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Abstract—A system capable of automating the process of 
transcribing flute performances into a music score that is available to 
music composers, students, and hobbyists to utilize on a web 
application. The web application takes in a recorded flute signal and 
invokes  a backend pipeline that filters and segments the signal by 
note (using Fast Fourier Transforms, Short Time Energy, and RMS), 
performs audio and pitch detection (with frequency mapping and note 
onset/offset detection), encodes this information into a MIDI file, and 
converts the MIDI file to sheet music. 

Index Terms—Butterworth Filtering, Fast Fourier Transform, 
Generative AI, Harmonic peak detection, MIDI conversion, 
Music Information Retrieval (MIR), Short-Time Energy, 
Spectral analysis 

I.​ INTRODUCTION 

   Music transcription is a crucial tool for musicians who want 
to document their compositions, analyze performances, or 
share their work with others. However, manual transcription 
can be time-consuming and requires significant expertise. Our 
capstone project aims to bridge this gap by developing a 
software-based music composition system that transcribes 
flute performances into sheet music in real time. 
   This system is designed to help musicians capture their 
improvisations, rehearsals, and live performances without the 
need for manual transcription. The core of our implementation 
is a signal processing pipeline that analyzes flute audio, 
extracting pitch and rhythm based on a user-defined BPM. The 
processed data is then converted into digital sheet music, 
providing an intuitive and accessible way for musicians to 
view their transcriptions. 
   To ensure high transcription accuracy, our approach will 
focus on precise frequency and pitch analysis of the flute 
signal. The system will be packaged as a web application, 
offering a user-friendly interface where musicians can play 
their flute and instantly see the generated notation. This 
software-based approach also provides flexibility, allowing us 
to experiment with different signal processing techniques to 
refine accuracy. 
   As a stretch goal, we plan to incorporate a generative AI 
feature that suggests potential next notes to assist composers 
in expanding their musical ideas. This feature would help 
musicians develop compositions interactively, making our tool 
not just a transcription system, but also a creative aid for 
music composition. 

  With this project, we hope to create a powerful and 
accessible tool that enhances the way musicians engage with 
their music, whether for practice, composition, or performance 
analysis. 

II.​ USE-CASE REQUIREMENTS 

Write on Cue should be a seamless and intuitive experience 
where musicians, students, and educators can find the 
transcription process effortless and reliable. To achieve this, it 
must consistently and accurately transcribe flute performances 
into sheet music with minimal effort from the user. Given that 
manual transcription is time-consuming and requires 
specialized skills, it must provide an accessible and efficient 
alternative by ensuring high accuracy, low latency, and 
adaptability across various musical styles and environments. 

A.​ Accuracy 
This application should accurately determine the rhythm 

and pitch of notes played, using an inputted BPM and time 
signature, with at least 95% accuracy under standard playing 
conditions.  

The system’s accuracy will be tested under various 
conditions, including different flute types, articulation styles, 
and background noise levels that simulate environments 
flutists play in. Testing will take place in both controlled lab 
environments and real-world settings. To enhance accuracy, 
we are collaborating with three flutists and faculty from the 
School of Music, including Professor Dueck and Professor 
Almarza, to gather real-world flute recordings and expert 
feedback on our system performance. 

The system must handle variations in recording quality, 
instrument tone, and playing techniques while maintaining 
accuracy. It should also be adaptable to different music genres, 
ensuring broad applicability across user needs. 

B.​ Latency 
For an efficient user experience, the system must generate 

the first transcribed note within 3 seconds of receiving the 
audio input. This ensures minimal delay in feedback, allowing 
users to interact with the transcription in near real-time. 

C.​ Output Format 
The application must generate a digital music file (MIDI) 

based on the transcribed notes and then convert the MIDI data 
into a readable music score within the web application using 
MuseScore. This dual-format output ensures compatibility 
with a range of music editing and notation tools. 

D.​ Public Health, Safety, and Welfare Considerations 
Our flute transcription system enhances public health by 

supporting creative expression through music learning. With 
an attachable microphone and a software-only pipeline, it is 
affordable and safe to use. Our system also promotes welfare 
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by lowering barriers to music production, as it can be made 
accessible online for musicians, students, and educators to use. 

E.​ Global, Cultural, Social, Environmental, and 
Economic Factors 

Write on Cue aims to make music transcription more 
accessible to diverse musical communities, including amateur 
musicians, educators, composers, and students from various 
cultural and social backgrounds. This benefits people who 
may not have the technical skills or resources to manually 
transcribe music and allows individuals to better engage with 
music across a variety of cultural contexts. For example, in 
communities where formal music education is less accessible, 
our project can provide a more equitable way for musicians to 
preserve and share traditional flute music, irrespective of 
whether they are classically trained. Additionally, socially, this 
allows musicians from different backgrounds to contribute 
their musical expressions and allows for easier preservation of 
musical heritage. 

By streamlining the transcription process, our project 
reduces the dependency on costly manual transcription 
services, which lowers the overall cost of producing sheet 
music. Also, we are designing our project on a web app, which 
maximizes accessibility and encourages a cheaper and more 
widespread music education. By offering an affordable or free 
version, the application ensures inclusivity, supporting 
musicians across various economic backgrounds. 

 
By meeting these requirements, Write on Cue will serve as a 

powerful transcription tool that enhances the workflow of 
musicians, students, and educators while considering broader 
social, cultural, and environmental impacts. 

III.​ ARCHITECTURE AND PRINCIPLE OF OPERATION 

   Our system has four major subsystems that integrate into an 
overall pipeline for transcribing flute recordings into sheet 
music: preprocessing & calibrating the input signal, 
segmenting the  audio, applying rhythm and pitch detection, 
and generating the sheet music onto our web application. We 
are leveraging principles of signal processing, Fourier 
analysis, and web application development to ensure accurate 
and efficient transcription.  
   Our overall physical system is described in (Fig. 1a). At the 
start of the user’s practice session, the user will attach the 
Behringer CB100 Gooseneck Condenser Microphone (Fig. 1b) 
using a clamp on the end of the flute and plug the microphone 
into the laptop using the XLR to USB C adapter. This specific 
microphone will make sure that there will be a clear and 
high-fidelity audio input that our system can use and analyze. 
The user will then create a new account or log into an existing 
account in our Write On Cue web application.  
   Using the microphone, the user will capture two audio 

signals - the background audio and the flute audio. As the user 
is playing and recording their flute audio, they have an option 
to listen to a metronome set at a default of 60 BPM and adjust 
it accordingly. The user will then be able to click the ‘Generate 
Button’ on the web application once the flute audio, 
background audio, and BPM they played at is recorded into 
our web application. The background noise audio is used for 
calibrating the flute audio, which then gets preprocessed. In 
our preprocessing step we are using engineering principles 
like bandpass filtering to retain flute-relevant frequencies, and 
spectral subtraction and adaptive filtering techniques to 
remove the background noise from the flute audio. 
   We then segment the flute recording into distinct notes using 
a sliding window root mean square (RMS) approach with a 10 
ms window. A note onset is detected when there is a steep 
increase in amplitude (≥5 dB) lasting at least 100 ms. Also, we 
do frequency domain analysis via Fourier transforms to help 
refine note transitions. 
   For our pitch detection system a Fast Fourier Transform 
(FFT) is applied to each segmented note to extract the 
dominant frequency. The highest-amplitude frequency bin 
determines the fundamental frequency, which is then mapped 
to a MIDI note. To classify note durations (whole, half, 
quarter, eighth), we analyze amplitude stability. A note is 
considered active if its amplitude remains above 20% of the 
segment’s maximum. The duration of active segments, 
combined with the BPM input from the user, determines note 
lengths. 
   The processed notes (pitch and duration) are encoded into a 
MIDI file using the MIDO library. The MIDI data is sent to 
MuseScore via an API to generate sheet music, which is 
displayed on the web application’s front-end and stored in an 
SQL database. On the web application the user is also able to 
view their past transcriptions stored on the website. When the 
user is done practicing, they will be able to compactly pack up 
our system by detaching the microphone and adapter and 
logging out of their profile on the web application.  
 

 
(a) 
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(b) 

Fig. 1.​ Physical system separated into four major subsystems  (a)  overall 
system. (b) Behringer CB100 Gooseneck Condenser Microphone that 
records the flute and background audio and can be plugged into a laptop. 

The subsystems work in parallel to be able to provide the user 
with a transcription in almost real time. Our overall high-level 
block diagram illustrating the complete architecture can be 
found at the end of this document (Fig. 10). It breaks down 
each of the four subsystems in greater detail and is explained 
thoroughly in Section VI. 

IV.​ DESIGN REQUIREMENTS 

Overall, our system will be following a pipeline of 
calibration, filtering out any noise, performing pitch and 
rhythm algorithms, writing the information into a MIDI file, 
and then sending it back to the web application. To first ensure 
that we have a clear signal, we need to execute a calibration 
step to ensure that the flautist is playing at a loud enough 
volume. To do so, we will require the flautist to record the 
surrounding environment noise to determine the baseline 
decibels. Afterwards, we will be making sure the flautist is 
consistently playing at least 20 decibels (dB) louder than the 
outside noise. If the flautist is playing at a volume less than 
this threshold difference of 20 dB, then the web application 
will signal to the flautist to play louder. To test this, we will 
practice playing the flute at three different relative volumes: 
quiet, medium, and loud. We will be testing these three 
different volumes in three different environments as well, 
similarly being quiet, medium, and loud. To test if the web app 
is accurately detecting the difference correctly, we will be 
using an outside library in python to determine the dB of both 
the environment and of the flute recording, from the 
microphone, and see if the web application output is within +/- 
five dB from the outside library measurement. We are 
ensuring that we have a clear signal to exclude any noise being 
included in the transcription of the recording.  

After determining that there is a relatively clear signal from 
the flute recording, we will be filtering noise by utilizing a 
butterworth high pass filter. Then this filtered signal will be 
used to conduct pitch detection on the audio file by 
performing fourier transforms with python functions like 
SciPy. To test this feature, we will be playing sheet music with 

basic notes, like a scale, and comparing our application’s 
output with the notes the flautist played. We want our 
outputted pitches to match the sheet music with at least 95% 
accuracy. We are aiming for a high accuracy to improve user 
experience as incorrect transcriptions will not satisfy our use 
cases of creating a seamless experience.  

Next, we want to perform audio segmentation when a new 
note has been played. We know a note has changed when 
either the frequency has changed, signaling that the pitch has 
changed, or there is a sudden increase in amplitude, signifying 
that a new note, with the same pitch, has likely been played. 
Using this information, we can conduct audio segmentation by 
determining when a frequency has changed in time, reusing 
the results from pitch detection, or check if the peak of the 
signal has changed by at least five decibels and if it surpasses 
this threshold, then a new note has been played. To further 
reduce any noise, we will also be implementing a threshold of 
20% of the maximum amplitude to be identified as one note. 
After reviewing some preliminary results, we noticed that the 
max amplitude tends to be right when the flute begins before 
stabilizing at around 20% of the maximum. To be more 
accurate, we will utilize this stable value as our minimum 
threshold to determine the continuous length of one note. To 
test if we are accurately segmenting the audio, we’ll be 
manually determining when a note has changed in time and 
comparing the output of our system to this manually 
determined time. Ideally, our system output should be within 
+/-  0.1 seconds of the correct time. We want our output to 
match the sheet music by at least 95%.  As aforementioned, 
we are aiming for a high accuracy to improve user experience 
as incorrect transcriptions will not satisfy our use cases of 
creating a seamless experience.  

V.​ DESIGN TRADE STUDIES 

   When designing our flute transcription system, we 
considered various implementation approaches, balancing 
factors such as performance, efficiency, scalability, accuracy, 
and user experience. The major design tradeoffs involved 
deciding between a hardware- vs. software-based signal 
processing approach, determining the best way to 
filter/calibrate the flute signal, automatically detecting the 
input signal’s tempo vs. integrating a metronome for rhythm 
consistency, and using a sliding window vs. audio 
segmentation technique for pitch and rhythm detection. 

A.​ Signal Processing: Software vs. Hardware-Software 
Approach 

Initially, we considered implementing a combined 
hardware-software pipeline, in which a hardware bandpass 
filter would handle removal of frequencies outside of the 
flute’s frequency range; and a microcontroller (such as an 
Arduino or Raspberry Pi) would perform the ADC conversion, 
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use a thread-based approach to perform a Fast Fourier 
Transform for frequency analysis, and send necessary 
information about the signal to our computer via UART serial 
transmission. We also explored designing a custom PCB for 
taking in the flute signal and preprocessing before ADC 
conversion on a microcontroller. This would have involved 
designing and soldering the circuit with an IC microphone and 
bandpass filter.  However, due to the computation-heavy 
nature of signal processing algorithms such as adaptive 
filtering and FFT, running these processes on a 
microcontroller would introduce significant performance 
bottlenecks and prevent us from achieving our goal of a 
3-second latency between the user’s submission of the audio 
input and sheet music generation. Additionally, the process of 
manufacturing a custom PCB would be complex, more costly, 
and make it more difficult to iterate upon the design without 
much improvement to our transcription accuracy.  

A purely-software based approach allows us to leverage 
computational power from a laptop CPU, which is much more 
efficient for both filtering and FFT. Moreover, this approach 
provides us with more flexibility in terms of additional 
filtering approaches, such as adaptive filtering, on top of the 
Butterworth filter and spectral subtraction. Specifically, we 
will be able to easily integrate our system with  a variety of 
open-source software tools, such as: 

 
●​ SciPy: Access to robust filtering and FFT tools, 

allowing for efficient and accurate spectral analysis. 
●​ Mido: Python library for handling MIDI file 

generation after rhythm/pitch detection is complete.  
Overall, the pure software approach is inherently more 
scalable and accessible, as it eliminates the need for additional 
physical components (besides a microphone) and can be 
distributed as a standalone application.  

B.​ Rhythm Detection: Tempo Detection vs. Metronome 
To meet our design requirement of achieving 95% rhythm 
detection accuracy, we needed a way of tracking the tempo of 
the audio. We looked into detecting the tempo via beat 
tracking, but a metronome ensures a steady tempo. Though 
this constrains musicians who vary their tempo throughout a 
piece, a system without the metronome would need more 
sophisticated rhythm detection (such as beat-tracking) to 
handle tempo fluctuations, especially if the fluctuations were 
not intentional. Including a metronome also reduces cognitive 
load on musicians by providing a reference tempo, which 
enables us to more easily classify the duration/type of a 
particular note.  

C.​ Audio Segmentation vs. Sliding Window FFT 

 Originally, we intended to transcribe the audio in real-time. 
However, this is no longer a priority– after speaking with 

musicians from the School of Music, we found that it is 
instead more practical for a user to be able to upload an audio 
file and receive a transcription. Given this change, we have 
opted for an approach where the recording is processed at 
once after the musician finishes playing. Instead of using a 
sliding window FFT, which may introduce boundary issues (in 
detecting note onset/offset), we will first segment the audio 
and process each segment independently for rhythm and pitch 
detection.To do so, we will apply a sliding window STE 
(Short-Time Energy) for note segmentation. This is useful for 
ensuring that each segment contains a full note before 
performing FFT and avoids splitting the notes across 
windows. Applying sliding window FFT prior to segmentation 
can split notes across windows, which makes it more difficult 
to detect clean frequency peaks. Instead, we will perform the 
FFT on multiple segments in parallel, which still allows us to 
detect the pitch in an efficient and more clean way. Though 
STE-based segmentation first requires some extra processing, 
an improved pitch detection accuracy outweighs the cost of 
some additional processing time. 

VI.​ SYSTEM IMPLEMENTATION 

Our system comprises four major subsystems that integrate 
together into one overall pipeline as mentioned in Section III. 
In this section, we provide a summary of each subsystem– 
namely, the signal preprocessing and calibration, audio 
segmentation, rhythm detection and pitch detection, and web 
application/user interface. The first stage of the pipeline 
requires the user to log into our web application and record a 
flute signal through a Gooseneck microphone, which then 
triggers the signal preprocessing steps– bandpass filtering and 
spectral subtraction– to obtain a clean signal for audio 
segmentation. Next, we focus on audio segmentation, where 
we use a sliding window approach and Short Time Energy to 
detect energy spikes in the signal to detect note onset/offset. 
Once we have obtained our segmented audio, we will use a 
multithreaded approach to process multiple segments in 
parallel. For each segment, we will then perform rhythm 
detection to classify the note (whole, half, quarter, eighth, etc.) 
based on its duration and BPM rate. Each segment will also 
undergo pitch detection via a Fast Fourier Transform (FFT), 
which is then converted into a MIDI number and encoded as 
part of a MIDI file that aggregates all the MIDI notes. The 
MIDI note is then saved into the web application’s database, 
which then calls the MuseScore API in order to translate the 
MIDI encodings into a sheet music score to be displayed on 
the web app’s frontend. The web application enables the user 
to view the most recently generated music score along with all 
previous ones they have generated. 
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A.​ Subsystem A - Signal Recording, Calibration, and 
Preprocessing 

Firstly, we decided to use the Behringer CB100 Gooseneck 
Condenser Microphone to capture a clear recording of the 
flute signal by attaching it to the end of the flute using a 
clamp. The microphone will then connect to a laptop to 
transfer the audio directly to the laptop to be uploaded to our 
website for any necessary preprocessing before being 
transcripted. We decided to go with a gooseneck microphone 
as it allows us flexibility in moving the microphone in 
conjunction with the flute– too close may result in picking up 
a distorted signal, and too far may be lost by noise.  

For our pipeline, we require the user to first upload a 
recording of their background noise (η) in addition to a 
recording of the flute signal with the same background (η + 𝜖). 
These recordings pass through a calibration step triggered by 
the web app, which allows the user to proceed if the flute 
signal, 𝜖, is at least 20 dB higher in amplitude than the 
noise-only (η) recording. As they record, they are also able to 
play a metronome (set to 60 BPM by default), which they then 
have the option to adjust in real-time via a slider on the user 
interface. 

After passing this calibration step, we then pass the 
recording of the flute signal through a Butterworth bandpass 
filter, which allows us to preserve all frequencies between 
260-2096 Hz for a cleaner signal. Depending on how well we 
are able to detect the Short Time Energy peaks, we may also 
need to implement spectral subtraction (allowing us to subtract 
background noise from the recording) and adaptive filtering 
(to detect and eliminate background noise levels that vary 
throughout the audio).  

Fig. 4 Diagram demonstrating the original audio waveform before and after 
applying a Butterworth bandpass filter. 

 

B.​ Subsystem B - Audio Segmentation System 
The audio segmentation system will be an interface 

implemented within software. The intention of this subsystem 
is to divide the audio signal into segments, where each 
segment will denote a new note played by the flautist. This 
additionally will allow us to transcribe notes in parallel, 
improving the latency. To implement this, we plan on 
incorporating a sliding window of the root mean square of 
every 10 ms within python. This will be utilized to find steep 

increases in energy, or when the amplitude of the wave has 
increased quickly. To prevent any mischaracterization of 
multiple notes when it is actually one note, we will be having 
a threshold where 100 ms has had to elapsed so one steep 
increase in energy, defined as an increase of five dB, is not 
transcribed into multiple different note changes. After 
determining the times where there has been a steep increase in 
the energy or regions of interest, we will divide the audio into 
segments between these time intervals. Additionally, we will 
be simultaneously using times the frequency has changed, 
which can be determined when viewing the signal with a 
fourier transform using python libraries like SciPy, and using 
those to determine note changes as well since this can be used 
to determine if a note has changed in pitch.  

 
Fig. 2.​ Diagram demonstrating how we will be detecting a new segment 

or a new note change. Additionally, it depicts peaks that are not steep 
enough, i.e. less than a 5 dB change, that would not count as a new note.  

C.​ Subsystem C - Pitch Detection System 
The flute has a range of three octaves, which spans over C4 to 
C7. In order to determine which frequency each note 
corresponds to, we will be performing a Fast Fourier 
Transform on each of the note segments, where we process 
multiple segments in parallel using threading in Python. For 
each segment, we perform a Fast Fourier Transform (FFT) that 
converts the signal from time to frequency domain, producing 
a sequence of frequency “bins”. Each bin represents a small 
frequency range (~10Hz), and our algorithm scans the bins to 
find the one with the highest amplitude. Once the strongest 
frequency is identified, it is converted into a MIDI number 
using the following formula: 
 

 𝑚 =  12 ×  𝑙𝑜𝑔
2
(𝑓

𝑚
/440 𝐻𝑧) +  69
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Fig. 3.​ Diagram demonstrating resulting harmonics from performing 

Fourier Transforms from individually recorded notes. The fundamental 
frequency of each note will allow us to distinguish between the notes 
and assign them a MIDI number for the MIDI file encoding. 

Fig. 4.​ Pseudocode for a single thread of pitch detection using FFT. 

D.​ Subsystem D - Rhythm Detection System 
To determine the length of the notes at a basic level would 

be to check the length of the segmentation. However, since the 
segmentations could include rest times as well, to accurately 
transcribe the rhythm or note length, we play on first 
calculating what the maximum amplitude of the signal in the 
segmentation, from part D, is. Since we are performing 
preprocessing and filtering any noise or anomalies, we can 
likely assume here that the signal will stabilize after a certain 
point in time. After initial experimentation, this stabilization 
point looks to be around 25% of the maximum amplitude, 
which typically occurs when the flute has just begun to play a 
new note. As such, our calculations will only consider a note 
to have continued playing if it maintains an amplitude above 
20% of the maximum. We will then calculate the duration of 
the signal that is above the threshold to determine the length of 
a single note. This will then be used in conjunction with the 
pitch to be sent to the web application via a MIDI file. These 
calculations will be made with basic equations in code and 
using libraries to read signals, like SciPy.  

 
Fig. 5.​ Graph of the signal and depiction of the threshold for how we are 

determining the length of one note.  

 
Fig. 6.​ Pseudocode detailing the rhythm detection algorithm we will be 

implementing in the system.  

E.​ Subsystem E - Writing to the Web Application System 
The system overall will label the segments based on where 

they come in time. For instance, the first system will be known 
as segment 1 and increase until there are no more new notes. 
The code will then cycle through the segments, in numerical 
order i.e. the order in which they are played, and take the pitch 
and rhythm, which was calculated for all segments at once in 
parallel and stored within the code, to write this into the MIDI 
file using the python package MIDO. The code takes in the 
BPM the user inputted and utilizes this tempo to encode when 
a note is “on” and when a note is “off” or when the note has 
begun and ended respectively. From the pitch detection 
system, we include the determined pitch, alongside the 
rhythm, into a class known as a message. The message is then 
attached to a header, which will all be combined to make the 
MIDI file. This information will then be uploaded to 
MuseScore to be converted into easily viewable sheet music. 
The website utilizes this MuseScore API to display this 
information on our website and store the transcription within 
our SQL database.  
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Fig. 7.​ Pseudocode detailing how the algorithm will write into a MIDI file 

and send the note information to the web application. .  

F.​ Subsystem F - Web Application System 
   The architecture for web application is structured to handle 
and facilitate  real-time audio processing, transcription, and 
user interaction while ensuring efficiency and scalability. 

The user interface is developed using Django, integrating 
HTML, CSS, and JavaScript. Users can upload flute 
recordings, view past transcriptions, and interact with various 
features such as BPM adjustment and being able to view a 
Help Page. Once all the audio files are uploaded the user is 
able to view the transcription of the audio as well as optional 
new generated notes from our model. The backend is powered 
by a SQL database that stores user data, audio files, and 
transcription results, making sure there is efficient data 
management and retrieval. 

A key feature of the system is the real-time adjustable BPM 
metronome, which runs as a separate thread to prevent 
interference with flute notes. This functionality is enabled 
through WebSockets, allowing smooth synchronization and 
user control over tempo adjustments. Additionally, the system 
includes an OAuth-based user authentication module, ensuring 
secure access and personalized experiences for multiple users. 
The architecture is designed to support multiple users 
simultaneously. 
 

Fig. 8.​ User Interface of Write On Cue, featuring audio uploads, 
metronome control, and profile settings. 

G.​ Subsystem G - Generative AI 
Model Architecture 

Our generative AI system will attempt to generate flute 
music by utilizing a Transformer-based generative model 
trained on MIDI sequences. We are planning on using a 
Transformer model because of its effectiveness in capturing 
long-term dependencies in sequential data, making it 
particularly useful for music generation. Music has intricate 
patterns that include harmony, rhythm, pitch variations, and 
melodic structure, which the self-attention mechanism of the 

Transformer is highly capable at modeling. 
Data Preprocessing 

The flute music is represented using a token-based system 
derived from MIDI sequences. MIDI provides a precise 
representation of musical elements, such as pitch, duration, 
and velocity, making it an ideal format for training a 
generative model. The MIDI files are converted into a series 
of tokens that encode musical notes, timing, and dynamics, 
which can then be processed by the Transformer model. 

Feature Extraction: Prior to feeding the MIDI data into the 
model, we will need to perform several preprocessing steps. 
First, we extract individual notes, velocities, and durations 
from the MIDI sequences. Pitch normalization is applied to 
ensure that the generated output remains within the range of a 
typical flute. Rhythm encoding is another critical step, where 
we represent the timing of each note relative to a fixed BPM.  
Model Training 

Dataset: The dataset will need to consist of a combination of 
MIDI sequences from flute recordings. The MIDI sequences 
will be derived from public databases, while the flute 
recordings will either be sourced from the flutists we are 
working with or also from public databases like Classical 
Archives. The format of the dataset will need to follow the 
format of the MAESTRO dataset of piano music. The 
diversity of the dataset will make sure that the model learns a 
wide range of musical styles, tempos, and articulations. 

Training Objective: The model will be trained using a 
next-token prediction approach. Given a sequence of notes and 
rhythms, the model is tasked with predicting the subsequent 
note or event in the sequence. This objective is useful for 
music generation, as it allows the model to learn the flow of 
musical ideas over time. We will also be using relative 
positional encodings, an enhancement over traditional absolute 
positional encoding. This allows the model to more accurately 
account for the relative timing between notes, rather than 
relying solely on their absolute positions in the sequence.  

Loss Function: The loss function we will use in training is 
cross-entropy, which is commonly used for sequence 
prediction tasks. 

VII.​ TEST, VERIFICATION AND VALIDATION 

A.​ Calibration and Noise Filtering 
We will test our calibration and filters by testing the system 

in various environments with varying playing volumes. We 
plan on testing the recordings in noisy and loud; medium; and 
quiet surroundings with varying flute volumes of loud, 
medium and quiet, doing nine different conditions. For 
instance, testing a loud dynamic recording of the flute within a 
quiet environment, like a studio. This will help determine if 
our noise filters algorithm will effectively filter out the noise 
of the environment without affecting the flute recording. 
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These tests will verify that our design will not record notes 
that the flautist did not play by ensuring that noise does not 
affect the notes recorded. 

Additionally, to help ensure that the flautist is playing at a 
loud enough volume after the calibration step, the system will 
be measuring the decibels of the environment, from the 
calibration recording, and the decibels of the test flute 
recording. To test that the decibels are accurately measured, 
we will be testing our results against an outside library 
function in python and ensuring that our system’s results are 
within five dB of the outside library’s to help maintain 
consistency. These tests will further ensure that noise is not 
transcribed into the generated sheet music.  

B.​ Pitch Detection 
 Starting out, to test pitch detection we will be playing 

scales. Our system will then output sheet music and we will 
compare the scale being played to see how accurate our 
transcription is. For instance, when playing a simple C major 
scale, we would expect to see the ascending notes in the 
correct order. When we compare our generated sheet music to 
the scale, we want the notes’ pitch to match the scale with a 
95% accuracy. We desire a high accuracy to improve user 
experience and to ensure a simplified experience for new users 
when composing music.  

Afterwards, we will be further testing the system by using 
more difficult flute compositions of known songs such as 
Twinkle Twinkle Little Star and comparing the application’s 
generated  music with the sheet music from music applications 
like MuseScore, still requiring 95% accuracy. These tests aim 
to satisfy accurate sheet music generation.  

C.​ Rhythm Detection 
As a simple test, we will first be playing three different 

length notes: a quarter note, a half note, and a whole note. Our 
system will then output sheet music and we will compare the 
results to the intended lengths played for the recording, 
needing at least 95% accuracy over multiple tests when 
identifying the lengths of notes. To further test the application, 
we will be conducting these tests at varying beats per minute  
(BPMs) to accurately identify note length and prevent aliasing. 
Similar to the pitch detection, we desire a high accuracy to 
improve user experience and to ensure a simplified experience 
for new users when composing music.  

Afterwards, we will be testing the system with known flute 
compositions of songs such as Twinkle Twinkle Little Star and 
comparing the sheet music, from music applications such as 
MuseScore, to our generated transcription. When comparing 
the two, we are still aiming for 95% correct identification of 
note length. We expect some difficulty in terms of aliasing. 
For instance, if we identify two quarter notes as a half note 
instead of the two separate notes. From preliminary testing, we 

noticed that when a new note begins, there tends to be a spike 
in amplitude, so we hope to use a minimum difference 
threshold to accurately identify when a note has changed but 
has the same pitch.  These tests aim to satisfy accurate sheet 
music generation, especially with the high accuracy measure 
of 95%.  

D.​ Overall Transcription 
We will be testing the overall transcription by recording and 

transcribing known sheet music to various songs of different 
genres and comparing the sheet music to our generated one. 
When comparing the pitch and rhythm, we want to ensure that 
it has a 95% accuracy in both matching the intended pitch as 
well as the intended volume. Furthermore, to ensure positive 
user experience, we aim to have the latency of transcription be 
less than three seconds. Thus from when the user is finished 
recording the flute audio to when they see the finalized, 
generated sheet music, this should ideally take, at most, three 
seconds. To test this, we will be testing compositions of 
varying lengths, such as a one minute song and a three minute 
song, and timing how long it takes to transcribe the final 
music. As we are planning on running the identification in 
parallel, we imagine that the transcription time will be 
significantly shorter than if we attempted it in serial.  

We are aiming for this short latency as a long transcription 
time could hinder user experience as waiting to see results 
might cause individuals to lose inspiration or interest in 
creating the next measures.  

Additionally, to gain user feedback, we will be testing this 
in common areas where flautists would be utilizing the device, 
like in a home environment or a studio, with flautists from the 
Carnegie Mellon School of Music flute studio, in collaboration 
with the School of Music.  

 
Fig. 9.​ Diagram demonstrating what the testing process will look like as it 

depicts what an incorrect rhythm and an incorrect pitch detection would 
be. 
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VIII.​ PROJECT MANAGEMENT 

A.​ Schedule 
We have included the GANTT chart to outline our schedule. 

We are currently on track as we are in the process of 
implementing the individual subsystems of our project. We 
have the basics of website framework down, allowing 
individuals to log in with OAuth, upload files, and input a 
BPM. In terms of the transcription, we are currently 
experimenting with audio segmentation and using the 
information obtained from the fourier transforms and the 
amplitude of the signal to determine when there has been a 
note change. The main milestone for the web application will 
be having an easy to use website be able to take in a recording 
and create a transcription for the user. For the transcription, 
the main milestone will be to analyze the signal and convert it 
into the individual notes, with accurate pitch and rhythm. See 
end of document for our full schedule in Figure 11, which 
includes more detailed time frames of testing, implementation 
and design, as well as the final integration timeline.  

B.​ Team Member Responsibilities 
Each team member is responsible for a subsystem of the 

design. Shivi and Grace will be working mostly with the 
signal processing as they oversee the audio segmentation 
calculations and the detection of rhythm and pitch from the 
segmentations. We have overlapped these subsystems with 
team members because we believe that the two subsystems are 
extremely integrated and the collaboration between the two 
calculations help with smoother and faster detection times. 
Deeya will oversee the front end of the web application and 
establish authentication and security within the site. During 
this time, since Grace and Shivi’s project is more frontloaded 
will be software support as Grace will help with the generation 
of the sheet music and Shivi will aid in the integration.  

 

Audio Segmentation Shivi + Grace 

Noise Filtering Shivi 

Rhythm Detection Grace 

Pitch Detection Shivi 

Web Application 
Framework + Front End 

Deeya 

Integration of Signal 
Processing 

Shivi + Grace 

Gen AI Deeya 

Integration of Signal to 
Website 

Shivi + Grace + Deeya 

  

C.​ Bill of Materials and Budget 
Our bill of materials can be viewed in Table II at the end of 

this document in Table I. We project that our system will be 
fairly inexpensive at a total cost of $50.29 currently.  

D.​ TechSpark Use Plan 
We do not plan on using TechSpark for our project. 

E.​ Risk Mitigation Plans 
The primary risk for this project is the audio segmentation 

step. When looking at the audio waves, there tends to be a lot 
of variation within the waves amplitude. This could be the 
result of outside noise or inconsistent tone with the flute. In 
turn, all these various peaks could interfere with calculating 
the audio segments, or when a new note has occurred. To 
mitigate these, we plan on using a sliding root mean square 
(RMS) equation to look for the energy of the wave, rather than 
solely relying on the amplitude. This helps reduce the impact 
of noise in the signal.  

Another risk is the latency. We want to make this experience 
enjoyable for all users and musicians. Having long wait times 
in between recordings and the transcription visualization 
would hurt the overall experience, thus we are aiming for a 
less than three second wait time between the recording upload 
and the result loading. To mitigate a long latency, we plan on  
running our audio segmentations in parallel, reducing the 
amount of time long compositions would take to transcribe 
into sheet music.  

IX.​ RELATED WORK  

This project shares similarities with MuseScore where 
individuals are able to convert MIDI files into sheet music. As 
such, we will be using this API for preliminary stages before 
developing our own function to read a MIDI file and generate 
sheet music within our own website.  

Furthermore, there have been many past transcription 
projects for various other instruments in the past, but the 
project that is most similar to ours is Transcriber in which the 
group created an application to transcribe piano recordings 
into sheet music, using a combination of hardware and 
software. Our projects are similar in that they both take in 
musical recordings to generate visual sheet music but they 
different in the components, as we are solely using software to 
do our calculations, as well as the instrument, since we are 
focusing on the flute. We believe that this will help with 
complexity of the basic framework as the flute has a limited 
range of pitches it can produce. 



10 
18-500 Design Project Report: Write On Cue 2/28/25 
 

X.​ SUMMARY 

Our website is designed to make the process of composing 
music easier and more accessible for all individuals by 
eliminating the tedious process of copying down the notes. To 
do so, we will be creating a web application that will take in a 
flute recording and transcribe the corresponding sheet music 
by analyzing the rhythm and pitch of the audio signal through 
various python libraries. Some upcoming challenges include 
correctly identifying where a note begins in audio 
segmentation and integration where we connect our signal 
processing methods to the web applications while 
simultaneously ensuring that our system meets the accuracy 
and latency requirements outlined in the use-cases. 

GLOSSARY OF ACRONYMS. 

 
BPM – Beats Per Minute 
dB – Decibels 
MIDI - Musical Instrument Digital Interface 
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