

Yashoda Technical Campus, Satara

(Approved by AICTE,Delhi/Approved by Govt of Maharastra DTE) Email: principalengg_ytc@yes.edu.in Web: www.yes.edu.in NH-4, wadhe,Satara,Tele Fax-02162-271238/39/9172220775

Faculty of Engineering

Department of Computer Science and Engineering

Subject:- Theory of Computation Tutorial Question Class-TY CSE

Tutorial No.1

Sr.	Question
No.	
1	Differentiate between the Deterministics finite autamata &
	Non-Deterministics finite autamata.
2	Design the DFA for
	Even number of a's & Even number of b's
	Odd number of a's & Even number of b's
	Even number of a's & Odd number of b's
	Odd number of a's & Odd number of b's
	Also write down 4 more examples of DFA design.
3	Construct the NFA for all language in which second last bit is 1.
	Also write down 4 more examples of NFA design.
4	Explain Mealy & Moore Machine with example.
	Solve examples to Convert Mealy machine into its equivalent Moore
	machine & Moore machine to Mealy machine.
5	Convert NFA to DFA, Convert NFA with null to NFA.
6	Write down the pumping lemma theorem with example.

Tutorial No.2

Sr.	Question	
No.		
1	Explain the Chomsky Hierarchy classification of grammars	
2	Consider the grammar given as $G = (\{S,A\}, \{a,b\}, P, S)$	
	Where production P consists of,	
	$S \rightarrow aAS \mid a$	
	$A \rightarrow SbA \mid SS \mid ba$	
	Find a) Leftmost derivation b) Rightmost derivation	
	c) Parse tree for the string "aabbaa".	
3	Eliminate NULL production from the grammar G given below:	
	$S \rightarrow a / Xb / aYa$	
	$X \rightarrow Y / \varepsilon$	
	$Y \rightarrow b/X$	
	Write the productions after elimination	

Vision of department: To lead in technical, quality education, innovation, research for development of sustainable & inclusive technology for the society.

Mission of department: 1. To create ambience of academic excellence through state of art infrastructure. 2. To create student-centric pedagogy that will lead to employability.3. To create a software engineering professional with knowledge of multidisciplinary fields, can provide innovative products & service to society. 4. To train and motivate the students for lifelong learning, employability, and entrepreneurship.

Yashoda Technical Campus, Satara

(Approved by AICTE,Delhi/Approved by Govt of Maharastra DTE) Email: principalengg_ytc@yes.edu.in Web: www.yes.edu.in NH-4, wadhe,Satara,Tele Fax-02162-271238/39/9172220775

Faculty of Engineering

Department of Computer Science and Engineering

4	Illustrate the different ways of simplification of Grammar. Eliminate Unit production from the grammar G given below: S->Aa/B B->A/bb A->a/bc/B Write the productions after elimination	
5	Consider production of grammar G=(N,T, P, S), S->S+S/S*S/a/b generate string a+a*b Compute a) Leftmost derivation b) Rightmost derivation c) Parse tree for the string " a+a*b ".	
6	Define the terms a)Leftmost derivation b) Rightmost derivation c) Parse tree d) Leftmost derivation tree e)Rightmost derivation tree f) Context free grammar g) Regular Grammar	

Tutorial No.3

Sr. No.	Question	
1	Explain the linear or regular grammar Also explain types of linear grammar	
2	Convert the following Right Linear Grammar into Left linear grammar.	
	1. $S \rightarrow bA$ $A \rightarrow aA/bB/b$ $B \rightarrow bA$	
	2. S->bB B>bC B->.aB B->b Ca	
3	Write the steps for converting LLG into RLG.	
	Convert the following Left Linear Grammar into Right linear grammar.	
	1. $S \rightarrow Aa/Bb$ $A \rightarrow Bb$ $B \rightarrow Ba/b$	
4	Explain the Chomsky's Normal form & Greibach Normal form with example	
5	Convert the CFG into Chomsky's Normal Form	
	1.S>ABA A>aA/ ε B>bB/ ε	
	2.Convert the following CFG to CNF:	
	$S \rightarrow aSa bSb a b aa bb$	
6	How to convert the CFG into Greibach Normal Form (Write steps)	
	And Convert given grammar into GNF	
	S>CA/BB B>b/SB C>b A>a	
7	Check whether the given grammar is ambiguous or not-	
	$1.S \rightarrow a / abSb / aAb$ $A \rightarrow bS / aAAb$	
	2.Show that the given grammar is ambiguous grammar.	
	$E \rightarrow E + E$	
	E→E*E	
	$E \rightarrow a$	

Vision of department: To lead in technical, quality education, innovation, research for development of sustainable & inclusive technology for the society.

Mission of department: 1. To create ambience of academic excellence through state of art infrastructure. 2. To create student-centric pedagogy that will lead to employability.3. To create a software engineering professional with knowledge of multidisciplinary fields, can provide innovative products & service to society. 4. To train and motivate the students for lifelong learning, employability, and entrepreneurship.

Yashoda Technical Campus, Satara

(Approved by AICTE,Delhi/Approved by Govt of Maharastra DTE) Email: principalengg_ytc@yes.edu.in Web: www.yes.edu.in NH-4, wadhe,Satara,Tele Fax-02162-271238/39/9172220775

Faculty of Engineering
Department of Computer Science and Engineering

Tutorial No.4

Sr. No.	Question	
1	Explain the Push Down Autamata with example & different types of Push Down Autamata.	
2	Differentiate between the Deterministic & Non-Deterministic Push Down Autamata	
3	Explain the main components of Push Down Autamata	
4	Construct the PDA for the language 1.L= a^nb^n , 2. L= a^nb^{2n} 3. L= $a^{2n}b^n$ 4. L= a^nb^m 5.WW ^R even length palindrome 6.WCW ^R odd length palindrome 7. $a^nb^mc^n$	
5	Explain the relative powers of DPDA & NPDA.	

Tutorial No.5

Sr. No.	Question	
1	Design the turing machine for	
	A) equal no of a's & b's.	
	B) $a^n b^n c^n$ or $0^n 1^n 2^n$ where n>=1	
2	Design the turing machine for which recognizes palindromes over a,b	
3	Design the turing machine for to find the one's complement of binary number.	
4	Explain the Halting problem of turing machine with neat diagram	
5	Explain the church's turing hypothesis.	
6	Explain the variants of turing machine also explain turing machine with stay	
	options.	
7	Explain the Universal Turing Machine in detail.	

Subject Teacher

Vision of department: To lead in technical, quality education, innovation, research for development of sustainable & inclusive technology for the society.

Mission of department: 1. To create ambience of academic excellence through state of art infrastructure. 2. To create student-centric pedagogy that will lead to employability.3. To create a software engineering professional with knowledge of multidisciplinary fields, can provide innovative products & service to society. 4. To train and motivate the students for lifelong learning, employability, and entrepreneurship.