

Cyber Security Education
Design Document

By Liana Villafuerte, Bruce Wagner, Kyle Stead, and

Hussein Okasha

Features and Testing inputs and outputs

Features Expected Input/In
Game Test

Expected Output Actual Output

Movement Inputting WASD and
spacebar keys

W/up arrow moves
up
A/left arrow moves
left
S/down arrow moves
down
D/right arrow moves
right
Spacebar jumps
P pulls up pause
menu
Esc quits game

W/up arrow moves
up
A/left arrow moves
left
S/down arrow moves
down
D/right arrow moves
right
Spacebar jumps
P pulls up pause
menu
Esc quits game

Interaction controls Shooting bullets with
left mouse input

Left mouse click
shoots bullets

Left mouse click
shoots bullets

Map generating A clear map
generated with clear
goals and what to do

Usable map with a
path

Usable map with
scrolling feature
when falling with
limited y-axis
restraints

Turret generating Turrets should be
generated in certain
parts of the map
according to its
generation

Turret in correct
positions

Turret in correct
positions

Turret projectiles Turrets aim and shoot
at player, causing
them to die if hit

Aims and shoots at
player and inflicts
damage

Aims and shoots at
player and inflicts
damage

 Damage inflicting
and receiving

Bullet at enemy
causes their death and
vice versa for player

Any bullet causes
death

Turret bullet causes
player death and
player bullet causes
turret and core death

Features Expected Input/In
Game Test

Expected Output Actual Output

Death reset Everytime the player
is hit by a bullet and
dies, the player is
forced to restart at
spawn point as if
from the beginning.
Player also loses any
level progress with
cores destroyed.

Player gets reset to
the very beginning at
spawn point with 0
cores acquired upon
death and turrets
being respawned.

Player gets reset to
the beginning spawn
point with 0 cores
acquired and turrets
being respawned

Progression of levels Everytime the player
destroys all the cores
in the level and
supasses the
vulnerability, the
player then proceeds
to the next level in
the list of levels

Upon level
completion, the game
loads the map for the
next level as well as
the core positions and
turret locations. It
also generates the
user’s position at
spawnpoint.

Player progresses to
the next level with
new cores, tiles,
turrets, and spawn
point locations.

Time score User’s time per level
is stored into a
database and the
overall time for all
the levels is stored at
the very end.

Player’s time scores
are stored in a
database for storage
and later use within
the game

Game stores the
results in the
scores.db file that is
an sqlite3 database
file with the user’s
input name and total
time.

SQL injection
vulnerability

The player is
expected to input a
certain string into the
name input so as to
overwrite the real
time with a fake time

The game takes the
fake time inserted by
the player and adds it
to the database and
ignores the actual
input time. Allowing
the user to pass the
first level.

The game takes the
exploited time
inserted by the player
and adds it to the
database and ignores
the actual input time.

Cryptography (caesar
cipher)

The player is
expected to type in a
caesar cipher string
into the name so that
they can essentially
be invisible to the
turrets

The game accepts the
input and enables
invisibility so that the
player can bypass the
level with ease and
no issues from
turrets.

The player becomes
invisible so that the
player can bypass the
level with no issues
from turrets.

Features Expected Input/In
Game Test

Expected Output Actual Output

Reverse Engineering The player is
expected to either
look at the
Aeroblaster.py code,
and find all the
#TODO comments,
or to read the
bytecode found in the
zipped dist folder if
they’d like a more
challenging
experience

The player is able to
read the code and the
generated .pyc files to
find the exploits in
the game.

The player is able to
read the code and the
generated .pyc files to
find the exploits in
the game.

Directory Traversal The player is
expected to type into
the level select input
a level from a
different directory so
as to show they can
redirect the output to
be a different map
than the one it’s
supposed to be.

The player would be
able to find the cheat
“x” map, and force
the game to open that
file from the level
select input in the
main menu.

The player finds the
cheat command and
puts it into the input
level text field,
allowing the user to
access the x level.

Break Access Control The player is
expected to do some
research on how to
Break Access into a
zip folder by brute
forcing the password.
This is considered
break access due to
how the player isn’t
supposed to be able
to get into the folder
in the first place

The player is able to
open the zip folder
and is able to view its
contents with ease.

The player is able to
open the zip folder
and is able to view its
contents.

Features Expected Input/In
Game Test

Expected Output Actual Output

Main Menu The player is
expected to interact
with this screen so as
to enact the different
vulnerabilities or to
start the game
normally.

Player is able to
understand the
buttons and input
fields with ease.

Players can input
their names and
wanted levels, as well
as starting the game.

Controls Screen The player is
expected to interact
with this screen so as
to find out the
controls of the game.

Players can
understand the
controls of the game
and proceed normally
through the game.

Players can function
properly in the game
and maneuver the
map

Pause Screen The player is
expected to interact
with this screen so
they can either restart
the level, go back to
the main menu, quit
the game, or resume
the level.

Players can press the
letter “p” on the
keyboard which will
pause the game and
allow the user to
resume the level,
restart, go back to the
main menu or view
the controls.

Pressing the “p” on
the keyboard will
allow the player to
pause the game and
either restart, resume,
or change the level.

Name input The player is
expected to interact
with the bar to input
their name or to
exploit it for either
the SQL injection or
the cryptography
cipher.

User is able to input
his/her name in the
input field in the
main menu, and the
name is later stored
into the score
database.

Users can input their
names into the proper
text field and it gets
stored into the
database.

Level input The player is
expected to interact
with the bar to input
the level they want to
jump to or use it to
exploit it for the
directory traversal.

The player is able to
select which level
they would like to
play, and thus is able
to pick which
vulnerability they’d
like to do.

Player can select the
level they’d like to do
based on which
vulnerability they'd
like to complete

Features Expected Input/In
Game Test

Expected Output Actual Output

Start and End Buttons The player is
expected to interact
with the buttons to
either start the game
to use it to quit and
exit it.

The player is able to
begin the game with
the level they input
into the level select
text field, and then
whenever the player
would like to end the
game they click on
the End the game to
close it.

The player is able to
either start or end the
game either by
clicking the start
button, which begins
level 1, or end the
game by using
escape.

	
	
	Cyber Security Education
	Design Document
	
	By Liana Villafuerte, Bruce Wagner, Kyle Stead, and Hussein Okasha

