Sovrin Steward
Validator Preparation Guide

Purpose

The purpose of this document is to help you to set up a Validator node on Sovrin networks, as

Version 3.0

well as to set up a CLI machine for using the indy-cli. The CLI will be used now and in the future

to post transactions to the networks as a Sovrin Steward.

Table of Contents

1. Introduction
1.1. High Level Overview
1.2. Looking Forward: Observer Nodes
1.3. Hyperledger Indy and Indy-SDK

2. Preliminaries to the Set Up
2.1. Two Machines
2.2. Validator Node Preliminary Information
Get the IP Addresses
Choose Port Numbers
Choose an Alias:

3. Setup and Configuration
3.1. CLI Node Installation
3.1.1. Install the CLI
3.1.2. Generate the Steward Key
Generate a Seed
Run the Indy CLI and generate key
3.2. Validator Node Installation
3.2.1. Perform Network Test

3.2.1.1Test the node (inter-validator) connection to your Validator
3.2.1.2 Test the client (edge agent) connection to your Validator

3.2.1.3 Test the connection from your node to another Validator on the BuilderNet

3.2.2. Install the Validator Node

3.2.3. Create the Key for the Validator Node

3.3. Run the Technical Verification Script
3.4. Provide Information to Trustees

0 0 00 N N O O O o o oo w W W NN

©

9
10
10
11
11

Version 3.0

3.5. Add Node to a Pool 12
3.5.1. Configuration 12

Make Sure Your Version Is Current 12

Add Validator Node to Ledger 13

3.5.2. Enable the Service 15

3.6. See if the Node Is Working 15
Appendix A - Moving to Another Sovrin Network 16
1.1 Configure the Validator for another network, such as MainNet 16

1.2 Add node attributes to the MainNet ledger 17

1.3 Start the indy-node Service 18

1.4 Verify Operation of the Validator 18
Appendix B - Configuring Your Dual-Homed (2 NIC) Node 18
Initial networking steps in an AWS console 18
Configure Network Interfaces in Ubuntu 20

1. Introduction

This document will be periodically updated.

Before reading the contents of this document it is highly recommended that you have a good
understanding of the Sovrin Governance Framework. Another resource is the Sovrin Steward
FAQ. You will also need to join the Sovrin Team on Sovrin Foundation Slack for important
communications regarding updates, news, and requests from the Network Operations team.
Important channels include #stewards #steward-private and #validator-support..

1.1. High Level Overview

Sovrin Stewards operate the Validator nodes of the Sovrin decentralized identity network. All
Stewards must be approved by the Sovrin Foundation Board of Trustees. The qualifications for
becoming a Steward are described in the Steward Technical Policies and Steward Business
Policies of the Governance Framework.

Having a Validator node will allow your organization to be part of what is called consensus.
Consensus is a protocol spoken between all of the validator nodes on the network when they
come together to agree upon modifying the ledger. In essence, they say, “This is what is
currently on the ledger, we agree about the nature and order of these new items that should be
added, and we agree that this is what the ledger will look like when we’re done.”

By design, as a Steward, you are only allowed to operate one Validator node per network.

https://sovrin.org/library/sovrin-governance-framework/
https://docs.google.com/document/d/1QSGbkaM88duMqgbBcQWqqPyf5Mm4ykJr0dZtBayTFfU/edit?usp=sharing
https://docs.google.com/document/d/1QSGbkaM88duMqgbBcQWqqPyf5Mm4ykJr0dZtBayTFfU/edit?usp=sharing
https://sovrinfoundation.slack.com
https://sovrin.org/people/
https://sovrin.org/wp-content/uploads/2019/03/Sovrin-Steward-Technical-Policies-V1.pdf
https://sovrin.org/wp-content/uploads/Sovrin-Steward-Business-Policies-V1.pdf
https://sovrin.org/wp-content/uploads/Sovrin-Steward-Business-Policies-V1.pdf

Version 3.0

1.2. Looking Forward: Observer Nodes

Validator nodes on Sovrin have practical limits; the distributed consensus at the heart of Sovrin
slows down as more Validators are added.

As Sovrin grows, we plan for hundreds of nodes to be run by Stewards, with some handling
writes and many more providing a hot-swappable read cache (like a CDN). These latter nodes
will be called observers. A node’s status as a Validator (handling writes) or observer (handling
reads) may change over time, either statically or dynamically, as determined by the Technical
Governance Board and Steward Council. The Foundation will likely continue to add different
testing Networks for development and security testing.

1.3. Hyperledger Indy and Indy-SDK

All Stewards run the same codebase—open source Validator node software developed under
the Hyperledger Indy project hosted and managed by the Linux Foundation. Not only does this
enable Stewards (and everyone else in the ecosystem) to be confident in the code running the
Sovrin network, but in the future it will enable all Sovrin Steward nodes (both Validators and
observers) to monitor each other’s performance and upvote or downvote their peers,
dynamically maintaining the health of the network. (Note: this reputation system is not
developed yet, and it will not undo Founding Steward status for a Steward.)

2. Preliminaries to the Set Up

Before you start this process, you'll need to gather a couple of things and make a few decisions.

As you proceed through these steps, you will be generating data that will be needed later. As
you follow the instructions and obtain the following, store them for later use:

e Your Steward key seed
o This is extremely important and it must be kept safe and private. It is used to
generate the public / private key pair that you will use as a Steward to post
transactions to the ledger.
e Your Steward distributed identity (DID)
o This is public information that is generated by your Steward key seed. Itis an
identifier for your organization that will be written to the ledger by a Sovrin
Trustee.
e Your Steward verification key (verkey)

https://github.com/hyperledger/indy-node/tree/stable
https://www.linuxfoundation.org/

Version 3.0

o This is public information that is generated by your Steward key seed. It will be
written to the ledger by a Sovrin trustee along with your DID, and will be used to
verify transactions that you write to the ledger

e The Validator IP Address for inter-node communications

o This IP address must be configured for exclusive use of inter-node consensus

traffic. Ideally, traffic to this address will be whitelisted in your firewall.
The Validator node port
The Validator IP Address for client connections

o This IP address must be open for connections from anywhere, since clients

around the world will need to be able to connect to your node freely.
The Validator client port
The Validator alias
The Validator node seed

o This is distinct from your Steward seed, and will generate public and private keys
that your Validator will use for communications with other Validators. Like the
Steward seed, it should be kept secure.

e The Validator Node Identifier

o This is distinct from your Steward verkey. It is also public information that will be
placed on the ledger, but is used as a public key by your Validator node, rather
than by you, the Steward.

e The Validator BLS public key.

o Used by the Validator to sign individual transactions that will be committed to the

ledger. It is public information that will be written to the ledger.
e The Validator BLS key proof-of-possession (pop)
o A cryptographic check against certain forgeries that can be done with BLS keys.

2.1. Two Machines

You'll need two machines: one is your Validator node and the other a CLI machine to run a CLI
with which you will interact with the ledger. They can be actual physical machines, virtual
machines, or a combination. The machine with the CLI can be turned on and off at your
convenience (e.g., it could be a VM on a laptop); only the Validator node needs to be public and
constantly up.

Important: for security reasons, you must not use your Validator node as a CLI
client. If you do, it could expose your Steward credentials needlessly.

Your Validator must run Ubuntu 16.04 (64-bit) as this is the only version we have prebuilt
packages for. This guide presupposes that your CLI machine will run in Ubuntu as well.

Your Validator node should have two NICs, each with associated IP addresses and ports. One
NIC will be used for inter-validator communication, and the other for connections from clients,
including Sovrin edge agents, as well as ssh and other connections you use for administration.

Version 3.0

This two NIC approach is required as a defense against denial-of-service attacks, since the NIC
for inter-validator communications should be behind a firewall that is configured to be much
more restrictive of inbound connections than the client-facing NIC is.

It is currently possible to have just one NIC and IP address, as the transition for older Stewards
to change to 2 NICs is ongoing. The inability to or delay of adding a second NIC will likely affect
which network your node will be placed on. A resource that may help you to configure your
node to use two NICs is in an appendix at the end of this document.

2.2. Validator Node Preliminary Information

Get the IP Addresses

Your Validator node will be the machine that will become a part of the Sovrin network. It should
have two static, publicly accessible, world routable IP addresses. It should be configured so that
outgoing TCP/IP connections are from these same address, as well as incoming connections.

Obtain IP addresses that meet this requirement.

Choose Port Numbers

The Validator node will also be required to have the following:

e Node Port: TCP - The Validators use this IP address and port combination to
communicate with each other.

e Client Port: TCP - Clients use this IP address and port combination to communicate
with the Validator node, to interact with the ledger.

By convention, please choose ports 9701 and 9702 for your Node and Client ports, respectively.

Choose an Alias:

Your Validator node will need to have an alias. This will be used later when we create a key for
the node. It can be any convenient, unique name that you don’t mind the world seeing. It need
not reference your company name, however it should be distinguishable from the other Validator
nodes on the network. Many Stewards choose a Validator alias that identifies their organization,
for pride of their contribution to the cause of self-sovereign identity.

3. Setup and Configuration

You must perform the following instructions in order. If you require assistance, please contact
support@sovrin.org or post to support in the Sovrin Foundation Slack. Some instructions must

mailto:support@sovrin.org

Version 3.0

be executed on the Validator node, and others on the CLI machine. The command line prompts
in the instructions will help remind you which machine should be used for each command.

3.1. CLI Node Installation

3.1.1. Install the CLI

On the machine you’ve chosen for the CLI, open a terminal and run the following lines to install
the indy-cli package.

In the CLI node:

ubuntu@cli$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
CE7709D068DB5E88

ubuntu@cli$ sudo apt-get install -y software-properties-common
python-software-properties

ubuntu@cli$ sudo add-apt-repository "deb https://repo.sovrin.org/sdk/deb
xenial stable"

ubuntu@cli$ sudo add-apt-repository "deb https://repo.sovrin.org/deb xenial
stable"

ubuntu@cli$ sudo apt-get update -y

ubuntu@cli$ sudo apt-get upgrade -y

ubuntu@cli$ sudo apt-get install -y indy-cli

3.1.2. Add an Acceptance Mechanism

To write to a Sovrin Ledger, you'll need to sign the Transaction Author Agreement. This
Agreement is incorporated into the process of connecting to the node pool and requires an
acceptance mechanism. For the Indy CLI, the default mechanism is “For Session” and the
following instructions are required to be able to use “For Session” for your CLI:

Create a JSON Config file containing your taaAcceptanceMechanism. (You can also add plugins
to this config file, but for now just set it up as basic as possible.)

This example cliconfig.json file contains the line that sets the AML.:
{

"taaAcceptanceMechanism": "for_session"

}

To start the indy-cli using your new config file, run the following:
ubuntu@cli$ indy-cli --config <path_to _cfg>/cliconfig.json

Now all of the appropriate transactions will have an “Agreement Accepted” authorization
attached to them during this CLI session.

Version 3.0

3.1.3. Obtain the Genesis Files

Obtain the genesis transaction files for the Sovrin Networks with the following steps. These files
contain bootstrap information about some of the Validator nodes, which will be used by your CLI
to connect to the networks.

If you are in the indy prompt, please exit:
indy> exit

Most Stewards will currently be onboarded to the BuilderNet. Obtain the genesis transaction file
for it:

ubuntu@cli$ cd

ubuntu@cli:~ $ curl -0
https://raw.githubusercontent.com/sovrin-foundation/sovrin/master/sovrin/pool

transactions_builder_genesis

You will also want to obtain the genesis files for the StagingNet and MainNet, for the possibility
of moving between networks:

ubuntu@cli:~ $ curl -0
https://raw.githubusercontent.com/sovrin-foundation/sovrin/stable/sovrin/pool

transactions_sandbox_genesis
ubuntu@cli:~ $ curl -0
https://raw.githubusercontent.com/sovrin-foundation/sovrin/stable/sovrin/pool

transactions_live genesis

3.1.4. Generate the Steward Key

Next, generate a Steward key using the CLI machine you just installed. This will be comprised
of a public and private key pair, generated from a seed. Knowing your seed will allow you to
regenerate the key on demand. To keep this secure, you will need to have a very secure seed
that is not easy to guess.

Generate a Seed
WARNING:

https://raw.githubusercontent.com/sovrin-foundation/sovrin/stable/sovrin/pool_transactions_sandbox_genesis
https://raw.githubusercontent.com/sovrin-foundation/sovrin/stable/sovrin/pool_transactions_sandbox_genesis
https://raw.githubusercontent.com/sovrin-foundation/sovrin/stable/sovrin/pool_transactions_sandbox_genesis
https://raw.githubusercontent.com/sovrin-foundation/sovrin/stable/sovrin/pool_transactions_sandbox_genesis
https://raw.githubusercontent.com/sovrin-foundation/sovrin/stable/sovrin/pool_transactions_live_genesis
https://raw.githubusercontent.com/sovrin-foundation/sovrin/stable/sovrin/pool_transactions_live_genesis

Version 3.0

You want to guard your seed well. The seed will be used to generate your public
(verification) key as well as your secret private key. If your seed falls into the
wrong hands, someone could regenerate your private key, and take over your
identity on the ledger. Keys can be rotated, which can stop some of the damage,
but damage will still have been done.

In the terminal, run the following to install a good random string generator, and then use it to
generate your seed:

ubuntu@cli$ sudo apt install pwgen
ubuntu@cli$ pwgen -s 32 1

EXAMPLE:
ubuntu@cli$ pwgen -s 32 -1
ShahXae2ieGluibeoraepadeyubmexei

IMPORTANT:
Keep this seed in a safe place, such as an encrypted password manager or other
secure location designated by your organization. You will need it later in this
guide, as well as in the future for other Steward interactions with the ledger.

Run the Indy CLI and generate key

Next we run the indy-cli command line CLI by entering:
ubuntu@cli$ indy-cli --config <path_to_cfg>/cliconfig.json

In the command line, enter the following to create your pool configuration and your wallet locally.
In these instructions, we use "buildernet" for the pool name and "buildernet_wallet" for the wallet
name, although you may use other names of your choosing, if desired. The encrypted wallet will
be used to store important information on this machine, such as your public and private keys.
When creating your wallet, you will need to provide a "key" that is any string desired. It will be
the encryption key of your local wallet.

indy> pool create buildernet gen_txn_file=pool_transactions_builder_genesis
indy> wallet create buildernet _wallet key

Upon entering this command, you'll see a prompt to enter your wallet key. Enter the key and hit
enter.

IMPORTANT:
To be able to retain your wallet and not re-create it when you need it in the future,
keep this wallet key in a secure location as well.

Version 3.0

Using the pool configuration and wallet you have created, connect to the pool and open the
wallet:

indy> pool connect buildernet
When you connect to a Network with TAA enabled, you will be asked whether you want to view
the Agreement. Type ‘y’ to accept to see the Agreement, then select ‘y’ again to accept the

Agreement displayed. If you do not accept the agreement, then you will not be allowed to write
to the Network.

indy> wallet open buildernet_wallet key
<enter the key>

Using the seed that you generated with pwgen, place your public and private keys into your
wallet.

indy> did new seed
<enter the seed>

The result should look something like this:

Did "DIDDIDDIDDIDDIDDIDDID" has been created with "~VERKEYVERKEYVERKEYVERKEY"
verkey

IMPORTANT: Save the “DID” and “verkey” portions of this. They are not secret,
but they will be used when you are prompted to supply your Steward verkey and
DID.

3.2. Validator Node Installation

3.2.1. Perform Network Test

This test is to confirm that your Validator node can connect with external devices.

Note that the communication protocol used for both node and client connections is ZMQ. If your
firewall uses deep packet inspection, be sure to allow this protocol bi-directionally.

Version 3.0

The tests in this section are to assure that your node's networking is operational, and that
firewalls will allow TCP traffic to and from your IP addresses and ports. The assumptions are
that for this stage of testing, you will be able to reach both sets of IP address/port combinations
from an arbitrary client, but that later you will implement rules on your firewall restricting access
to your node (inter-validator) IP address/port.

3.2.1.1Test the node (inter-validator) connection to your Validator

Use netcat to listen on the "node" IP address and port on your Validator

IMPORTANT:

Many providers, such as AWS, use local, non-routable IP addresses on their nodes and then
use NAT to translate these to public, routable IP addresses. If you are on such a system, use
the local address to listen on, and the public address to ping with.

ubuntu@validator$ nc -l <node ip_address> <node_ port>

The above command will wait for a connection. On a system that can be used as a client, such
as your CLI node, do a TCP ping of that IP address and port:

ubuntu@cli$ nc -vz <node_ip_address> <node_port>

If the test is successful, the ping will return a "succeeded" message and the commands on both
nodes will exit.

3.2.1.2 Test the client (edge agent) connection to your Validator

Repeat the above test on your Validator and a test client, but using the Validator's "client" IP
address and port.

Important: The “client” IP address referred to here is not the CLI machine’s IP address.
Reminder: The Validator node has a node IP address for communications with other Validators
and a “client” IP address for communications with edge agents (anything outside the Sovrin
Network of Validators).

On your Validator:
ubuntu@validator$ nc -l <client_ip_address> <client_port>

On your client:
ubuntu@cli$ nc -vz <client_ip_address> <client_port>

If the test is successful, the ping will return a "succeeded" message and the commands on both
nodes will exit.

Version 3.0

IMPORTANT:
If your system uses NAT, the same approach should be used as above.

3.2.1.3 Test the connection from your node to another Validator on the BuilderNet

One of the Validator nodes on the BuilderNet is named "FoundationBuilder", which has a node
IP address and port of 50.112.53.5 and 9701, respectively. On your Validator, make sure that
your node is able to connect to this node on BuilderNet by TCP pinging its node IP address and
port:

ubuntu@validator$ nc -vz 50.112.53.5 9701
Connection to 50.112.53.5 9701 port [tcp/*] succeeded!

When the above three tests are successful, you may proceed.

3.2.2. Install the Validator Node

Continue on your Validator node machine.

Important: You must use a login user with sudo privileges (not root or indy) to run
these commands, unless otherwise indicated.

ubuntu@validator$ sudo apt-key adv --keyserver keyserver.ubuntu.com
--recv-keys CE7709D068DB5E88

ubuntu@validator$ sudo apt-get install -y software-properties-common
ubuntu@validator$ sudo add-apt-repository "deb https://repo.sovrin.org/deb
xenial stable"

ubuntu@validator$ sudo apt update

ubuntu@validator$ sudo apt upgrade -y

ubuntu@validator$ sudo apt install -y sovrin

3.2.3. Create the Key for the Validator Node

IMPORTANT:

Many providers, such as AWS, use local, non-routable IP addresses on their nodes and then
use NAT to translate these to public, routable IP addresses. If you are on such a system, use
the local addresses for the init_indy_node command.

Please run the following on the Validator before running init-indy-node.
1. In the /etc/indy/indy_config.py file, change the Network name from “sandbox” to
“net3” (use sudo to edit the file or use sudo sed -i -re "s/((NETWORK_NAME = ")\w+A1net3/"
letc/indy/indy_config.py) then run the following commands:

Version 3.0

2. sudo -i -u indy mkdir /var/lib/indy/net3

cd /var/lib/indy/net3

4. sudo curl -o domain_transactions_genesis
https://raw.githubusercontent.com/sovrin-foundation/sovrin/master/sovri
n main_transactions_builder nesi

5. sudo curl -o pool_transactions_genesis
https://raw.github rcontent.com vrin-foundation vrin/master vri

n/pool_transactions_builder_ genesis

6. Make sure that both genesis files are owned by indy:indy sudo chown indy:indy *

e

Enter the following where <ALIAS> is the alias you chose for your Validator node machine and
<node ip>, <client IP>, <node port #> and <client port #> are the correct values for your
Validator.

Note: the node IP and client IP addresses should be the LOCAL addresses for your node.

ubuntu@validator$ sudo -i -u indy init_indy_node <ALIAS> <node ip> <node
port> <client ip> <client port>

You will see something like this (highlighting added):

Node-stack name is Nodel9

Client-stack name is Nodel9C

Generating keys for random seed b'FA7blcc42DallB8F4BC83990cECF63aD"’

Init local keys for client-stack

Public key is
a9abcd497631del182bb6f767ffb4921cdf83ffdb20e9d22e252883b4fc34bf2f

Verification key is
3d604d22c4bbfd55508a5a7e0008847bdeccd98a41acd048b500030020629¢eel

Init local keys for node-stack

Public key is
29abcd497631del82bb6f767ffb4921cdf83ffdb20e9d22e252883b4fc34bf2f

Verification key is
bfede8c4581103d16eb053450d103477c6e840e5682adc67dc948al77ab8bc9b

BLS Public key is
AkCWXzcEEzdh93rf3zhhDEeyblLij7AwcE4ANDewT+3LRdN8eoKBwufFcUyyvSI4GTPpTQLUX6iHjQw
nCCQx4sSpfnptCWzvFEdInhNSt4tIMQ2EzjcL9ewRWi24QxAaCnwbm2BBGIXF7]jqFgMzGfuFXXHh
GPX3UtdfAphrojk3Alsgq

Proof of possession for BLS key is
QqPuAnjnkYcE51H11Tub12i7Yri3ZLHmEYtJuaHINFYKZBL187SXgC3tMHXxwW3LMXErnbFwJCSdIKb
Tb2aCVmGzgXQtVWSpTVEQCsaSm4SUZLbzWVoHNQDIASRYNbHH2CgpR2MtntA4YNb2WixNSZNXFSd
HMbB1yMQ7XUcZqtGHhcb

https://raw.githubusercontent.com/sovrin-foundation/sovrin/master/sovrin/domain_transactions_builder_genesis
https://raw.githubusercontent.com/sovrin-foundation/sovrin/master/sovrin/domain_transactions_builder_genesis
https://raw.githubusercontent.com/sovrin-foundation/sovrin/stable/sovrin/pool_transactions_sandbox_genesis
https://raw.githubusercontent.com/sovrin-foundation/sovrin/master/sovrin/pool_transactions_builder_genesis
https://raw.githubusercontent.com/sovrin-foundation/sovrin/master/sovrin/pool_transactions_builder_genesis

Version 3.0

Store the original command, the random seed, the verification key, the BLS public key,
and the BLS key proof-of-possession (POP). These are the keys for your Validator node (not
to be confused with the keys for you in your Steward role). The Validator verification key and
BLS key (with its POP) are public, and will be published on the ledger.

The random seed should be protected from disclosure.

3.3. Run the Technical Verification Script

Download this script, upload it to your Validator node, and set the execution flag on it:

ubuntu@validator$ cd ~

ubuntu@validator$ curl -O
https://raw.githubusercontent.com/sovrin-foundation/steward-tools/master/steward_tech_c
heck.py

ubuntu@validator$ chmod +x steward tech_check.py

Execute it, answering the questions that it asks. There are no wrong answers; please be
honest. Questions that can be answered by scripting are automatically completed for you.

ubuntu@validator$ sudo ./steward tech_check.py
After the script completes, copy the output beginning at '== Results for "A Steward MUST" ==/,
and paste it into an email addressed to support@sovrin.org then send it.

3.4. Provide Information to Trustees

At this point you should have the following data available:

Your Steward verkey and DID
The Validator ‘node IP address’
The Validator ‘client IP address’
The Validator ‘node port’

The Validator ‘client port’

The Validator alias

The Validator verkey

The BLS key

Please go to the Steward Validator Registration form and provide the requested information.

https://raw.githubusercontent.com/sovrin-foundation/steward-tools/master/steward_tech_check.py
https://docs.google.com/forms/d/1Jo75-ABzP70jFomsXVjYPzOrByCLWB3xeFcbhNlAMC0/edit

Version 3.0

Note: You are done with the first part of the onboarding. The Sovrin Foundation staff will contact
you to set up the rest.

3.5. Add Node to a Pool

After your data is submitted via the Steward Validator Registration form, a Sovrin Trustee will put
your Steward public key into the ledger. You will receive notification when your DID and verkey
have been added to the ledger. You will be asked to work together with a Sovrin TechOps
engineer to complete the final steps to onboard your node onto the network. Please be prepared
to suggest times to do this together online.

IMPORTANT:
DO NOT proceed further with this document until your DID and verkey (the public
key) is on the ledger.

3.5.1. Configuration

After you have been informed that your public key has been placed onto the ledger of the Sovrin
BuilderNet, you may complete the configuration steps to activate your Validator node on that
network.

Things to verify

cat /etc/indy/indy_config.py
- Ensure network configuration is correct.
cat /etc/indy/indy.env
- Verify node alias and IPs
cat /var/lib/indy/net3/domain_transactions_genesis
- Verify the correct content.
cat /var/lib/indy/net3/pool_transactions_genesis
- Verify the correct content.

Make Sure Your Version Is Current

In some cases, some time may have passed before reaching this point. You should ensure that
you have the current version of indy software installed before proceeding. On the Validator
node, execute the following.

Version 3.0

Verify Versions
dpkg -l | grep indy
dpkg -l | grep sovrin

Only do the following updates/upgrades if the versions from the previous step are not the
expected ones.

In the Validator node:
ubuntu@validator$ sudo apt update
ubuntu@validator$ apt-cache policy sovrin

If your installed version is not the newest, contact support@sovrin.org to make sure that
what you have is compatible with the Sovrin BuilderNet. If needed, upgrade your version:

ubuntu@validator$ sudo apt install sovrin=<version_number>
On the CLI machine, execute the following.

In the CLI machine:
ubuntu@cli$ sudo apt update
ubuntu@cli$ sudo apt upgrade indy-cli

Add Validator Node to Ledger

On your CLI machine, if you are not still on the indy-cli prompt, you will need to return to it. To
get back to where you were, type indy-cli --config <path_to _cfg>/cliconfig.json,
connect to the network pool, designate the wallet to use (using the same wallet key as before),
and enter the DID that was returned earlier, when you typed ‘did new seed’ (then enter your
seed) for your Steward user:

ubuntu@cli$ indy-cli --config <path_to_cfg>/cliconfig.json
indy> pool connect buildernet

indy> wallet open buildernet_wallet key=<wallet_key>

indy> did use <your_steward DID>

e Note: You may need to create a new wallet and run "did new seed” then enter
<your_steward_seed> instead, if you did not save your wallet or forgot your wallet key.

If the connection is successful, enter the following, substituting the correct data as appropriate.
An example will follow to be more clear.

mailto:support@sovrin.org

Version 3.0

e Suggestion: Edit this in a text editor first, then copy and paste it into the Indy CLI.
Some editors will insert 'smart quotes' in place of reqular ones. This will cause the
command to fail.

indy> ledger node target=<node_identifier>
node_ip=<validator_node_ip address> node_port=<node_ port>
client_ip=<validator_client_ip_address> client_port=<client_port>
alias=<validator_alias> services=VALIDATOR blskey=<validator bls key>
blskey pop=<validator_bls key pop>

IMPORTANT:

Many providers, such as AWS, use local, non-routable IP addresses on their nodes and then
use NAT to translate these to public, routable IP addresses. If you are on such a system, use
the routable public addresses for the ledger node command.

Example:

indy> ledger node target=4Tn3wZMNCvhSTXPcLinQDnHyj56DTLQtL61ki4jo2Loc
node_ip=18.136.178.42 client_ip=18.136.178.42 node_port=9701 client_port=9702
services=VALIDATOR alias=Nodel9
blskey=4kCWXzcEEzdh93rf3zhhDEeybLij7AwcE4NDewTf3LRdn8eokBwufFcUyyvSI4GfPpTQLu
X6iHjQwnCCQx4sSpfnptCWzvFEdInhNSt4tIMQ2EzjcL9ewRWi24QxAaCnwbm2BBGIXF7JjqFgMzG
fuFXXHhGPX3UtdfAphrojk3Alsgq

blskey pop=QqPuAnjnkYcE51H11Tub12i7Yri3ZLHmEYtJuaHINFYKZBLi87SXgC3tMHXw3LMxEr
nbFwJCSdIKbTb2aCVmGzgXQtVWSpTVEQCsaSm4SUZLbzWVoHNQgDIASRYNbHH2CqpR2MtntA4YNb2
WixNSZNXFSdHMbB1yMQ7XUcZqtGHhcb

e Suggestion: Save this command. You will use it again if you later move to another
Sovrin Network.

3.5.2. Enable the Service

In the Validator node:

Return to the Validator node machine.

Start the Validator service:

ubuntu@validator$ sudo systemctl start indy-node
Verify the start:

ubuntu@validator$ sudo systemctl status indy-node.service

Version 3.0

Enable the service so that it will auto-restart when your node reboots:

ubuntu@validator$ sudo systemctl enable indy-node.service

3.6. See if the Node Is Working

If the setup is successful, your Validator node now connects to the Validator pool.

In the Validator node:
ubuntu@validator$ sudo validator-info

If your node is configured properly, you should see several nodes being selected as the primary
or its backups, as in this example:

England (1)
Singapore (3)
Virginia (4)
RFCU (5)
Canada (@)
Korea (2)

Note: A ledger with a lot of transactions on it, like what often exists on the BuilderNet,
can take a lot of time to sync up a new Validator node. If you don't get the right results
for this test right away, try it again in a few minutes.

To check that messages and connections are occurring normally you can run the following
commands to follow the log file:

In the Validator node:

ubuntu@validator$ sudo tail -f /var/log/indy/net3/<validator_alias>.log

Appendix A - Moving to Another Sovrin Network

Sovrin's BuilderNet is a key network maintained by the Sovrin Foundation. At some time, you
may be asked to move your node to another of the Sovrin networks, such as the MainNet or
StagingNet. As with the BuilderNet, a Sovrin Trustee must place your keys on any network that
you will join with your Validator. After you are informed that your keys are on the new
ledger, you may proceed with these steps. It is required to be on a call with someone from
support@sovrin.org while performing these steps.

mailto:support@sovrin.org

Version 3.0

In the sections below, it is assumed that the network you are moving to is the MainNet, but the
instructions can be adapted to moving to any other Sovrin network, or to moving back to
BuilderNet if that becomes desirable in the future.

1.0 Remove your node from your current network

From your indy-cli turn off your validator services:
a. On your CLI, join your pool, open your wallet, and activate your Steward DID
as explained earlier in this document. Then run the following command:

ledger node target=<validator_identifier> alias=<node_alias>
services=

1.1 Configure the Validator for another network, such as MainNet

On your Validator node, turn off the indy services:

ubuntu@validator$ sudo systemctl stop indy-node indy-node-control

Configure your Validator node to connect to the MainNet by using this command to change a
line in the indy_config.py file:

ubuntu@validator$ sudo -i -u indy sed -i "s/'net3'/'live'/"
/etc/indy/indy_config.py

When you ran init_indy_node before, it auto-generated a seed that you were told to save
securely. Run the node initialization script again, this time adding the seed that was
auto-generated when you ran it before. The output should contain the same public keys that you
saw before.

REMINDER: the following command requires you to use the local IP addresses if they are
different from the public IP addresses (for example, they are different in AWS).

ubuntu@validator$ sudo -i -u indy init_indy_node <ALIAS> <node ip> <node port
#> <client ip> <client port#> <seed>

Finally, make sure that the MainNet network genesis files are in place on your Validator node.
You should see "pool_transactions_genesis" and "domain_transactions_genesis" files in the
/var/lib/indy/live/ directory. If they are not there, you will need to stop here and request them

from support@sovrin.org before proceeding.

ubuntu@validator$ sudo su - indy
indy@validator$ 1ls /var/lib/indy/live/*genesis

mailto:support@sovrin.org

Version 3.0

indy@validator$ exit

Desired result:
/var/lib/indy/live/domain_transactions_genesis
/var/lib/indy/live/pool_transactions_genesis

NOTE: When creating a new network (not when switching to an existing network) you will
need to download the domain and pool genesis files to the newly named directory. For
example:

cd /var/lib/indy/net3

curl -O
https://raw.githubusercontent.com/sovrin-foundation/sovrin/master/sovrin/domain_transactions__
builder_genesis

curl -O
https://raw.githubusercontent.com/sovrin-foundation/sovrin/master/sovrin/pool_transactions_buil
der_genesis

1.2 Add node attributes to the MainNet ledger

In rClin
As you did for the BuilderNet, in your CLI create metadata for the MainNet, and create a wallet
to use with it:

ubuntu@cli$ indy-cli
indy> pool create mainnet gen_txn_file=pool_ transactions_live genesis
indy> wallet create mainnet wallet key=<wallet key>

Now, establish your Steward credentials, and connect to the MainNet network:

indy> pool connect mainnet

indy> wallet open mainnet_wallet key=<wallet_ key>
indy> did new seed=<your_steward seed>

indy> did use <your_steward DID>

As you did for the BuilderNet network, put your node attributes onto the ledger of the MainNet.
Use the same transaction here that you used there. For example:

indy@live> ledger node target=4Tn3wZMNCvhSTXPcLinQDnHyj56DTLQtL61ki4jo2Loc
node_ip=18.136.178.42 client_ip=18.136.178.42 node_port=9701 client_ port=9702
blskey=4kCWXzcEEzdh93rf3zhhDEeybLij7AwcE4ANDewTf3LRdn8eoKBwufFcUyyvSI4AGfPpTQLuU
X6iHjQwnCCQx4sSpfnptCWzvFEdInhNSt4tIMQ2EzjcL9ewRWi24QxAaCnwbm2BBGIXF7JjqFgMzG
fuFXXHhGPX3UtdfAphrojk3Alsgq

Version 3.0

blskey pop=QqPuAnjnkYcE51H11Tub12i7Yri3ZLHmEYtJuaHINFYKZBLi87SXgC3tMHxw3LMxEr
nbFwJCSdJIKbTb2aCVmGzgXQtVWSpTVEQCsaSm4SUZLbzWVoHNQgDIASRYNbHH2CqpR2MtntA4YNb2
WixNSZNXFSdHMbB1yMQ7XUcZqtGHhcb services=VALIDATOR alias=Nodel9

1.3 Start the indy-node Service
In r Validator n

ubuntu@validator$ sudo systemctl start indy-node
Verify the start:

ubuntu@validator$ systemctl status indy-node

1.4 Verify Operation of the Validator

Repeat the steps of section 3.6 for the MainNet network to determine that the Validator is
operating properly:

ubuntu@validator$ sudo validator-info -v | grep Primary

Note: A ledger with a lot of transactions on it can take a lot of time to sync up on a new Validator
node. If you don't get the right results for this test right away, try it again after several minutes.

Appendix B - Configuring Your Dual-Homed (2 NIC)
Node

First some caveats and warnings. These are notes based on setting up 2 NICs on an AWS VM.
It might be possible to adapt them for other environments as well, particularly the "Configure
Network Interfaces in Ubuntu" section.

WARNING:

When you are doing network configuration, it is very possible to put your VM into a state where
you are no longer able to log into it over the network. This may be difficult or impossible to
recover from. Be very careful. If you have questions, doubts, or just need help, reach out prior
to following these instructions.

Initial networking steps in an AWS console

Create security group "validator client"

Version 3.0

e Port 22 for ssh
e Port 9702 for Validator client connections
Create security group "validator inter-node"
e Port 9701 for Validator inter-node connections
e Initially set up your Validator IP address to accept connections from anywhere, but later
modify it as follows to only allow connections from specific IP addresses.
o Whitelisted IP addresses
m To generate whitelist, run on Validator: "current_validators.py --writeJson |
node_address_list.py --outFormat aws"
Setup Validator instance
1. Provision VM
a. Use security group "validator client" for the default network interface
b. make note of the instance ID when completed
2. Add and configure a 2nd network interface in AWS.
a. On EC2 left side menu - Network & Security -> Network Interfaces -> Create
Network Interface
i. Subnet-> Select a different subnet in the same zone as your instance
i. Private IP -> auto assign
iii. Security groups -> validator inter-node
b. On the main screen, select the new interface and click the Attach button
i. Find and select the instance ID (recorded in step 1)
3. Note the Network Interface ID of each network interface
a. On EC2 left side menu - INSTANCES -> Instances
b. Select your instance
c. At the bottom of the screen select the description tab and scroll down to ‘Network
interfaces’
d. Click on each interface and then record the ‘Interface ID’ and the ‘Private IP
Address’ for later use.
4. Create 2 Elastic IP’s, 1 for each NIC, and associate them with the network interfaces
a. On EC2 left side menu - Network & Security ->Elastic IPs
i. Click Allocate New Address
1. Give your new addresses appropriate names so that you can
identify them later. (i.e. BuilderNet Client and BuilderNet
Inter-Node)
2. lused Amazon IP addresses, but you can use your own if you like
3. Repeat steps 1 and 2 to create a second Elastic IP
i. Foreach new Elastic IP do the following:
1. Select one of the Elastic IP’s you just created
2. Click Actions -> Associate address
a. Resource type -> ‘Network interface’
b. Network Interface -> <use one of the network interface IDs
noted in previous step >

Version 3.0

c. Private IP -> (there should only be one option and it should
match the internal IP address of the chosen interface)
d. Leave checkbox empty (this might not matter)
e. Click “Associate”
3. Make sure you do this for both interfaces of your instance

Configure Network Interfaces in Ubuntu

1. Disable automatic network management by AWS. (These steps are for AWS users only
and will keep AWS from overwriting your settings) Run the following from the Ubuntu
command line:

a. sudosu -
b. echo 'network: {config: disabled}' >
/etc/cloud/cloud.cfg.d/99-disable-network-config.cfg
WARNING: The following steps use the common network interface names ethO and eth1. You
must substitute the interface device names used by your system or your instance will lose its
network connection and you might not be able to reattach to it.
2. Run the following steps from the Ubuntu command line:
3. >ipa
a. Record the interface device names and their local IP addresses for later use.
4. >route -n
a. Record the Gateway for later use.
5. > cd /etc/network/interfaces.d
6. > vim 50-cloud-init.cfg
a. Cut the existing ethO lines from this file in preparation for moving them to a new
file in this same directory.
b. Example 50-cloud-init.cfg now looks like:

auto lo
iface lo inet loopback

7. >vim ethO.cfg (use <interface name>.cfg if your interface name is not ethQ)
a. Paste the eth0 lines cut from the 50-cloud-init.cfg file and add the following lines,
indented 3 spaces:

up ip route add default via <Gateway> dev <interface name> tab 1
up ip rule add from <local IP addr of <interface name>>/32 tab 1
up ip rule add to <local IP addr of <interface name>>/32 tab 1

up ip route flush cache

b. Example ethO.cfg

auto ethO

Version 3.0

iface ethO inet dhcp
up ip route add default via 172.31.32.1 dev eth0 tab 1
up ip rule add from 172.31.33.147/32 tab 1
up ip rule add to 172.31.33.147/32 tab 1
up ip route flush cache

8. Repeat step 7 but for the second network interface. The simplest way to do that is
probably:
a. > cp eth0.cfg eth1.cfg
b. > vieth1.cfg
i. Replace all instances of ethO with eth1
i. Change <local IP addr> to the one corresponding to eth1
ii. Change ‘tab 1’ to ‘tab 2’
c. Example eth1.cfg

auto eth1
iface eth1 inet dhcp
up ip route add default via 172.31.32.1 dev eth1 tab 2
up ip rule add from 172.31.35.63/32 tab 2
up ip rule add to 172.31.35.63/32 tab 2
up ip route flush cache

d. > ifup eth1
i. Check to make sure eth1 came up and is working properly. If the ethO
interface becomes unusable, you should then be able to log in through
eth1 to fix it.
9. Reboot your machine

Tests

If the configuration is working, you should be able to connect a "listener" process to the IP
address and port for the client connections. Then from a different, client machine you should be
able to reach that port on that IP address, firewalls permitting. You should also be able to do the
same thing for the node IP address and port. Netcat is ubiquitous and convenient for these
tests.

On the Validator:

nc -l <client IP address> < client port>
On the client machine:

nc -v -z <client IP address> <client port>
Expected result:

Success!

Version 3.0

On the Validator:

nc -1 <node IP address> < node port>
On the client machine:

nc -v -z <node IP address> <node port>
Expected result:

Success!

Other combinations should fail or not return. Note that in AWS, the netcat commands executed
on the Validator should use the private IP address, and the netcat commands executed on the
client should use the public IP (Elastic) address.

Finally, remember to later modify firewalls to allow and deny traffic:

On client IP address, allow

Port 22 from your home network(s)

Port 9702 (or whatever you have configured for clients) from anywhere

On node IP address, allow

Port 9701 (or whatever you have configured for inter-validator) from whitelist of other Validators

	Sovrin Steward
	Validator Preparation Guide
	1. Introduction
	1.1. High Level Overview
	1.2. Looking Forward: Observer Nodes
	1.3. Hyperledger Indy and Indy-SDK

	2. Preliminaries to the Set Up
	2.1. Two Machines
	2.2. Validator Node Preliminary Information
	Get the IP Addresses
	Choose Port Numbers
	Choose an Alias:

	3. Setup and Configuration
	3.1. CLI Node Installation
	3.1.1. Install the CLI
	3.1.2. Add an Acceptance Mechanism
	3.1.3. Obtain the Genesis Files
	3.1.4. Generate the Steward Key
	Generate a Seed
	Run the Indy CLI and generate key

	3.2. Validator Node Installation
	3.2.1. Perform Network Test
	3.2.1.1Test the node (inter-validator) connection to your Validator
	3.2.1.2 Test the client (edge agent) connection to your Validator
	3.2.1.3 Test the connection from your node to another Validator on the BuilderNet

	3.2.2. Install the Validator Node
	3.2.3. Create the Key for the Validator Node

	3.3. Run the Technical Verification Script
	3.4. Provide Information to Trustees
	3.5. Add Node to a Pool
	3.5.1. Configuration
	Things to verify
	Make Sure Your Version Is Current
	Add Validator Node to Ledger

	3.5.2. Enable the Service

	3.6. See if the Node Is Working

	Appendix A - Moving to Another Sovrin Network
	1.0 Remove your node from your current network
	1.1 Configure the Validator for another network, such as MainNet
	1.2 Add node attributes to the MainNet ledger
	1.3 Start the indy-node Service
	1.4 Verify Operation of the Validator

	Appendix B - Configuring Your Dual-Homed (2 NIC) Node
	Initial networking steps in an AWS console
	Configure Network Interfaces in Ubuntu

