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I. Abstract
Answer Set Programming is a one kind of declarative programming approach which is useful to solve
mainly NP-hard search problems. The NP-hard problem we attempted to solve was the nine by nine
Sudoku board. Unlike traditional programming approaches, we do not program a set of instructions,
but rather define the problem and the search space to search from. The set of instructions the
computer performs is handled by the clingo solver which can ground and solve search problems. As
expected, the clingo solver is able to outperform any human, including Sudoku professionals.

Throughout the development of the Sudoku problem, the concept of answer set programming was
used as it allowed for the use of a declarative programming approach. In using declarative
programming, the programmer is able to describe the problem to the computer, and the computer
solves the problem based on the programmer's description. This methodology was used in the
language AnsProlog, where the Sudoku problem was able to be modeled (instantiating a 9x9 Sudoku
board) and then defined based on the rules of Sudoku. For example, a Sudoku board cannot have
repeating values in the same row, column, and subquare. These rules that describe Sudoku, are then
explained to the computer, through the use of constraints.

The test cases shown throughout this paper, define the process of how the sudoku problem was
solved with the methodology of answer set programming and through the language of AnsProlog.
Furthermore, the process of additional Sudoku variants such as Diagonal Sudoku will also be
presented throughout the paper.

II. Introduction
The objective of this project is to solve a nine by nine Sudoku board using Answer Set Programming.
In case of unfamiliarity the ultimate objective of solving a Sudoku board is to populate the board with
values ranging from one to nine, where they do not repeat for each nine rows, nine columns and nine
subsquares. Answer Set Programming provides a different technique of solving problems where the
solution can be described as a set rather than a program or its output. In layman's terms, we won’t be
solving the Sudoku board with algorithms or programs, rather defining constraints and allowing
clingo to ground facts and generate answer sets. The main problem we tackled solving sudoku with
AnsProlog, is how to model the game and its constraints. We took the approach of creating 81 cells, a
cell defined as an object with a row, column, and value, then gave a set of constraints to govern how
the cells could relate to each other. Defining the constraint relations differently allowed us to create
different variants of Sudoku as well.

Considering the topics that are to be discussed in this report, we have found it helpful to clearly
define some vocabulary, so as to minimize confusion and maximize consistency. Throughout this
paper, we provide formal definitions to words for which it is necessary to understand. As you will see,
these definitions are concise and accompanied with examples if appropriate.
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III. Methods/Concepts
The overarching methodology we have implemented to solve Sudoku is a problem-solving process
known as Answer Set Programming. This strategy begins with a concrete understanding of the
problem and follows a set procedure to output a desired solution. As you will see in this section, the
two main tools we used to practice Answer Set Programming are AnsProlog, a declarative
programming language, and clingo, a grounding and solving process implemented as a single system.

A. Answer Set Programming
Answer Set Programming (ASP) is a form of programming that uses a declarative programming
approach; this essentially means a programmer describes what the problem is to a computer and the
computer solves the problem based on the programmer's description. This form of programming is
different from conventional programming methods (e.g. imperative programming with Java, Python,
etc.) where a program is written as explicit instructions a computer follows to solve a problem. Below
we discuss how ASP solves a problem, from start to finish.

1. The Problem Solving Process

Modeling the Problem. Just like other programming methodologies, Answer Set Programming is
problem solving. The first step is to begin with a problem. The next step is to describe this problem to
the computer. This description must be written, or encoded, so that a computer can understand it.
For ASP, this description is often called a model of the problem and is written as a logic program. A
logic program contains a description of the problem, but more importantly, it contains a description
of the solution space. Ultimately, the computer will use the problem description to create instances of
possible answers, from which it utilizes the solution space description to eliminate instances that do
not match the solution descriptions.

Solving. The actual solving is a two-step process. First, the computer grounds the logic program. The
logic program contains general descriptions of the problem; this grounding creates a single, specific
instance of the problem. Second, the computer solves that specific instance of the problem by
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verifying that there are no contradictions with the description of valid solutions. If there are
contradictions, that instance is excluded from the final set of solutions. The computer repeats the
grounding and solving step until all instances have been reviewed. Together, this process is done with
Grounder and Solver softwares.

Interpretation and Output. Finally, each solution is interpreted by the computer according to some
specifications provided by the programmer and the set of solutions is outputted. This interpretation
does not change the set of solutions, just format the output in some visual manner.

The remainder of this paper demonstrates the specific tools and techniques we used to implement
this Answer Set Programming process. Following this method, we are able to model and solve
Sudoku, as well as analyze the performance of our implementation.

B. Declarative Programming: AnsProlog
Recall that the second step of the Answer Set Programming procedure is to write a program that
accurately models the logical constraints of the problem. The implemented logic programs for this
project were written in the syntax of AnsProlog. Short for “Answer Set Programming in Logic”,
AnsProlog is a declarative programming language similar to Prolog. Before examining the encoded
logic in our final AnsProlog programs, we must first cover the general syntax of this language.

Definition 1: A Fact is something that is true (often called valid) and stands as a logical
proposition. Visually, they are denoted as lowercase and ending with a period.
EXAMPLE: Say we want to declare four people by their names. We can write the following
AnsProlog:

mary.
lucia.
eddy.
sebastian.

Facts are necessary to define the logical truth of relationships between predicates.

Definition 2: A Predicate defines the relationship between a symbol and its fields. Predicates
are denoted as such: <symbol>(<fields…>).
EXAMPLE: We can define a relationship between our aforementioned people and their
school year:

junior(mary).
freshman(lucia).
sophomore(eddy).
freshman(sebastian).
The kinds of relationships we can define with predicates are virtually limitless. Additionally,
AnsProlog allows us to set fields as variables, which are not assigned concrete values.
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Definition 3: Variables allow predicates to define relationships with unspecified fields.
EXAMPLE: As seen below, variables begin with a capital letter.

funny(Person).
tall(X).
athletic(Student.)
Variables are very useful when we create rules.

Definition 4: A Rule is used to define the logical relationships between predicates and/or facts.
Rules are denoted as <head> :- <body>.
EXAMPLE: We can write rules to create valid instances of the following predicates:

popular(X) :- funny(X), smart(X)
popular(X) :- athletic(X).
likes(X, Y) :- tall(Y), handsome(Y).

A rule is read as <body> implies <head>. One can understand the body as some condition(s)
that once satisfied, imply the head as true.

With these features, we can essentially encode any kind of logic with AnsProlog! It is important that
you understand these concepts very well, as they are required to follow the intuition of rules with
greater complexity- particularly the Choice Rule and Integrity Constraints. With these more complex
rules, we are able to provide both a description of the Sudoku puzzle and how it is played to the
computer- all within AnsProlog.

More information on AnsProlog syntax can be found in the Supplementary.

Recall that after the Solving process of ASP, we obtain Answers to generate a Solution Set. But what
are Answers and Solution Sets? Below are definitions and examples of both, explained with
AnsProlog syntax.

Definition 5: An Answer is a set of predicates that satisfy all logical constraints.
EXAMPLE: If we initialize the following predicates:

a(1). a(2). a(3).
And apply the following rule:

b(X) :- a(X), X > 1.
Then we can expect our Answer to be

Answer: a(1). a(2). a(3). b(2). b(3).

Definition 6: A Solution Set is a set of unique Answers.
EXAMPLE: If we write an AnsProlog program that instantiates a single predicate
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a(X).
so that 0 < X > 10, then we can expect our Solution Set to be

Solving…
Answer 1: a(1).
Answer 2: a(2).
. . .
Answer 9: a(9).
SATISFIABLE

C. Grounding & Solving: Clingo
Once the logic program has been written, describing what the problem is, the next step entails a
Grounder software, known as gringo, which is able to translate programs into propositional logic
programs. After this translation, CLASP, an answer set Solver software, computes the answer set of
the propositional logic program and outputs a solution. The solver that was used in this Sudoku
project was clingo, a combination of gringo and CLASP. The reader should note however, that clingo
offers more control over the grounding and solving process than gringo and CLASP can offer
individually; an example of this would be incremental grounding and solving.

D. Complex AnsProlog Rules
At this point, it is possible to generate a Sudoku board with only facts and rules. However, the facts
and rules need to be analyzed carefully to make sure the content is generated in the right
combination. Instead, the Choice Rule and Integrity Rule are usually used to generate content. The
Choice Rule is used to plan the design space while the Integrity rule is used to nullify parts of the
unwanted design space.

Definition 7: A Choice Rule is used to specify the initial design space and allows AnsProlog to
output multiple solutions. The rule allows the solver to arbitrarily choose what rules are
created. The rule can be constrained with numerical values and implication.

EXAMPLE: Consider the following AnsProlog code.

store(1..3).
item(banana). item(orange). item(cherry). item(tomato).
1 {has(S,I) : item(I)} 4 :- store(S). % Choice Rule
#show has/2.

In this example, the choice rule generates an arbitrary amount of has(..) predicates between
1-4 for each store. These has(S,I) facts can only include an item and nothing else. In short,
each store has at least one item and at most four items.
With choice rules, AnsProlog programs can produce more numerous and complex solution
sets. In this example, it outputs 3375 answers.
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Solving...
Answer: 1
has(1,tomato) has(2,tomato) has(3,tomato)
Answer: 2
has(1,tomato) has(2,tomato) has(3,cherry)
...
Answer: 3373
has(1,banana) has(1,orange) has(1,cherry) has(2,banana) has(2,orange)
has(2,cherry) has(2,tomato) has(3,banana) has(3,orange) has(3,cherry)
has(3,tomato)
Answer: 3374
has(1,banana) has(1,orange) has(1,cherry) has(1,tomato) has(2,banana)
has(2,orange) has(2,tomato) has(3,banana) has(3,orange) has(3,cherry)
has(3,tomato)
Answer: 3375
has(1,banana) has(1,orange) has(1,cherry) has(1,tomato) has(2,banana)
has(2,orange) has(2,cherry) has(2,tomato) has(3,banana) has(3,orange)
has(3,cherry) has(3,tomato)
SATISFIABLE

A deeper explanation of Choice Rules can be found in the Supplementary.

Definition 8: An Integrity Constraint or Integrity Rule is a rule that outlines illegal conditions
and removes them from the design space; denoted as “headless” rules. If the conditions of an
Integrity Constraint are satisfied, the Answer containing the illegal conditions is removed
from the Solution Set.
EXAMPLE: Considering the following AnsProlog code,

p(1..2).
q(1..2).
{s(P,Q): q(Q)} = 1 :- p(P).
#show s/2.

We can expect our Solution Set to be

Solving...
Answer 1: s(1,1) s(1,2)
Answer 2: s(1,1) s(2,1)
Answer 3: s(1,2) s(2,1)
Answer 4: s(1,1) s(2,2)
SATISFIABLE

Say that we wanted to exclude some of these Answers from our Solution Set. Imagine we
consider all Answers that contain s(X,X) illegal, or nonvalid. There are many ways we could
enforce this constraint, but one way is to subtract the two fields of the s(..) predicate and
compare the difference to zero. If the difference is zero, we know that the entire Answer that
contains the invalid s(X,X) predicate is invalid and is to be excluded from our Solution Set.
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Integrity Constraints are how we enforce these kinds of exclusions. Below is an example of a
rule that excludes all Answers with a s(X,X) predicate.

p(1..2).
q(1..2).
{s(P,Q): q(Q)} = 1 :- p(P).
:- s(P,Q), P-Q== 0. % Integrity Constraint
#show s/2.

The rule can be read as, “If there is some predicate s(..) with fields P and Q, and P - Q = 0, that
implies FALSE, or invalid.”
Applying this constraint, we can expect our Solution Set to be

Solving...
Answer: 1 s(1,3) s(2,1)
SATISFIABLE

If there is still confusion on the process of ASP, how clingo works, or the function of complex
AnsProlog rules, we encourage the reader to revisit those sections and any related section within the
Supplementary.

8



IV. Experiments
Although there are many variations of the Sudoku puzzle, most adhere to a theme of unique number
combinations, which are enforced as constraints on possible solutions (and therefore on the solver or
player). Classical Sudoku has the least amount of constraints that must be obeyed and is perhaps
then the simplest to solve. Logically then, although complex Sudoku game types may share
constraints with simpler game types, they will surely have new constraints that increase difficulty by
decreasing the number of possible solutions. In this section, we explore the multiple Sudoku
variations for which logical constraints were defined and encoded. The encoding of these constraints
are completed in the syntax of AnsProlog.

A. Universal Sudoku Constraints
There are three constraints that are universal to all Sudoku puzzles. The first two are that a Sudoku
puzzle has nine columns and nine rows. This implies then that there are eighty-one spaces on any and
all Sudoku boards. The third constraint is that each space on this board holds one character, out of
nine possible options. By an overwhelming majority, these nine characters are often the integers 1
through 9; therefore, all Sudoku game types we encode in this project solve with these values.

To encode these constraints and model our Sudoku board in AnsProlog, we begin with declaring the
constant n.

#const n = 9.

Next, we use three primitive facts to encode the nine rows, columns, and values:

row(1..n).
col(1..n).
num(1..n).

As explained in Supplementary, we can interpret these statements as instantiating the following
predicates:

row(1). row(2). row(3). row(4). row(5). row(6). row(7). row(8). row(9).
col(1). col(2). col(3). col(4). col(5). col(6). col(7). col(8). col(9).
num(1). num(2). num(3). num(4). num(5). num(6). num(7). num(8). num(9).
These universal constraints are necessary to encode as they are used to describe our eighty-one spaces
on the Sudoku board. As you will see in the next section, we will use a valid row(R), col(C), and
num(V) to create an instance of the predicate sudoku(R,C,V), which represents one space on the
Sudoku board with a valid row, column, and number.
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B. Classical Sudoku
We modelled the rules and logic of a Classical Sudoku puzzle in multiple steps. First, we populated a
very large number of boards to create a collection of all possible Sudoku boards. Next, we enforced
unique rows, unique columns, and unique subsquares, meaning any boards from our collection that
did not adhere to our constraints were removed from our collection to leave us with a final Solution
Set of boards that satisfied all the rules of Classical Sudoku.

1. Populating the Board
To populate the board with possible candidates we implement a Choice Rule, seen below.

{sudoku(R,C,V): num(V)} == 1 :- row(R), col(C).

This rule defines the candidates as “sudokus” which all have three values: a row, a column, and a
number. This rule reads as follows, “for a given row R and a given column C, create a predicate called
sudoku that has three properties, a row, a column and a number. Set the values of that predicate row
and column to R and C respectively, then assign one value to the number predicate.” It is important
to identify the number 1 in this choice rule. This ensures that each position from (1, 1) to (9, 9) has
one and only one value. After execution, this choice rule generates a VLN (very large number) of
answer sets with 81 sudoku(..) predicates each. The following rules operate on this very large solution
set and begin to prune out answer sets with predicates that conflict with the rules of the classical
sudoku game.

2. Unique Rows

:- sudoku(R,C,V), sudoku(R',C,V), R != R'.

In this constraint, we have four different variables, we have R (represents a row value), C (a column
value), V(a number value) and R’(a row value that cannot be the same as R). So, in further
understanding this constraint: “if we have a valid instance of sudoku(R, C, V), where we have a value
from one to nine for R, C and V (it does not matter if the values repeat), then we move on to the next
part of the constraint. Now, if we have a valid instance of sudoku(R’, C, V) where the values of C, V
and R’ fall within the range of one through nine, then we will move onto the next part. Finally, we
will then check if R and R’ (most important part), are values that are not equal in value, if they are
not equal, then the whole constraint is true, meaning that it will not be included into the final
Sudoku solution”. In essence, what this translates to is that if there is a situation where a value is in
two different rows, but that value is shared in the same column, then it does not satisfy the rules of
Sudoku, so we do not include it into our final solution.
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3. Unique Columns
Likewise, there is also another constraint used to get rid of repeating numbers in each column of the
Sudoku board. The constraint used for this operation is

:- sudoku(R,C,V), sudoku(R,C',V), C != C' .

The variables used in this constraint are R (represents a row value), C (a column value), V (a number
value) and C’(another column value). The way this reads is very similar to the previous constraint
mentioned: “if we have a valid instance of Sudoku, where we have a value from one to nine for R,C
and V, then we move on. Now, we will be checking if we have a valid instance of Sudoku where the
values for R, C’ and V are from one to nine; if this holds true, then we will continue and verify that C
is not equal to C’. If C and C’ are not equal in value, then the whole constraint is valid meaning it will
not be included into the solution.” Take for example a situation where the values for R, V and C are
the same for both instances of Sudoku; the only difference is C and C’. This means that there are two
numbers (V) that are the same that are in the same row (R), but different columns(C and C’). So we
have the same value repeating twice, in a row; this breaks the rule of Sudoku, therefore it is not
included in the solution.

4. Unique Subsquares
There is one more final step in solving Sudoku: the board must not contain repeating values in each
subsquare. There are a couple of constraints that have to be implemented to solve this task; first we
must declare the constant g, which is equal to and represents the width/height of subsquares.𝑛

#const g = 3.

Next, we use a rule to instantiate 81 instances of the group(..) predicate. We know there will be exactly
81, because that is the number of unique combinations of row and column. Given a position, we are
able to use some simple algebra to calculate which subsquare, or group, that position falls into.

group(R,C,G) :- row(R), col(C),
D = n / g,
X = (R - 1) / D,
Y = (C - 1) / D,
G = (Y *g) + X + 1.

Below is a diagram to display the function of this rule.
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After this rule to create 81 group(..) predicates, we utilize an Integrity Constraint to enforce unique
subsquares. Here is the Integrity Constraint we used:

:- sudoku(R,C,V), sudoku(R',C',V), group(R,C,G), group(R’,C’,G), (R,C) != (R’,C').

The unique subsquares rule can be understood as violated when 3 conditions are met: first, we must
have two spaces on our board with the same value, or number; second, we must have two group(..)
predicates, with the rows and columns of the two spaces, that share the same G; finally, if these two
spaces are unique from each other, we can verify the Answer they are in breaks the rule of unique
subsquares. If any two sudoku(..) predicates in an Answer satisfy the conditions of this Integrity
Constraint, that Answer is removed from the Solution Set.

The reader should note that the second condition to be met, that mentions group(R,C,G) and
group(R’,C’,G), does not instantiate any new predicates. Rather, that part references a predefined
group(..) predicate. If the first predicate exists (which it always will) it assigns a value to the variable
G. If the next predicate does not exist, because it exists in a different group, therefore has a different
G value, the condition is not met and so the rule is ignored and the Answer in the Solution Set.

C. Diagonal Sudoku
The logical constraints that encode the rules of Classic Sudoku are shared by Diagonal Sudoku: we
use a Choice Rule to instantiate eighty-one instances of the sudoku(R,C,V) predicate and three
Integrity Constraints to enforce unique rows, columns, and sub-squares. The additional constraints of
Diagonal Sudoku are that both main diagonals of the board must also be unique; the values 1 through
9 must each have exactly one occurrence for both main diagonals. Similar to before, we utilize two
Integrity Constraints to remove Answers from our Solution Set that do not adhere to unique main
diagonals.
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1. Unique A-Diagonal
To provide a clear definition: the A-diagonal is the collection of spaces on our board reaching from
the top left corner to the bottom right corner. Here is the Integrity Constraint we use to enforce a
unique A-diagonal:

:- sudoku(R,R,V), sudoku(C,C,V), R != C.

Understanding the intuition behind this constraint is quite simple. First, draw out a Sudoku puzzle
and label rows and columns. Now clearly identify the A-diagonal, do you notice any relationship
shared among all spaces in the A-diagonal? Hopefully it is clear that for each of these spaces, its row
is equal to its column.

So how do we construct an Integrity Constraint that removes Answers with a non-unique A-diagonal
from our Solution Set? We can understand this violation as occurring when three conditions are met:
first, we must have one space on our board in the A-diagonal with the number V; second, we need
another another space in the A-diagonal with the same number V; lastly, if these two spaces are at
different positions, we can verify the Answer they are in breaks the constraint of a unique A-diagonal.
If any two sudoku(..) predicates in an Answer satisfy the conditions of this Integrity Constraint, that
Answer is removed from the Solution Set.

2. Unique B-Diagonal
To provide a clear definition: the B-diagonal is the collection of spaces on our board reaching from
the bottom left corner to the top right corner. Here is the Integrity Constraint we use to enforce a
unique B-diagonal:

:- sudoku(R,C,V), sudoku(R',C',V), R+C == n+1, R'+C' == n+1, (R,C) != (R',C').
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Understanding the intuition behind this constraint is a bit more difficult First, draw out a Sudoku
puzzle and label rows and columns. Now clearly identify the B-diagonal, do you notice any
relationship shared among all spaces in the B-diagonal? If you label each space as the sum of its row
and column, you will see that all spaces in the B-diagonal share the same value, equal to n+1.

So how do we construct an Integrity Constraint that removes Answers with a non-unique B-diagonal
from our Solution Set? Similar to before, we can understand this violation as occurring when three
conditions are met: first, we must have two spaces on our board with the number V; second, we need
confirm that both of these spaces occur on the B-diagonal, done with a simple comparison; lastly, if
these two spaces are at different positions, we can verify the Answer they are in breaks the constraint
of a unique B-diagonal. If any two sudoku(..) predicates in an Answer satisfy the conditions of this
Integrity Constraint, that Answer is removed from the Solution Set.

D. Reflection on Solution Methods
The reader should keep in mind that the above rules demonstrate our final methods of encoding
Sudoku. For example, our first attempted Choice Rule was the following:

{sudoku(R,C,V): row(R), col(C), num(V)} == 81 :- row(R), col(C).

Hopefully it is obvious that this rule and similar variations of it failed miserably.

Truthfully, the most complex task of this encoding process was understanding the particular features
of AnsProlog and the general procedure of Answer Set Programming. Once a solid grasp on these two
was achieved, the next challenge was attempting encoding through trial and error. Once the encoding
produced valid solutions, it was in our interest to remove redundant constraints and format our
program to maximize readability. The intuition of our final logic program, executed with the Choice
Rule and Integrity Constraints, proves more than satisfiable. As you will see in the next section, our
program successfully outputs valid solutions to multiple Sudoku puzzle-types.

14



V. Results
To visualize the results of these experiments with Classical and Diagonal Sudoku, we authored
Python programs to parse the Solutions Set as a text file and organize Answers so as to visualize each
as an individual board solution. These Python programs were then executed on a Jupyter Notebook
for ease of use. The example demonstrated below assumes the Jupyter notebook cell was run.

A. Classical Sudoku
The classic Sudoku rules as previously mentioned:

1. All rows and columns must have unique values ranging from one to nine.
2. Each three by three subsquare (nine in total) need to have unique values as well.

▶ Run [1]

# Set Example
!python ./tools/sudoku_problem_viz.py "./Sudoku Game Types/Classic
Sudoku/classic-sudoku-problem.lp"

A pre-made Sudoku board is going to be solved by the clingo answer set solver. There is an example
of a generated Sudoku board solution on the attached Jupyter notebook. In this example, the Jupyter
notebook cell outputs a visual of the Sudoku problem at hand.

▶ Run [2]

# Run Solver
!clingo "./Sudoku Game Types/Classic Sudoku/classic-sudoku-problem.lp" "./Sudoku Game
Types/Classic Sudoku/classic-sudoku.lp" -n 0 > "./Sudoku Game Types/Classic
Sudoku/classic-solution.txt"
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The clingo solver is called to find all of the solutions to the Sudoku board. In this case, only one
solution was found and the values in the Sudoku board are outputted.

▶ Run [3]

# Visualize Solution
!python ./tools/sudoku_solution_viz.py "./Sudoku Game Types/Classic
Sudoku/classic-solution.txt"

The values from the outputted solution are parsed through the Python visualizer. Since there is only
one solution, only one board is seen. It can be seen that the classical Sudoku rules are followed. On
the first row and column, there are only unique values ranging from one to nine.

B. Diagonal Sudoku
In addition to the classic Sudoku rules, Diagonal Sudoku has one additional rule.

1. The two main diagonals must have unique values from one to nine.

▶ Run [1]

# For seed
!echo %RANDOM%
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▶ Run [2]

# Generate a problem and display example
!clingo -n 1 --rand-freq=1 --seed=18248 "./Sudoku Game Types/Diagonal
Sudoku/diagonal-sudoku.lp" > "./generated/diagonal_board_gen.txt"
# Display Full Board
!python ./tools/sudoku_solution_viz.py "./generated/diagonal_board_gen.txt"

For this section, we will generate a random example problem and solve it with the clingo answer set
solver. First, we will generate a complete, valid board before we remove parts of the board.

▶ Run [3]

# 70% to remove an entry
!python ./tools/sudoku_remove.py "./generated/diagonal_board_gen.txt" 0.7
"./generated/diagonal_problem_gen.lp"
# Display Problem
!python ./tools/sudoku_problem_viz.py "./generated/diagonal_problem_gen.lp"

The Python script file is called to remove parts of the board to “generate” a Sudoku puzzle. Now, we
will call the clingo answer set solver to find a solution.

▶ Run [4]

# Run solver
!clingo "./generated/diagonal_problem_gen.lp" "./Sudoku Game Types/Diagonal
Sudoku/diagonal-sudoku.lp" -n 1 > "./generated/diagonal_solution_gen.txt"
# Visualize Solution
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!python ./tools/sudoku_solution_viz.py "./generated/diagonal_solution_gen.txt"

The clingo answer set solver is called to find a single solution. Notice that the solution presented here
is different from the generated board we had. There may be multiple answers to the problem if
entries are randomly removed.

C. Performance Analysis & Extended Results
Wsudoku.com is a public site where users can play classical Sudoku from a database of partially-filled
boards. Registered users may record their time into a leaderboard, where the quickest player’s time is
displayed; first place times are always verified as valid. Because the puzzles and fastest times are
public, we are able to compare them against the performance of our implemented ASP Sudoku
solver. Below is a diagram of performance times for the ASP solver versus the best human time,
playing puzzles of various difficulties. As expected, the ASP method had a much greater performance
time, averaging at around 1/20th of a second for the 9x9 board.

Despite these results, we were not so impressed with a 9x9 board. How would the ASP method
perform with a board fifteen times that size? Solving a 36x36 board, of nearly three thousand spaces,
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took 157.4 seconds- just over 2 ½ minutes. Below is a condensed version of the output, as the entire
solution takes six and a half pages.

Solving...
Answer: 1
sudoku(5,6,3) sudoku(2,3,4) sudoku(3,4,6) sudoku(6,4,7)...
…
… sudoku(34,31,32) sudoku(35,31,3) sudoku(36,31,15)
SATISFIABLE

Models : 1+
Calls : 1
Time : 157.400s (Solving: 145.15s 1st Model: 145.14s Unsat: 0.00s)
% 157.4 seconds is 2.62minutes

CPU Time : 152.219s

Dividing 157.4 by 0.05 (roughly the average ASP time), one may mistakenly conclude that in the time
it took the ASP method to solve the single 36x36 puzzle, it could have solved 3,148 of the 9x9 puzzles.
However, note that solving a 36x36 puzzle is not equivalent to solving a 9x9 puzzle sixteen times.
Rather, the complexity of any Sudoku puzzles increases exponentially with size, not linearly. In this
light, the solving times of our implemented ASP method are quite impressive, especially compared to
human performance.

For more information on the specific puzzles referenced in this section, visit the Performance Analysis directory
in the GitHub repository.
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VI. Future Work
A. GUI Visualization

To visualize the output, we use a Python script file to output a sudoku board line by line on the CLI
from an input text file. There are obvious flaws to this approach. For one, it is quite difficult to
customize the Sudoku board to be targeted for variant problems. It is also difficult to make it more
aesthetically pleasing. In addition, there are no additional lines added to separate the nine subsquares
on the sudoku board.

To solve this, we can use the PyGame library or other graphic libraries to have a more pleasing
sudoku board. There are many tutorials on YouTube that discuss easy steps to make a game board
including a Sudoku board. Below is what we would have imagined how our Sudoku GUI would look
like.

Thanks to Tech with Tim from YouTube for the graphic.

B. Other Sudoku Variants
As you may know or not know, there are many other variations of the Sudoku rules. There are many
variants we have attempted. One of the incomplete variants that was worked on was the Even/Odd
Diagonal.

Even Diagonal

In addition to the Classical Sudoku rules, this variant has one additional rule. The values inside the
blue outline must contain even/odd values.
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However, we had issues implementing a constraint that can only allow even numbers. In addition, it
was difficult to tell the solver where the blue outline is located at. We could not find/author a formula
that can be done to place the blue outline.

Below is the work we have done on the blue outline problem.
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C. Combinational Games: Rubik’s Cube
In addition to solving a sudoku puzzle, Answer set programming can most likely be used to solve at
least a normal three by three Rubik’s Cube. The challenge for solving Rubik’s Cubes would be
abstracting the idea of steps to solve a solution. The steps would need to be in order because you
would find a different outcome if you did the steps in a different order.

To implement steps, the #include <incmode> to reflect new changes on the Rubik’s Cube. The
include statement contains a time component and performs one of the available actions until a
solution is found or a maximum of steps has been succeeded. Each predicate that would perform a
step would require the new time component.

Here’s a bare program of how it would look like:

#include <incmode>
#const imax = 50. # maximum # of steps

#program base.
% initialize rubix cube

#program step(t).
% predicates that require steps. t is the time (step number) variable
rotate(..., ..., t).

#program check(t).
# query is true as long as steps < imax
# goal(t) is found, then don’t throw the answer set
:- query(t), not goal(t).
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VII. Conclusion
The main objective of this project was to use Answer Set programming to solve a 9x9 sudoku board.
Throughout the entire process of problem solving, we found out there was always more to learn. It all
began with learning the fundamentals of Answer Set programming; this meant understanding the
motivation in using Answer Set Programming (ASP), the use of ASP in practice, the semantics and
syntax of ASP, the language of AnsProlog, the understanding of concepts through logical reasoning in
Answer Set Programming and the process of how a problem is solved.

The diagram below reviews the Answer Set Programming process.

Learning to apply new concepts such as modeling problems, understanding choice rules and
formulating constraints, was significantly difficult as it was entirely new to the group. These skills,
however were first put into practice, through Potassco which is an organization that focuses on
providings bundles of tools for the purpose of Answer Set Programming. In learning the
fundamentals of Answer Set Programming at a high level, the first implementation was not actually
sudoku. Resources provided by Potassco allowed us to learn and apply the concepts of Answer Set
Programming, modeling problems, creating choice rules, and creating constraints, through an
N-Queens problem that Potassco provided. Utilizing the concepts provided in the N-Queens problem,
helped set a foundation and helped prepare to approach solving a 9x9 sudoku board.

As learned through Potassco, when initializing a problem it must first be modeled. Similarly to the
N-Queens example we had to populate the board. This was done by using a Choice Rule that allowed
in representing a 9x9 sudoku board populated with values from 1-9. Once having 81 spaces of sudoku
populated, we then had to create constraints in regard to the rules of sudoku; meaning rules were
created to not allow repeating values for rows, columns, and subsquares.

Throughout the process of creating choice rules and constraints, there was difficulty in understanding
how to create them; this was due to not knowing how to logically formulate and visualize constraints
that can be written in AnsProlog. Not knowing how to approach the sudoku problem and define that
values should not repeat in the same column, row, and subsquare. However, with practice and
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familiarizing ourselves with the implementation of formulating constraints and understanding of its
logical reasoning, constraints were able to be established which prevented repeating values from
showing in the same columns, rows, subsquares, and main diagonals of any of the sudoku board
variants.
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VIII. Supplementary
A. Other AnsProlog Syntax

1. Using <predicate>(<#>..<#>)
The two periods are an AnsProlog shorthand that allow you to assign multiple numerical fields to a
single predicate in a clean form. The statement

integer(1..10).

is equivalent to the following fact declarations:

integer(1). integer(2). integer(3). integer(4). integer(5). integer(6). integer(7). integer(8).
integer(9). integer(10).

2. Comments
Comments are denoted with the % symbol and are ignored during the solving process.

integer(1..10).
even(X) :- integer(X), X/2 == 0. %Only even X’s will create even(..) predicates

3. Constants
Constants are denoted by #const <name> = <value>. The reader should note that they may be set in
the command line calling Clingo, but will always default to the value assigned in the program.

#const min = 1.
#const max = 99.
integer(min..max).

4. Using #show
The statement #show <predicate>/<number of fields> is used to configure our output. It in no way
affects the solving process- it only specifies which predicates to output in each Answer.

integer(1..10). sophomore(alexis). married(chris, jason). family(max, ann, diego).
#showmarried/2.
#show integer/1.

For this example, the output should only contain predicates of married and integer.

Solving...
Answer: 1
integer(1) integer(2) integer(3) integer(4) integer(5) integer(6) integer(7) integer(8)
integer(9) integer(10) married(chris,jason)
SATISFIABLE

Notice that the family predicate or the sophomore predicate do not appear.
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B. More on Choice Rules
To demonstrate the Choice Rule more clearly, we will use a simple example of colored marbles in a
bag. This bag can hold any number of marbles in any combination; one green, a red and a green, a red
and a blue, etc. To list all combinations of marbles in this bag mathematicians would normally use the
nCr equation. nCr is defined as a selection of items from a collection, such that the order of selection
does not matter, where the result is a combination of n objects taken r at a time

For our bag example, given 4 colored marbles, if we only take one marble, we would have 4 ways of
representing our bag i.e. 4C1.

If we increase the amount we take, to two marbles, we would have 6 combinations i.e. 4C2.

The choice rule models this equation and also allows us to define bounds for r.

So with the power of the choice rule we can solve for all possible combinations of marbles in the bag
given n marbles and taking r amount. Note in this equation the lower bound is 1, but the lower bound
can be set to any positive integer greater than 1 as well. To define all combinations for a single r value,
both bounds are the same.
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For our example we can see that if we add the totals of 4C1 and 4C2 we get 10, which matches our
equation.
Now that we have a background for the inner workings of the choice rule, we will model the equation
with real code. We will first start with defining our set of colors, and creating marbles of each color.

color(red).
color(blue).
color(green).
color(yellow).

marble(C) :- color(C). %Read as, for every color C, there exists a marble of that same color.

We can see a sample output of our environment thus far.

Solving...
Answer: 1
color(red) color(blue) color(green) color(yellow) marble(red) marble(blue) marble(green)
marble(yellow)
SATISFIABLE

Now, using the Choice Rule, we can describe all possible combinations of marbles that can be in a
bag. For our bag predicate, we define an owner of the bag, and the marble it contains. Every answer

set will then have a set of bags with all colored marbles in that bag. This output shows
1

2

∑ 4𝐶𝑟

owner(alec).

1{ bag(O, M): marble(M) }2:- owner(O).

#show bag/2.

Solving...
Answer: 1
bag(alec,yellow)
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Answer: 2
bag(alec,green)
Answer: 3
bag(alec,green) bag(alec,yellow)
Answer: 4
bag(alec,blue)
Answer: 5
bag(alec,blue) bag(alec,yellow)
Answer: 6
bag(alec,blue) bag(alec,green)
Answer: 7
bag(alec,red)
Answer: 8
bag(alec,red) bag(alec,green)
Answer: 9
bag(alec,red) bag(alec,yellow)
Answer: 10
bag(alec,red) bag(alec,blue)
SATISFIABLE
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