
1
18-500 Design Project Report: Write On Cue 2/28/25

Write On Cue

Shivi Jindal, Grace Li, and Deeya Patel

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A system capable of automating the process of
transcribing flute performances into a music score that is available to
music composers, students, and hobbyists to utilize on a web
application. The web application takes in a recorded flute signal and
invokes a backend pipeline that filters and segments the signal by
note (using Fast Fourier Transforms, Short Time Energy, and RMS),
performs audio and pitch detection (with frequency mapping and note
onset/offset detection), encodes this information into a MIDI file, and
converts the MIDI file to sheet music.

Index Terms—Butterworth Filtering, Fast Fourier Transform,
Generative AI, Harmonic peak detection, MIDI conversion,
Music Information Retrieval (MIR), Short-Time Energy,
Spectral analysis

I.​ INTRODUCTION

 Music transcription is a crucial tool for musicians who want
to document their compositions, analyze performances, or
share their work with others. However, manual transcription
can be time-consuming and requires significant expertise. Our
capstone project aims to bridge this gap by developing a
software-based music composition system that transcribes
flute performances into sheet music in real time.
 This system is designed to help musicians capture their
improvisations, rehearsals, and live performances without the
need for manual transcription. The core of our implementation
is a signal processing pipeline that analyzes flute audio,
extracting pitch and rhythm based on a user-defined BPM. The
processed data is then converted into digital sheet music,
providing an intuitive and accessible way for musicians to
view their transcriptions.
 To ensure high transcription accuracy, our approach will
focus on precise frequency and pitch analysis of the flute
signal. The system will be packaged as a web application,
offering a user-friendly interface where musicians can play
their flute and instantly see the generated notation. This
software-based approach also provides flexibility, allowing us
to experiment with different signal processing techniques to
refine accuracy.
 As a stretch goal, we plan to incorporate a generative AI
feature that suggests potential next notes to assist composers
in expanding their musical ideas. This feature would help
musicians develop compositions interactively, making our tool
not just a transcription system, but also a creative aid for
music composition.

 With this project, we hope to create a powerful and
accessible tool that enhances the way musicians engage with
their music, whether for practice, composition, or performance
analysis.

II.​ USE-CASE REQUIREMENTS

Write on Cue should be a seamless and intuitive experience
where musicians, students, and educators can find the
transcription process effortless and reliable. To achieve this, it
must consistently and accurately transcribe flute performances
into sheet music with minimal effort from the user. Given that
manual transcription is time-consuming and requires
specialized skills, it must provide an accessible and efficient
alternative by ensuring high accuracy, low latency, and
adaptability across various musical styles and environments.

A.​ Accuracy
This application should accurately determine the rhythm

and pitch of notes played, using an inputted BPM and time
signature, with at least 95% accuracy under standard playing
conditions.

The system’s accuracy will be tested under various
conditions, including different flute types, articulation styles,
and background noise levels that simulate environments
flutists play in. Testing will take place in both controlled lab
environments and real-world settings. To enhance accuracy,
we are collaborating with three flutists and faculty from the
School of Music, including Professor Dueck and Professor
Almarza, to gather real-world flute recordings and expert
feedback on our system performance.

The system must handle variations in recording quality,
instrument tone, and playing techniques while maintaining
accuracy. It should also be adaptable to different music genres,
ensuring broad applicability across user needs.

B.​ Latency
For an efficient user experience, the system must generate

the first transcribed note within 3 seconds of receiving the
audio input. This ensures minimal delay in feedback, allowing
users to interact with the transcription in near real-time.

C.​ Output Format
The application must generate a digital music file (MIDI)

based on the transcribed notes and then convert the MIDI data
into a readable music score within the web application using
MuseScore. This dual-format output ensures compatibility
with a range of music editing and notation tools.

D.​ Public Health, Safety, and Welfare Considerations
Our flute transcription system enhances public health by

supporting creative expression through music learning. With
an attachable microphone and a software-only pipeline, it is
affordable and safe to use. Our system also promotes welfare

2
18-500 Design Project Report: Write On Cue 2/28/25

by lowering barriers to music production, as it can be made
accessible online for musicians, students, and educators to use.

E.​ Global, Cultural, Social, Environmental, and
Economic Factors

Write on Cue aims to make music transcription more
accessible to diverse musical communities, including amateur
musicians, educators, composers, and students from various
cultural and social backgrounds. This benefits people who
may not have the technical skills or resources to manually
transcribe music and allows individuals to better engage with
music across a variety of cultural contexts. For example, in
communities where formal music education is less accessible,
our project can provide a more equitable way for musicians to
preserve and share traditional flute music, irrespective of
whether they are classically trained. Additionally, socially, this
allows musicians from different backgrounds to contribute
their musical expressions and allows for easier preservation of
musical heritage.

By streamlining the transcription process, our project
reduces the dependency on costly manual transcription
services, which lowers the overall cost of producing sheet
music. Also, we are designing our project on a web app, which
maximizes accessibility and encourages a cheaper and more
widespread music education. By offering an affordable or free
version, the application ensures inclusivity, supporting
musicians across various economic backgrounds.

By meeting these requirements, Write on Cue will serve as a

powerful transcription tool that enhances the workflow of
musicians, students, and educators while considering broader
social, cultural, and environmental impacts.

III.​ ARCHITECTURE AND PRINCIPLE OF OPERATION

 Our system has four major subsystems that integrate into an
overall pipeline for transcribing flute recordings into sheet
music: preprocessing & calibrating the input signal,
segmenting the audio, applying rhythm and pitch detection,
and generating the sheet music onto our web application. We
are leveraging principles of signal processing, Fourier
analysis, and web application development to ensure accurate
and efficient transcription.
 Our overall physical system is described in (Fig. 1a). At the
start of the user’s practice session, the user will attach the
Behringer CB100 Gooseneck Condenser Microphone (Fig. 1b)
using a clamp on the end of the flute and plug the microphone
into the laptop using the XLR to USB C adapter. This specific
microphone will make sure that there will be a clear and
high-fidelity audio input that our system can use and analyze.
The user will then create a new account or log into an existing
account in our Write On Cue web application.
 Using the microphone, the user will capture two audio

signals - the background audio and the flute audio. As the user
is playing and recording their flute audio, they have an option
to listen to a metronome set at a default of 60 BPM and adjust
it accordingly. The user will then be able to click the ‘Generate
Button’ on the web application once the flute audio,
background audio, and BPM they played at is recorded into
our web application. The background noise audio is used for
calibrating the flute audio, which then gets preprocessed. In
our preprocessing step we are using engineering principles
like bandpass filtering to retain flute-relevant frequencies, and
spectral subtraction and adaptive filtering techniques to
remove the background noise from the flute audio.
 We then segment the flute recording into distinct notes using
a sliding window root mean square (RMS) approach with a 10
ms window. A note onset is detected when there is a steep
increase in amplitude (≥5 dB) lasting at least 100 ms. Also, we
do frequency domain analysis via Fourier transforms to help
refine note transitions.
 For our pitch detection system a Fast Fourier Transform
(FFT) is applied to each segmented note to extract the
dominant frequency. The highest-amplitude frequency bin
determines the fundamental frequency, which is then mapped
to a MIDI note. To classify note durations (whole, half,
quarter, eighth), we analyze amplitude stability. A note is
considered active if its amplitude remains above 20% of the
segment’s maximum. The duration of active segments,
combined with the BPM input from the user, determines note
lengths.
 The processed notes (pitch and duration) are encoded into a
MIDI file using the MIDO library. The MIDI data is sent to
MuseScore via an API to generate sheet music, which is
displayed on the web application’s front-end and stored in an
SQL database. On the web application the user is also able to
view their past transcriptions stored on the website. When the
user is done practicing, they will be able to compactly pack up
our system by detaching the microphone and adapter and
logging out of their profile on the web application.

(a)

3
18-500 Design Project Report: Write On Cue 2/28/25

(b)

Fig. 1.​ Physical system separated into four major subsystems (a) overall
system. (b) Behringer CB100 Gooseneck Condenser Microphone that
records the flute and background audio and can be plugged into a laptop.

The subsystems work in parallel to be able to provide the user
with a transcription in almost real time. Our overall high-level
block diagram illustrating the complete architecture can be
found at the end of this document (Fig. 10). It breaks down
each of the four subsystems in greater detail and is explained
thoroughly in Section VI.

IV.​ DESIGN REQUIREMENTS

Overall, our system will be following a pipeline of
calibration, filtering out any noise, performing pitch and
rhythm algorithms, writing the information into a MIDI file,
and then sending it back to the web application. To first ensure
that we have a clear signal, we need to execute a calibration
step to ensure that the flautist is playing at a loud enough
volume. To do so, we will require the flautist to record the
surrounding environment noise to determine the baseline
decibels. Afterwards, we will be making sure the flautist is
consistently playing at least 20 decibels (dB) louder than the
outside noise. If the flautist is playing at a volume less than
this threshold difference of 20 dB, then the web application
will signal to the flautist to play louder. To test this, we will
practice playing the flute at three different relative volumes:
quiet, medium, and loud. We will be testing these three
different volumes in three different environments as well,
similarly being quiet, medium, and loud. To test if the web app
is accurately detecting the difference correctly, we will be
using an outside library in python to determine the dB of both
the environment and of the flute recording, from the
microphone, and see if the web application output is within +/-
five dB from the outside library measurement. We are
ensuring that we have a clear signal to exclude any noise being
included in the transcription of the recording.

After determining that there is a relatively clear signal from
the flute recording, we will be filtering noise by utilizing a
butterworth high pass filter. Then this filtered signal will be
used to conduct pitch detection on the audio file by
performing fourier transforms with python functions like
SciPy. To test this feature, we will be playing sheet music with

basic notes, like a scale, and comparing our application’s
output with the notes the flautist played. We want our
outputted pitches to match the sheet music with at least 95%
accuracy. We are aiming for a high accuracy to improve user
experience as incorrect transcriptions will not satisfy our use
cases of creating a seamless experience.

Next, we want to perform audio segmentation when a new
note has been played. We know a note has changed when
either the frequency has changed, signaling that the pitch has
changed, or there is a sudden increase in amplitude, signifying
that a new note, with the same pitch, has likely been played.
Using this information, we can conduct audio segmentation by
determining when a frequency has changed in time, reusing
the results from pitch detection, or check if the peak of the
signal has changed by at least five decibels and if it surpasses
this threshold, then a new note has been played. To further
reduce any noise, we will also be implementing a threshold of
20% of the maximum amplitude to be identified as one note.
After reviewing some preliminary results, we noticed that the
max amplitude tends to be right when the flute begins before
stabilizing at around 20% of the maximum. To be more
accurate, we will utilize this stable value as our minimum
threshold to determine the continuous length of one note. To
test if we are accurately segmenting the audio, we’ll be
manually determining when a note has changed in time and
comparing the output of our system to this manually
determined time. Ideally, our system output should be within
+/- 0.1 seconds of the correct time. We want our output to
match the sheet music by at least 95%. As aforementioned,
we are aiming for a high accuracy to improve user experience
as incorrect transcriptions will not satisfy our use cases of
creating a seamless experience.

V.​ DESIGN TRADE STUDIES

 When designing our flute transcription system, we
considered various implementation approaches, balancing
factors such as performance, efficiency, scalability, accuracy,
and user experience. The major design tradeoffs involved
deciding between a hardware- vs. software-based signal
processing approach, determining the best way to
filter/calibrate the flute signal, automatically detecting the
input signal’s tempo vs. integrating a metronome for rhythm
consistency, and using a sliding window vs. audio
segmentation technique for pitch and rhythm detection.

A.​ Signal Processing: Software vs. Hardware-Software
Approach

Initially, we considered implementing a combined
hardware-software pipeline, in which a hardware bandpass
filter would handle removal of frequencies outside of the
flute’s frequency range; and a microcontroller (such as an
Arduino or Raspberry Pi) would perform the ADC conversion,

4
18-500 Design Project Report: Write On Cue 2/28/25

use a thread-based approach to perform a Fast Fourier
Transform for frequency analysis, and send necessary
information about the signal to our computer via UART serial
transmission. We also explored designing a custom PCB for
taking in the flute signal and preprocessing before ADC
conversion on a microcontroller. This would have involved
designing and soldering the circuit with an IC microphone and
bandpass filter. However, due to the computation-heavy
nature of signal processing algorithms such as adaptive
filtering and FFT, running these processes on a
microcontroller would introduce significant performance
bottlenecks and prevent us from achieving our goal of a
3-second latency between the user’s submission of the audio
input and sheet music generation. Additionally, the process of
manufacturing a custom PCB would be complex, more costly,
and make it more difficult to iterate upon the design without
much improvement to our transcription accuracy.

A purely-software based approach allows us to leverage
computational power from a laptop CPU, which is much more
efficient for both filtering and FFT. Moreover, this approach
provides us with more flexibility in terms of additional
filtering approaches, such as adaptive filtering, on top of the
Butterworth filter and spectral subtraction. Specifically, we
will be able to easily integrate our system with a variety of
open-source software tools, such as:

●​ SciPy: Access to robust filtering and FFT tools,

allowing for efficient and accurate spectral analysis.
●​ Mido: Python library for handling MIDI file

generation after rhythm/pitch detection is complete.
Overall, the pure software approach is inherently more
scalable and accessible, as it eliminates the need for additional
physical components (besides a microphone) and can be
distributed as a standalone application.

B.​ Rhythm Detection: Tempo Detection vs. Metronome
To meet our design requirement of achieving 95% rhythm
detection accuracy, we needed a way of tracking the tempo of
the audio. We looked into detecting the tempo via beat
tracking, but a metronome ensures a steady tempo. Though
this constrains musicians who vary their tempo throughout a
piece, a system without the metronome would need more
sophisticated rhythm detection (such as beat-tracking) to
handle tempo fluctuations, especially if the fluctuations were
not intentional. Including a metronome also reduces cognitive
load on musicians by providing a reference tempo, which
enables us to more easily classify the duration/type of a
particular note.

C.​ Audio Segmentation vs. Sliding Window FFT

 Originally, we intended to transcribe the audio in real-time.
However, this is no longer a priority– after speaking with

musicians from the School of Music, we found that it is
instead more practical for a user to be able to upload an audio
file and receive a transcription. Given this change, we have
opted for an approach where the recording is processed at
once after the musician finishes playing. Instead of using a
sliding window FFT, which may introduce boundary issues (in
detecting note onset/offset), we will first segment the audio
and process each segment independently for rhythm and pitch
detection.To do so, we will apply a sliding window STE
(Short-Time Energy) for note segmentation. This is useful for
ensuring that each segment contains a full note before
performing FFT and avoids splitting the notes across
windows. Applying sliding window FFT prior to segmentation
can split notes across windows, which makes it more difficult
to detect clean frequency peaks. Instead, we will perform the
FFT on multiple segments in parallel, which still allows us to
detect the pitch in an efficient and more clean way. Though
STE-based segmentation first requires some extra processing,
an improved pitch detection accuracy outweighs the cost of
some additional processing time.

VI.​ SYSTEM IMPLEMENTATION

Our system comprises four major subsystems that integrate
together into one overall pipeline as mentioned in Section III.
In this section, we provide a summary of each subsystem–
namely, the signal preprocessing and calibration, audio
segmentation, rhythm detection and pitch detection, and web
application/user interface. The first stage of the pipeline
requires the user to log into our web application and record a
flute signal through a Gooseneck microphone, which then
triggers the signal preprocessing steps– bandpass filtering and
spectral subtraction– to obtain a clean signal for audio
segmentation. Next, we focus on audio segmentation, where
we use a sliding window approach and Short Time Energy to
detect energy spikes in the signal to detect note onset/offset.
Once we have obtained our segmented audio, we will use a
multithreaded approach to process multiple segments in
parallel. For each segment, we will then perform rhythm
detection to classify the note (whole, half, quarter, eighth, etc.)
based on its duration and BPM rate. Each segment will also
undergo pitch detection via a Fast Fourier Transform (FFT),
which is then converted into a MIDI number and encoded as
part of a MIDI file that aggregates all the MIDI notes. The
MIDI note is then saved into the web application’s database,
which then calls the MuseScore API in order to translate the
MIDI encodings into a sheet music score to be displayed on
the web app’s frontend. The web application enables the user
to view the most recently generated music score along with all
previous ones they have generated.

5
18-500 Design Project Report: Write On Cue 2/28/25

A.​ Subsystem A - Signal Recording, Calibration, and
Preprocessing

Firstly, we decided to use the Behringer CB100 Gooseneck
Condenser Microphone to capture a clear recording of the
flute signal by attaching it to the end of the flute using a
clamp. The microphone will then connect to a laptop to
transfer the audio directly to the laptop to be uploaded to our
website for any necessary preprocessing before being
transcripted. We decided to go with a gooseneck microphone
as it allows us flexibility in moving the microphone in
conjunction with the flute– too close may result in picking up
a distorted signal, and too far may be lost by noise.

For our pipeline, we require the user to first upload a
recording of their background noise (η) in addition to a
recording of the flute signal with the same background (η + 𝜖).
These recordings pass through a calibration step triggered by
the web app, which allows the user to proceed if the flute
signal, 𝜖, is at least 20 dB higher in amplitude than the
noise-only (η) recording. As they record, they are also able to
play a metronome (set to 60 BPM by default), which they then
have the option to adjust in real-time via a slider on the user
interface.

After passing this calibration step, we then pass the
recording of the flute signal through a Butterworth bandpass
filter, which allows us to preserve all frequencies between
260-2096 Hz for a cleaner signal. Depending on how well we
are able to detect the Short Time Energy peaks, we may also
need to implement spectral subtraction (allowing us to subtract
background noise from the recording) and adaptive filtering
(to detect and eliminate background noise levels that vary
throughout the audio).

Fig. 4 Diagram demonstrating the original audio waveform before and after
applying a Butterworth bandpass filter.

B.​ Subsystem B - Audio Segmentation System
The audio segmentation system will be an interface

implemented within software. The intention of this subsystem
is to divide the audio signal into segments, where each
segment will denote a new note played by the flautist. This
additionally will allow us to transcribe notes in parallel,
improving the latency. To implement this, we plan on
incorporating a sliding window of the root mean square of
every 10 ms within python. This will be utilized to find steep

increases in energy, or when the amplitude of the wave has
increased quickly. To prevent any mischaracterization of
multiple notes when it is actually one note, we will be having
a threshold where 100 ms has had to elapsed so one steep
increase in energy, defined as an increase of five dB, is not
transcribed into multiple different note changes. After
determining the times where there has been a steep increase in
the energy or regions of interest, we will divide the audio into
segments between these time intervals. Additionally, we will
be simultaneously using times the frequency has changed,
which can be determined when viewing the signal with a
fourier transform using python libraries like SciPy, and using
those to determine note changes as well since this can be used
to determine if a note has changed in pitch.

Fig. 2.​ Diagram demonstrating how we will be detecting a new segment

or a new note change. Additionally, it depicts peaks that are not steep
enough, i.e. less than a 5 dB change, that would not count as a new note.

C.​ Subsystem C - Pitch Detection System
The flute has a range of three octaves, which spans over C4 to
C7. In order to determine which frequency each note
corresponds to, we will be performing a Fast Fourier
Transform on each of the note segments, where we process
multiple segments in parallel using threading in Python. For
each segment, we perform a Fast Fourier Transform (FFT) that
converts the signal from time to frequency domain, producing
a sequence of frequency “bins”. Each bin represents a small
frequency range (~10Hz), and our algorithm scans the bins to
find the one with the highest amplitude. Once the strongest
frequency is identified, it is converted into a MIDI number
using the following formula:

 𝑚 = 12 × 𝑙𝑜𝑔
2
(𝑓

𝑚
/440 𝐻𝑧) + 69

6
18-500 Design Project Report: Write On Cue 2/28/25

Fig. 3.​ Diagram demonstrating resulting harmonics from performing

Fourier Transforms from individually recorded notes. The fundamental
frequency of each note will allow us to distinguish between the notes
and assign them a MIDI number for the MIDI file encoding.

Fig. 4.​ Pseudocode for a single thread of pitch detection using FFT.

D.​ Subsystem D - Rhythm Detection System
To determine the length of the notes at a basic level would

be to check the length of the segmentation. However, since the
segmentations could include rest times as well, to accurately
transcribe the rhythm or note length, we play on first
calculating what the maximum amplitude of the signal in the
segmentation, from part D, is. Since we are performing
preprocessing and filtering any noise or anomalies, we can
likely assume here that the signal will stabilize after a certain
point in time. After initial experimentation, this stabilization
point looks to be around 25% of the maximum amplitude,
which typically occurs when the flute has just begun to play a
new note. As such, our calculations will only consider a note
to have continued playing if it maintains an amplitude above
20% of the maximum. We will then calculate the duration of
the signal that is above the threshold to determine the length of
a single note. This will then be used in conjunction with the
pitch to be sent to the web application via a MIDI file. These
calculations will be made with basic equations in code and
using libraries to read signals, like SciPy.

Fig. 5.​ Graph of the signal and depiction of the threshold for how we are

determining the length of one note.

Fig. 6.​ Pseudocode detailing the rhythm detection algorithm we will be

implementing in the system.

E.​ Subsystem E - Writing to the Web Application System
The system overall will label the segments based on where

they come in time. For instance, the first system will be known
as segment 1 and increase until there are no more new notes.
The code will then cycle through the segments, in numerical
order i.e. the order in which they are played, and take the pitch
and rhythm, which was calculated for all segments at once in
parallel and stored within the code, to write this into the MIDI
file using the python package MIDO. The code takes in the
BPM the user inputted and utilizes this tempo to encode when
a note is “on” and when a note is “off” or when the note has
begun and ended respectively. From the pitch detection
system, we include the determined pitch, alongside the
rhythm, into a class known as a message. The message is then
attached to a header, which will all be combined to make the
MIDI file. This information will then be uploaded to
MuseScore to be converted into easily viewable sheet music.
The website utilizes this MuseScore API to display this
information on our website and store the transcription within
our SQL database.

7
18-500 Design Project Report: Write On Cue 2/28/25

Fig. 7.​ Pseudocode detailing how the algorithm will write into a MIDI file

and send the note information to the web application. .

F.​ Subsystem F - Web Application System
 The architecture for web application is structured to handle
and facilitate real-time audio processing, transcription, and
user interaction while ensuring efficiency and scalability.

The user interface is developed using Django, integrating
HTML, CSS, and JavaScript. Users can upload flute
recordings, view past transcriptions, and interact with various
features such as BPM adjustment and being able to view a
Help Page. Once all the audio files are uploaded the user is
able to view the transcription of the audio as well as optional
new generated notes from our model. The backend is powered
by a SQL database that stores user data, audio files, and
transcription results, making sure there is efficient data
management and retrieval.

A key feature of the system is the real-time adjustable BPM
metronome, which runs as a separate thread to prevent
interference with flute notes. This functionality is enabled
through WebSockets, allowing smooth synchronization and
user control over tempo adjustments. Additionally, the system
includes an OAuth-based user authentication module, ensuring
secure access and personalized experiences for multiple users.
The architecture is designed to support multiple users
simultaneously.

Fig. 8.​ User Interface of Write On Cue, featuring audio uploads,
metronome control, and profile settings.

G.​ Subsystem G - Generative AI
Model Architecture

Our generative AI system will attempt to generate flute
music by utilizing a Transformer-based generative model
trained on MIDI sequences. We are planning on using a
Transformer model because of its effectiveness in capturing
long-term dependencies in sequential data, making it
particularly useful for music generation. Music has intricate
patterns that include harmony, rhythm, pitch variations, and
melodic structure, which the self-attention mechanism of the

Transformer is highly capable at modeling.
Data Preprocessing

The flute music is represented using a token-based system
derived from MIDI sequences. MIDI provides a precise
representation of musical elements, such as pitch, duration,
and velocity, making it an ideal format for training a
generative model. The MIDI files are converted into a series
of tokens that encode musical notes, timing, and dynamics,
which can then be processed by the Transformer model.

Feature Extraction: Prior to feeding the MIDI data into the
model, we will need to perform several preprocessing steps.
First, we extract individual notes, velocities, and durations
from the MIDI sequences. Pitch normalization is applied to
ensure that the generated output remains within the range of a
typical flute. Rhythm encoding is another critical step, where
we represent the timing of each note relative to a fixed BPM.
Model Training

Dataset: The dataset will need to consist of a combination of
MIDI sequences from flute recordings. The MIDI sequences
will be derived from public databases, while the flute
recordings will either be sourced from the flutists we are
working with or also from public databases like Classical
Archives. The format of the dataset will need to follow the
format of the MAESTRO dataset of piano music. The
diversity of the dataset will make sure that the model learns a
wide range of musical styles, tempos, and articulations.

Training Objective: The model will be trained using a
next-token prediction approach. Given a sequence of notes and
rhythms, the model is tasked with predicting the subsequent
note or event in the sequence. This objective is useful for
music generation, as it allows the model to learn the flow of
musical ideas over time. We will also be using relative
positional encodings, an enhancement over traditional absolute
positional encoding. This allows the model to more accurately
account for the relative timing between notes, rather than
relying solely on their absolute positions in the sequence.

Loss Function: The loss function we will use in training is
cross-entropy, which is commonly used for sequence
prediction tasks.

VII.​ TEST, VERIFICATION AND VALIDATION

A.​ Calibration and Noise Filtering
We will test our calibration and filters by testing the system

in various environments with varying playing volumes. We
plan on testing the recordings in noisy and loud; medium; and
quiet surroundings with varying flute volumes of loud,
medium and quiet, doing nine different conditions. For
instance, testing a loud dynamic recording of the flute within a
quiet environment, like a studio. This will help determine if
our noise filters algorithm will effectively filter out the noise
of the environment without affecting the flute recording.

8
18-500 Design Project Report: Write On Cue 2/28/25

These tests will verify that our design will not record notes
that the flautist did not play by ensuring that noise does not
affect the notes recorded.

Additionally, to help ensure that the flautist is playing at a
loud enough volume after the calibration step, the system will
be measuring the decibels of the environment, from the
calibration recording, and the decibels of the test flute
recording. To test that the decibels are accurately measured,
we will be testing our results against an outside library
function in python and ensuring that our system’s results are
within five dB of the outside library’s to help maintain
consistency. These tests will further ensure that noise is not
transcribed into the generated sheet music.

B.​ Pitch Detection
 Starting out, to test pitch detection we will be playing

scales. Our system will then output sheet music and we will
compare the scale being played to see how accurate our
transcription is. For instance, when playing a simple C major
scale, we would expect to see the ascending notes in the
correct order. When we compare our generated sheet music to
the scale, we want the notes’ pitch to match the scale with a
95% accuracy. We desire a high accuracy to improve user
experience and to ensure a simplified experience for new users
when composing music.

Afterwards, we will be further testing the system by using
more difficult flute compositions of known songs such as
Twinkle Twinkle Little Star and comparing the application’s
generated music with the sheet music from music applications
like MuseScore, still requiring 95% accuracy. These tests aim
to satisfy accurate sheet music generation.

C.​ Rhythm Detection
As a simple test, we will first be playing three different

length notes: a quarter note, a half note, and a whole note. Our
system will then output sheet music and we will compare the
results to the intended lengths played for the recording,
needing at least 95% accuracy over multiple tests when
identifying the lengths of notes. To further test the application,
we will be conducting these tests at varying beats per minute
(BPMs) to accurately identify note length and prevent aliasing.
Similar to the pitch detection, we desire a high accuracy to
improve user experience and to ensure a simplified experience
for new users when composing music.

Afterwards, we will be testing the system with known flute
compositions of songs such as Twinkle Twinkle Little Star and
comparing the sheet music, from music applications such as
MuseScore, to our generated transcription. When comparing
the two, we are still aiming for 95% correct identification of
note length. We expect some difficulty in terms of aliasing.
For instance, if we identify two quarter notes as a half note
instead of the two separate notes. From preliminary testing, we

noticed that when a new note begins, there tends to be a spike
in amplitude, so we hope to use a minimum difference
threshold to accurately identify when a note has changed but
has the same pitch. These tests aim to satisfy accurate sheet
music generation, especially with the high accuracy measure
of 95%.

D.​ Overall Transcription
We will be testing the overall transcription by recording and

transcribing known sheet music to various songs of different
genres and comparing the sheet music to our generated one.
When comparing the pitch and rhythm, we want to ensure that
it has a 95% accuracy in both matching the intended pitch as
well as the intended volume. Furthermore, to ensure positive
user experience, we aim to have the latency of transcription be
less than three seconds. Thus from when the user is finished
recording the flute audio to when they see the finalized,
generated sheet music, this should ideally take, at most, three
seconds. To test this, we will be testing compositions of
varying lengths, such as a one minute song and a three minute
song, and timing how long it takes to transcribe the final
music. As we are planning on running the identification in
parallel, we imagine that the transcription time will be
significantly shorter than if we attempted it in serial.

We are aiming for this short latency as a long transcription
time could hinder user experience as waiting to see results
might cause individuals to lose inspiration or interest in
creating the next measures.

Additionally, to gain user feedback, we will be testing this
in common areas where flautists would be utilizing the device,
like in a home environment or a studio, with flautists from the
Carnegie Mellon School of Music flute studio, in collaboration
with the School of Music.

Fig. 9.​ Diagram demonstrating what the testing process will look like as it

depicts what an incorrect rhythm and an incorrect pitch detection would
be.

9
18-500 Design Project Report: Write On Cue 2/28/25

VIII.​ PROJECT MANAGEMENT

A.​ Schedule
We have included the GANTT chart to outline our schedule.

We are currently on track as we are in the process of
implementing the individual subsystems of our project. We
have the basics of website framework down, allowing
individuals to log in with OAuth, upload files, and input a
BPM. In terms of the transcription, we are currently
experimenting with audio segmentation and using the
information obtained from the fourier transforms and the
amplitude of the signal to determine when there has been a
note change. The main milestone for the web application will
be having an easy to use website be able to take in a recording
and create a transcription for the user. For the transcription,
the main milestone will be to analyze the signal and convert it
into the individual notes, with accurate pitch and rhythm. See
end of document for our full schedule in Figure 11, which
includes more detailed time frames of testing, implementation
and design, as well as the final integration timeline.

B.​ Team Member Responsibilities
Each team member is responsible for a subsystem of the

design. Shivi and Grace will be working mostly with the
signal processing as they oversee the audio segmentation
calculations and the detection of rhythm and pitch from the
segmentations. We have overlapped these subsystems with
team members because we believe that the two subsystems are
extremely integrated and the collaboration between the two
calculations help with smoother and faster detection times.
Deeya will oversee the front end of the web application and
establish authentication and security within the site. During
this time, since Grace and Shivi’s project is more frontloaded
will be software support as Grace will help with the generation
of the sheet music and Shivi will aid in the integration.

Audio Segmentation Shivi + Grace

Noise Filtering Shivi

Rhythm Detection Grace

Pitch Detection Shivi

Web Application
Framework + Front End

Deeya

Integration of Signal
Processing

Shivi + Grace

Gen AI Deeya

Integration of Signal to
Website

Shivi + Grace + Deeya

C.​ Bill of Materials and Budget
Our bill of materials can be viewed in Table II at the end of

this document in Table I. We project that our system will be
fairly inexpensive at a total cost of $50.29 currently.

D.​ TechSpark Use Plan
We do not plan on using TechSpark for our project.

E.​ Risk Mitigation Plans
The primary risk for this project is the audio segmentation

step. When looking at the audio waves, there tends to be a lot
of variation within the waves amplitude. This could be the
result of outside noise or inconsistent tone with the flute. In
turn, all these various peaks could interfere with calculating
the audio segments, or when a new note has occurred. To
mitigate these, we plan on using a sliding root mean square
(RMS) equation to look for the energy of the wave, rather than
solely relying on the amplitude. This helps reduce the impact
of noise in the signal.

Another risk is the latency. We want to make this experience
enjoyable for all users and musicians. Having long wait times
in between recordings and the transcription visualization
would hurt the overall experience, thus we are aiming for a
less than three second wait time between the recording upload
and the result loading. To mitigate a long latency, we plan on
running our audio segmentations in parallel, reducing the
amount of time long compositions would take to transcribe
into sheet music.

IX.​ RELATED WORK

This project shares similarities with MuseScore where
individuals are able to convert MIDI files into sheet music. As
such, we will be using this API for preliminary stages before
developing our own function to read a MIDI file and generate
sheet music within our own website.

Furthermore, there have been many past transcription
projects for various other instruments in the past, but the
project that is most similar to ours is Transcriber in which the
group created an application to transcribe piano recordings
into sheet music, using a combination of hardware and
software. Our projects are similar in that they both take in
musical recordings to generate visual sheet music but they
different in the components, as we are solely using software to
do our calculations, as well as the instrument, since we are
focusing on the flute. We believe that this will help with
complexity of the basic framework as the flute has a limited
range of pitches it can produce.

10
18-500 Design Project Report: Write On Cue 2/28/25

X.​ SUMMARY

Our website is designed to make the process of composing
music easier and more accessible for all individuals by
eliminating the tedious process of copying down the notes. To
do so, we will be creating a web application that will take in a
flute recording and transcribe the corresponding sheet music
by analyzing the rhythm and pitch of the audio signal through
various python libraries. Some upcoming challenges include
correctly identifying where a note begins in audio
segmentation and integration where we connect our signal
processing methods to the web applications while
simultaneously ensuring that our system meets the accuracy
and latency requirements outlined in the use-cases.

GLOSSARY OF ACRONYMS.

BPM – Beats Per Minute
dB – Decibels
MIDI - Musical Instrument Digital Interface

REFERENCES
[1]​ Ruffley, Wang, and Tarczynski, Transcriber, Accessed on Feb 26, 2025,

[Online]. Available:
https://course.ece.cmu.edu/~ece500/projects/f23-teamb5/

[2]​ Von Seggern, Ian. "Note Recognition in Python." Medium, Accessed on
Feb 26, 2025 [Online]. Available:
medium.com/@ianvonseggern/note-recognition-in-python-c2020d0dae2
4.

[3]​ “About MIDI — Mido 1.3.4.Dev6+Ga0158ff Documentation.”
Readthedocs.io, 2025, mido.readthedocs.io/en/latest/about_midi.html.
Accessed 28 Feb. 2025.

[4]​ “Signal Processing¶.” Signal Processing - SciPy Cookbook
Documentation,
scipy-cookbook.readthedocs.io/items/idx_signal_processing.html.
Accessed 28 Feb. 2025.

[5]​ Classicalarchives.com, 2020, www.classicalarchives.com/newca/#.

https://course.ece.cmu.edu/~ece500/projects/f23-teamb5/
http://medium.com/@ianvonseggern/note-recognition-in-python-c2020d0dae24
http://medium.com/@ianvonseggern/note-recognition-in-python-c2020d0dae24
http://www.classicalarchives.com/newca/#

11
18-500 Design Project Report: Write On Cue 2/28/25

12
18-500 Design Project Report: Write On Cue 2/28/25

13
18-500 Design Project Report: Write On Cue 2/28/25

	I.​INTRODUCTION
	II.​USE-CASE REQUIREMENTS
	A.​Accuracy
	B.​Latency
	C.​Output Format
	D.​Public Health, Safety, and Welfare Considerations
	E.​Global, Cultural, Social, Environmental, and Economic Factors

	III.​ARCHITECTURE AND PRINCIPLE OF OPERATION
	IV.​DESIGN REQUIREMENTS
	V.​DESIGN TRADE STUDIES
	A.​Signal Processing: Software vs. Hardware-Software Approach
	B.​Rhythm Detection: Tempo Detection vs. Metronome
	C.​Audio Segmentation vs. Sliding Window FFT
	 Originally, we intended to transcribe the audio in real-time. However, this is no longer a priority– after speaking with musicians from the School of Music, we found that it is instead more practical for a user to be able to upload an audio file and receive a transcription. Given this change, we have opted for an approach where the recording is processed at once after the musician finishes playing. Instead of using a sliding window FFT, which may introduce boundary issues (in detecting note onset/offset), we will first segment the audio and process each segment independently for rhythm and pitch detection.To do so, we will apply a sliding window STE (Short-Time Energy) for note segmentation. This is useful for ensuring that each segment contains a full note before performing FFT and avoids splitting the notes across windows. Applying sliding window FFT prior to segmentation can split notes across windows, which makes it more difficult to detect clean frequency peaks. Instead, we will perform the FFT on multiple

	VI.​SYSTEM IMPLEMENTATION
	A.​Subsystem A - Signal Recording, Calibration, and Preprocessing
	B.​Subsystem B - Audio Segmentation System
	C.​Subsystem C - Pitch Detection System
	D.​Subsystem D - Rhythm Detection System
	E.​Subsystem E - Writing to the Web Application System
	F.​Subsystem F - Web Application System
	G.​Subsystem G - Generative AI

	VII.​TEST, VERIFICATION AND VALIDATION
	A.​Calibration and Noise Filtering
	B.​Pitch Detection
	C.​Rhythm Detection
	D.​Overall Transcription

	VIII.​PROJECT MANAGEMENT
	A.​Schedule
	B.​Team Member Responsibilities
	C.​Bill of Materials and Budget
	D.​TechSpark Use Plan
	E.​Risk Mitigation Plans

	IX.​RELATED WORK
	X.​SUMMARY

