evolve over a
period of time and will require multiple ecosystem actors to collaborate at various point of time.
Keeping this in mind they need a modern, auditable and trackable way of working together and
versioning which can facilitate various roles like contributor, reviewer etc. In other words, it
needs a modern distributed collaboration tool like Open Source developers use.

Git is a free and open source distributed version control system designed to handle projects that
require collaboration among diverse and distributed teams. This makes Git ideal for managing
collaborative exercises like CCSG API standard development.

GitHub is one of the largest git service providers that is used by developers worldwide to host
and manage open source (and private/non open source) projects. Github provides free access
for open source projects and a wide variety of tools and interfaces to help non-technical people
to leverage the versioning and collaboration capabilities thereby making it highly amenable to
manage CCSG standards development. It will also make it more easy and manageable for
solution providers to access and develop against various versions of CCSG API standards.

CCSG- Specifications, Guidelines and Recommendations for Page 11 of 13

Designing Data Models and APls -V 2.0

http://editor.swagger.io
https://swagger.io/swagger-ui/
https://github.com/swagger-api/swagger-codegen

& \ina|COIG

Minksiry of Housing and Urban Afiais Gentre for Digital Governance

Government of India

CCEG- Specifications, Guidelines and Recommendations for Page 12 of 13

Designing Data Models and APls -V 2.0

Ministry of Ho
Govel

o

using and Urban Affairs
rnment of India

\ina|COG

Gentre for Digital Governance

Glossary

©® N OAWON=

W W NDNPNDNDNDNDNDNMNDNDDNNMNDN=22 =2 A A a aAa a aa©
- O ©W O NO O A, WN-20O©00NO OGN~ WDN—O-

Anonymisation

Application Programming Interface (API)
Asynchronous

Authentication / Authentication Tokens
Backwards compatibility

Circular referencing

Count

Create (and Delete)

Creative Commons (License)

. Data Model

. Debug

. Error

. Git

. Header

. HTML

. Java

. JSON (and YAML)

. Metadata

. MIT (License)

. OpenAPI

. Personally Identifiable Information
. Protocol (and Protocol-Agnostic)
. Request

. Response

. Search

. Standards Development Group
. Swagger

. Tenant / Tenancy

. Unix Epoch Time

. UuID

. Version / Versioning

CC5G- Specifications, Guidelines and Recommendations for
Designing Data Models and APls -V 2.0

Page 13 of 13

	
	Citizen Centric Smart Governance (CCSG)
	Specifications, Guidelines and Recommendations ​for Designing Data Models and APIs
	Introduction
	
	Abstract Specifications - Data Models and APIs
	Open
	Evolvable
	Extendable
	Minimalistic
	Balance Data Privacy with Data Empowerment
	Provide for non-repudiability
	Unbundled

	Design Specifications - Data Models and APIs
	Data Models
	Multitenancy
	Data Modification
	Data Search
	Transport Protocol Agnostic Behavior
	File Handling
	Bulk Data Handling
	API evolution and Versioning

	Recommended tools and techniques
	Meta-Standard for Specifying Data Model and API Standard
	Recommended tool for using OpenAPI 3.0 - Swagger
	Collaboration and Maintenance

	Glossary

