Data Analyst

Author: KhoiVN
Github: https://qgithub.com/vnk807 1/machine-learning-learning-path

Course 1: Introduction to Data Analysis with Pandas
and NumPy

The Data Analysis Process

Problems Solved by Data Analysts

Intelligent analysis of data can result in some awesome stuff. Netflix's personalized movie
recommendations, Facebook's news feed ranking algorithm, and OkCupid's predictive matching
all rely on the work of data analysts.

But data analysts don't only work at tech companies! Data analysis has applications in a variety
of industries.

Data Analysis Process Overview

QUESTION - WRANGLE EXPLORE CONCLUSIONS
o;b allall
‘ [1\

Step 1: Ask questions

Either you're given data and ask questions based on it, or you ask questions first and gather
data based on that later. In both cases, great questions help you focus on relevant parts of your
data and direct your analysis toward meaningful insights.

Step 2: Wrangle data
You get the data you need in a form you can work with in three steps: gather, assess, and clean.
In other words, you:
- gather the data you need to answer your questions,
- assess your data to identify any problems in your data’s quality or structure, and
- clean your data by modifying, replacing, or removing data to ensure that your dataset is
of the highest quality and as well-structured as possible.

https://github.com/vnk8071/machine-learning-learning-path

Step 3: Perform EDA (Exploratory Data Analysis)

You explore and then augment your data to maximize the potential of your analyses,
visualizations, and models. Exploring involves finding patterns in your data and visualizing the
relationships in your data. After exploring, you can do things like remove outliers and create
better features from your data, also known as feature engineering.

Step 4: Draw conclusions

This step is often approached with machine learning or inferential statistics techniques that are
beyond the scope of this course. Check out the Data Scientist Nanodegree if you're interested in
learning more.

In this course, you will focus on drawing conclusions with descriptive statistics and data
visualizations.

Step 5: Communicate your results

You often need to justify and convey meaning in the insights you’ve found. Or, if your end goal is
to build a system, you usually need to share what you've built, explain how you reached design
decisions, and report how well it performs. There are many ways to communicate your results:
reports, slide decks, blog posts, emails, presentations, or even conversations. Data visualization
will always be very valuable, and you will learn data visualization fundamentals in this course.

Packages Overview

One of the biggest reasons that Python is considered the standard language for data science is
its powerful packages. NumPy, pandas, and Matplotlib are three core packages for data
analysis that we'll be learning to use in this course. If you are new to these packages—or need
a refresher—check out the summary below highlighting their top-level features and use cases.

NumPy
- Used in scientific computing
- Provides data structures and mathematical operations
- Provides a set of core operations used in other packages
Pandas
- Data manipulation and analysis library
- Provides data structures and tools for working with structured data
- Similar working with spreadsheets using code
Matplotlib
- Plotting library
- Provides a flexible and customizable environment for creating high-quality data
visualizations

Jupyter Notebooks

The Notebook is a web application that allows you to combine:
- code,
- explanatory text,
- math equations,
- data tables, and
- visualizations
all in one easily sharable document that is connected to a backend server for executing code.

g
F S
[a 'l [Fy]
= g
I =
00 Notebook
) Browser Kernel
N server
Use

MNotebook
file

Notebook Server

The central point is the Notebook server. You connect to the server through your browser, and
the notebook is rendered as a web app. The code you write in the web app is sent through the
server to the kernel. The kernel runs the code and sends it back to the server, then any output is
rendered back in the browser. When you save the Notebook, it is written to the server as a
JSON file with a .ipynb file extension.

IPython to Jupyter

The great part of this architecture is that the kernel doesn't need to run Python. Since the
Notebook and the kernel are separate, code in any language can be sent between them. For
example, two of the earlier non-Python kernels were for the R and Julia languages. With an R
kernel, code written in R will be sent to the R kernel where it is executed, exactly the same as
Python code running on a Python kernel. IPython Notebooks were renamed to Jupyter
Notebooks because notebooks became language agnostic. The new name Jupyter comes from
the combination of Julia, Python, and R.

Notebook Interface

2
— Jupyter Quit
Files Running Clusters
Select items to perform actions on them. Upload [
Notebook:
Oo + B/ new_folder Name | Python 3 (ipykernel) |,
(= Other:
o Text File
The notebook list is empty.
Folder
Terminal

- . +— File name i
" J u pyter UntltIEd unsaved changes) Current enVerﬂmfnt P
File Edit View Insert Cell Kernel Help <— Menu options &

+ x @B 4+ ¥ WM E C| Code 3 CellToolbar = |+— Shortcut icons

\Switch the type of a cell

In []: | ‘
A code cell
- i
~ Jupyter 1. Click here, and navigate to the = %" | o9t
file that you want to open.
Files Running Clusters
2. Click here again to upload the

Select items to perform actions on them. file to the server Upload | New ~ &

Jo | ~ @/ Name % Last Modified File size

& | working-with-code-cells.ipynb | Cancel

0O & Untitled.ipynb Running 2 hours ago 555 B

Code Cells

’ Ju pyter working_with_code_cells Last Checkpoint: Last Saturday at 4:11 PM (autosaved) P
File Edit View Insert Cell Kernel Help Not Trusted | Python 3 (ipykernel) O

B+ X @ B 4 v PRn B C » Makdown MEE=]

Working with code cells
In this notebook you'll get some experience working with code cells.
First, run the cell below. As | mentioned before, you can run the cell by selecting it the click the "run cell" button above.

However, it's easier to run it by pressing Shift + Enter so you don't have to take your hands away from the keyboard.

In []: # Select the cell, then press Shift + Enter
3%%2

Shift + Enter runs the cell then selects the next cell or creates a new one if necessary. You can run a cell without changing the
selected cell by pressing Control + Enter.

The output shows up below the cell. It's printing out the result just like in a normal Python shell. Only the very last result in a
cell will be printed though. Otherwise, you'll need to use print() print out any variables.

N Menu z" Expand

Markdown Cells

As with code cells, you press Shift + Enter or Control + Enter to run the Markdown cell, where it
will render the Markdown to formatted text. Including text allows you to write a narrative
alongside your code, as well as to document your code and the thoughts that went into it. Below
is a brief summary of Markdown concepts.

Links

Linking in Markdown is done by enclosing link text in square brackets and the URL in
parentheses, like this [Udacity's home page](https://www.udacity.com) for a link to Udacity's
home page.

Emphasis

You can add emphasis through bold or italics with asterisks or underscores (* or _). For italics,
wrap the text in one asterisk or underscore, e.g. _gelato_ or *gelato* renders as* gelato*.

Bold text uses two symbols, e.g. **aardvark** or __aardvark__ looks like aardvark.

Either asterisks or underscores are fine as long as you use the same symbol on both sides of
the text.

Code

There are two different ways to display code, inline with text and as a code block separated from
the text. To format inline code, wrap the text in backticks. A backtick is a character that can be
typed in the upper left of the keyboard.

o

import requests
response = requests.get('https://www.udacity.com')

-

Math expressions

You can create math expressions in Markdown cells using LaTeX symbols. Notebooks use
MathJax to render the LaTeX symbols as math symbols. To start math mode, wrap the LaTeX in
dollar signs $y = mx + b$ for inline math. For a math block, use double dollar signs,

$$
y = \frac{a}{b+c}
$$

Images

In order to embed images into your Markdown cells, it is very similar to links. In this case, you
are placing text within square brackets and the image location (URL or file path) in parentheses.
The only difference is adding a ! at the beginning before the square brackets. The text in the
square brackets becomes the alt text.

I[GitHub octocat dressed as an astronaut](https://octodex.github.com/images/octonaut.jpq)

https://octodex.github.com/images/octonaut.jpg

Converting Notebooks

@ @ working_with_code_cells.ipynb UNREGISTERED

<P working_with_code_cells.ipynb

{
cells": [
{
cell_type": "markdown",
metadata": {},
source": [
Working with code cells\n",
\n",
In this notebook you'll get some experience working with code cells.\
\n", |
First, run the cell below. As I mentioned before, you can run the cel,

cell_type": "code",

execution_count":

metadata": {},

outputs": [1,

source": [
Select the cell, then press Shift + Enter\n",
3%%2

|

’

5
{

cell_type": "markdown",
metadata": {},
source": [
Shift + Enter runs the cell then selects the next cell or creates a r

I Line 28, Column 26 Spaces: 4 JSON
Since notebooks are JSON, it is simple to convert them to other formats. Jupyter comes with a
utility called nbconvert for converting to HTML, Markdown, slideshows, etc. The general syntax
to convert a given .ipynb file to another FORMAT is:

jupyter nbconvert --to FORMAT jupyter_intro.ipynb
The currently supported output FORMAT could be any of the following:

- HTML (html),

- LaTeX (latex),

- PDF (pdf),

- WebPDF (webpdf),

- Reveal.js HTML slideshow (slides),

- Markdown (markdown),

- ASCII (asciidoc),

- reStructuredText (rst),

- Executable script (script),

- Notebook (notebook).

Scripting Your Analysis
.Jupyter ' 'Jupyter print_columns_script.pyv afew seconds ago

File Edit View Language
$ python print_columns_script.py

age

workclass import pandas as pd
fnlwgt
education
education-num
marital-status

df = pd.read csv("census_ income data.csv")

for column in df.columns:
print(column)

occupation
relationship

race

sex
capital-gain
capital-loss
hours-per-week
native-country
income

*1

' Jjupyter - Jjupyter print_columns_function_script.pyv aminute ago

File Edit View Language
$ python print columns script.py
age

workclass

fnlwgt

education

education-num

marital-status

occupation

relationship

import pandas as pd

def load df():
df = pd.read csv('"census_income data.csv")
return df

race

def print columns(df):

sex for column in df.columns:
capital-gain print(column)
capital-loss

hours-per-week

native-country if _name == "_main_ ":
income df = load df()

$ I print_columns (df)

: Jjupyter plot_age_income_script.pyv aminute ago

<=50K
5000 1 == File Edit View Language
4000 +
1 import pandas as pd
30001 2 import matplotlib.pyplot as plt
2000 j
oo | _jl. 5 def load df():
6 df = pd.read_csv('"census income data.csv")
u,m 7 return df
20 30 40 50 60 70 80 90 8
9
10 def plot_hist(arrl, arr2, labell, label2):
11 ax = arrl.hist(color="r", alpha=0.5)
12 ax = arr2.hist(color="b", alpha=0.5, ax=ax)
13 ax.legend([labell, label2])
14 plt.savefig("hist.png")
15
16
17 if _ name__ == "_main_ ":
18 df = load_df()
19 below = df.query('income == " <=50K"")
20 above = df.query('income == " >50K"")
21 plot_hist(below.age, above.age, "<=50K", ">50K")

22
Final thoughts
These were just simple examples to expose you to a different workflow. Writing and running
scripts from your terminal is a very flexible and powerful way to program. This is more ideal as a
development environment than Jupyter Notebook - which still works and is very useful, but more
suited for things like reports.

Exploring and Inspecting Data

Data Wrangling and EDA

¥V Explore

¥V Augment

There are plenty of examples of data wrangling and EDA concepts within the industry. For
example, you may need to clean large amounts of data before entering it into a database
because some fields you collected on a web page are empty. Or augment the data by
normalizing and correcting any spelling errors that the user may have put into a field by mistake.

Gathering Data

Reading CSV Files

Continuing with the practice of gathering data for analysis, we're introducing several new
datasets for you to read into DataFrames. You've seen .read_csv() before, but now let's
understand its functionality better.

The .read_csv() method will read any CSV-type file and transform it into a pandas DataFrame.
This is incredibly useful, as you can leverage all the power of pandas on the data from the CSV.
For comparison, Excel is limit bound by the number of rows it can handle, which makes
analyzing large datasets difficult.

Assessing and Building Intuition

Now that we've become comfortable with reading in new and interesting datasets, our next step
is to start exploring the data. Previously in the lesson, we spoke about asking questions prior to
inspecting the data, or during and after our inspection.

attribute/method description

.shape returns the shape of the DataFrame

.dtypes returns each datatype of the columns

.info() returns info about the DataFrame including the number of non-null values
.nunique() returns number of unique values for each column

.describe() returns summary statistics, e.g. count, mean

.head() returns first few lines of DataFrame

.tail() returns last few lines of DataFrame

Manipulating Data using Pandas and NumPy

Common Issues in Data

Once you have a DataFrame, it's important to inspect the data and correct any issues that arise.
Some of these issues can be:

- Incorrect data types

- Missing data

- Duplicates

- Structural problems, such as Different column names, Mismatched number of records

Basic Data Cleaning with Pandas

Missing Data: fillna() will fill any null values in your DataFrame with the values used in the
method.
Duplicates:
- .duplicated() will return True or False for any rows that are duplicates. You can specify
which columns used to compare.
- .drop_duplicates() will drop duplicated given an array the length of your DataFrame with
True/False. You can use the inplace=True parameter to modify your current DataFrame.
Incorrect Data Types: .to_datetime() will convert a string representation of a datetime into a
datetime object. This is important when you want to work with datetimes.

Pandas Query

The first way you typically learn to select rows in a dataframe is by indexing with a mask. This is
a very powerful and flexible technique, but it often involves repeating the name of the dataframe
like df[dff...]...].

If you are filtering a dataframe based on the contents of that same dataframe, the query()
method provides simpler syntax, which looks like this: df.query("...").

Pandas Data Types

Pandas Data Types
e Objects

e Integers

e Floats

e Booleans

e Datetimes

e Categorical

Converting Data Types
e Casting using dictionary mapping
df['column_A'] = df.astype({'column_A': 'int32'})

e Casting using series
df['column_A'] = df['column_A'].astype('int32")

Data Type Optimization

Luckily in pandas, there are some options that we can use to optimize how our DataFrames are
stored in memory. Since pandas uses NumPy, and NumPy is based on C, we can leverage what
kind of datatypes we use to reduce our memory footprint and give us flexibility in working with
larger datasets.

Here is a list of a few techniques that can be used:

- Ints and floats have different bit sizes. If the range of values in your column fits lower bit
sizes, try reducing it — for example, changing an int64 to int16. You can use NumPy
iinfo for integers and NumPYy finfo for floats to see the minimum and maximum values
that can be represented by each size. For example, np.iinfo("int16") will tell you that
int16 columns can hold values between -32,768 and +32,767

- If a numeric value is stored as a float, but in reality it is an int, changing the datatype may
reduce the memory required to store those values.

- Ifa string's column is repetitive or not very unique, it can be changed to the category
datatype. This reduces space as it only has to store the unique values in memory
instead of storing every single character of every string.

Concatenating Data

Concatenating DataFrames

pd.concat(

Types of Merges

Inner Join - Use intersection of keys from both frames.
Outer Join - Use union of keys from both frames.

Left Join - Use keys from left frame only.

Right Join - Use keys from right frame only.

Pandas Explode

Pandas Explode

df.explode()

|[1,2,3,4]| =)

AlWiN] -

[n.2.3,4| wep s N ED

pd.DataFrame(df['column'].values.tolist())

Communicating Results

Optimization Using NumPy

To analyze and communicate our data more quickly, we'll utilize the underlying technology that
empowers pandas to be so efficient. NumPy is written in C, and while it is a Python library, it
uses C for the majority of its computation. Because of this, it gives us the flexibility and ease of
use with Python, and the power of C!

Pandas Groupby

Pandas' answer to this is the .groupby() method, a method that allows you to group your data by
a specific column(s) and create aggregate information about those groupings. It also allows for
group-specific transformations. In this section's notebook, we will get familiar with the groupby
method and use it to get summary statistics about different groups in our data.

Summation

Summation is the process of adding together numerical values to achieve a cumulative total.
For pandas, you can do this on a Series, Group, or a DataFrame by using the .sum() method.
For DataFrames, one can calculate data either vertically, .sum(axis=0), or horizontally,
.sum(axis=1), via the axis parameter. While this process may seem ftrivial, it is vitally important
for all of the downstream methods we'll be talking about in this lesson.

Summing over a range of data has special use cases as well. Any time we need to gather grand
totals for some comparison, summation will be the main method. Examples could be summing
reports based on financial data, or counting errors that trigger an alert for monitoring APls.

Measures of Center

Measures of center, which include mean, median, and mode, are essential in data analytics for
providing a summary of a dataset focused on its center. These three measurements help
analysts gain a deeper understanding of the data by defining a value that it determines is a
representation of the dataset.

Mean - .mean(): Otherwise known as average. Mean is the sum of all numbers in a set, divided
by the number of values in the set.
Example: [1, 2, 3, 4, 5] has an average of 3 (15 divided by 5).

Median - .median(): Median is the center value in a set. In order to find the center value, you
must always sort your set of values first. If the number of values in the set is even, take the
midpoint between the two center values.

Example:

[2,1,4,5, 3] sorts to [1, 2, 3, 4, 5], 3 is the median

[2,1,4,5,3,6]sorts to [1, 2, 3, 4, 5, 6], 3.5 is the median

Mode - .mode(): Mode is the value that has the highest frequency in a set.
Example: [1, 2, 2, 3, 3, 3, 4, 4, 4, 4], 4 is the mode

Why are these important?

For one, measurements of center provide a quick and easy way to know basic characteristics of
your dataset. But they also are fundamental for advanced analysis, including measures of
spread and identifying outliers. Overall, finding the mean and median will be so prevalent in your
future data analysis work, it will become second nature.

Measures of Spread

Measures of spread include quantiles, standard deviation, and variance. Without getting too
deep into the statistical details, it's useful to have a broad understanding of these measures and
what they mean in your data.

Quantiles - .quantile(): Quantiles are values that split a group of data into equal parts, helping to
show how the data is spread out.
Example:

- [1,2,3,4,5]

- 25% quantile = 2

- 50% quantile = 3 (commonly referred to as the median)

- 75% quantile = 4

Standard Deviation - .std(): Standard deviation is a measure that shows how much the
individual numbers in a group differ from the average, giving an idea of how spread out the data
is. The reason we can compare individual numbers to the group is because S.D. is measured in
the same unit of measurement as our data.

Below is the general equation to calculate the standard deviation. You'll notice two equations
here. The top calculates the S.D. for a population, the bottom calculates the S.D for a sample.
Typically you will never be able to measure a "true" population, so pandas by default calculates
S.D. for a sample.

Y (X —)2
N

O =

2 (x; — x)?

n-—1

Example:

[1,2,3,4,5]

Mean =3

[1-3,2-3,3-3,4-3,5- 3] (subtract mean from each value)
[2,-1,0,1, 2]

[4,1, 0,1, 4] (square each value)

10 /4 = 2.5 (sum values in list, divide by list length - 1, for sample)
2.570.5 = 1.581 (take the square root)

Variance - .var(): Variance is a measure that helps us understand how the numbers in a group
differ from their average, giving a sense of how scattered or clustered the data is.

Variance is calculated by squaring standard deviation value.

Example:

[1,2,3,4,5]
Standard deviation = 1.581
1.58122=25

Exploring Data with Visuals

Positive Negative
Correlation Correlation Correlation

DISTRIBUTION OF TEMPERATURES

Histogram
e Displays the distribution of numerical data.
e Divides data into bins and shows frequency of observations in each bin.

1750 A

1500 A

1250 -

1000 A

750 A

500 A

250 1

0_

Bar Chart
e Compares different categories.
e Shows values as bars of different lengths.

Pie Chart

e Shows the proportion of different categories.

e Displays as slices of a pie.

AP

AT

RH

7o)
™
o

Scatter Plot
e Displays the relationship between two numerical variables.
e Plots points on a two-dimensional graph.
e Positive correlation of the two variables if the slope is increasing from left to right
(positive slope).
e Negative correlation of the two variables if the slope is decreasing from left to right
(negative slope).

490 A

480 A

470 1

460 -

PE

450 A

430 A

420 A

Box Plot
e Displays the distribution of numerical data.
e Shows five key values: minimum, first quartile, median, third quartile, and maximum.

35

30 A

25 A

20 A

15:4

10 ~

AT

Communicating Results

Visuals can be used to efficiently communicate conclusions drawn from your analysis. Note the
labeling, color, size, and data selection arguments for histograms, bar charts, and pie charts in
the examples on the following pages. These can be used to customize your visualizations.

These are a few of the parameters you can change in pandas' .plot() method.

Figsize: This parameter in the .plot() method of Pandas allows you to set the size of the
figure or plot. The syntax for setting this parameter is df.plot(figsize=(width, height)),
where width and height are the desired dimensions in inches. For example,
df.plot(figsize=(10, 5)) will create a plot with a width of 10 inches and a height of 5
inches.
Title: You can add titles to your Pandas plot by using the title parameter in the .plot()
method. The syntax is df.plot(title='Title of Plot"). This will add a title to your plot with the
specified text.
xlabel, ylabel, and ylim: You can customize the labels and other properties of the x-axis
and y-axis of your Pandas plot by using the xlabel, ylabel, and ylim parameters. The
syntax for setting these parameters is as follows:
df.plot(xlabel="X Axis Label') # sets the label for the x-axis
df.plot(ylabel="Y Axis Label') # sets the label for the y-axis
df.plot(ylim=(min_value, max_value)) # sets the minimum and maximum values
for the y-axis
Color: You can color your Pandas plot using the color parameter in the .plot() method.
The syntax for setting this parameter is df.plot(color='color_name'). You can use any
valid color name (e.g. 'blue’, 'red', 'green’) or a hexadecimal color code (e.g. '#0026ff") to
set the color.
Legend: The legend in a Pandas plot provides a key to identify the different lines or plots
in the figure. You can add a legend to your plot by using the legend parameter in the
.plot() method. The syntax for setting this parameter is df.plot(legend=True). If you set
legend to True, the default legend will be added to your plot.

Course 2: Advanced Data Wrangling

Introduction to Data Wrangling

Big Picture

/

Gather data Assess data Clean dat

Data wrangling

~

Answering
questions

AT
11

Store data Store data Producing

\ / visualizations

Compare data wrangling with other data processes

While with basic data inspection, you may have data just handed to you, data wrangling
involves actively gathering data and strategizing around implementing your wrangling
workflows.

Data wrangling is a more formal-structured process compared to the exploratory efforts used in
Exploratory Data Analysis (EDA).

Wrangling data is also often done by analysts and can be used in conjunction with Extract,
Transform, and Load (ETL) done by IT teams to ensure a company has a concrete strategy to
handle the data.

Note that data wrangling involves several different stakeholders, typically including data
analysts, business leaders, data providers, IT teams, and more, who influence how data is
generated and moves throughout an organization or even an entire industry.

Gathering Data
Why Do We Wrangle data?

&=

Gather Assess Clean

=l
L

o
&

Obtain data Extract data

Data is everywhere - think wearable devices, hospital equipment, and interactive kiosks in a
shopping mall!

The first step in the data wrangling process is grabbing this data and converting it into a format
you can work with as a data analyst! In this sense, data gathering contains two sub-steps:

- Obtaining the data from different sources, like websites or Applications Programming
Interfaces (APIs).
- Extracting the obtained data into a format suitable for assessment and cleaning.
With this data, we could then use the data to answer questions after assessing and cleaning it.

Files on Hand

e Check file safety

e Check file extension and open via right app

=

.Zip to Store Multiple Files

.zip (Windows, Mac, Unix) .tar.gz (Unix)

e Programmatically unzipping files helps with reproducibility

Reproducible Workflows

e Name your folder descriptively and consistently
e Name these subfiles constructively m

e Create a clear structure of data files within your

.zip folder g

=

Flat File Structure

What Are Flat Files?

ranking,critic_score,title,number_of_critic_ratings
1,99,The Wizard of 0z (1939),110
2,100,Citizen Kane (1941),75

3,100,The Third Man (1949),77

4,99,Get Out (2017),282

5,97,Mad Max: Fury Road (2015),370

6,100, The Cabinet of Dr. Caligari (Das Cabinet des
Dr. Caligari) (1920),49

7,100,A11 About Eve (1950),64

8,98,Inside Out (2015),324

9,99, The Godfather (1972),85

ranking crit:_score ttie number_of_critic_ratings

1 99 The Wizard of Oz (1939) 110
2 100 Citizen Kane (1941) 75
3 100 The Third Man (1949) 7
4 99 GetOut(2017) 282
5 97 Mad Max: Fury Road (2015) 370
6 100 The Cabinet of Dr. Caligari (Das Cabinet des Dr. Cal 49 .tsv
7 100 All About Eve (1950) 64
8 98 Inside Out (2015) 324
9 99 The Godfather (1972) 8s

Flat files are simple data files that have a uniform format, such as some text files (.txt),
comma-separated values (.csv), and tab-separated values (.tsv).
Let's recap the key properties of flat files:

- They are tabular data in plain text

- Eachline is a single data record

- Each record has one or more values or fields

- These values/fields are separated by delimiters or some sort of “character”, like tab

spaces, commas, or semicolons.
Tab-separated values use tabs as delimiters, whereas comma-separated value files use
commas or sometimes semicolons as the delimiter. Note that not all .txt files are flat files. And
Microsoft Excel files (.xIsx) files are not flat files, because .xIs often contains more advanced
features like formatting, formulas, and multiple sheets within a single file. Flat files simply store
tabular data in plain text without additional features or structures.
File

"animal","body", "brain"

"Mountain beaver",1.35,8.1

"Cow",465,423 .Csv.
"Grey wolf",35.33,119.5

"Goat",27.66,115

animal body brain
Mountain beaver 1.35 8.1
Cow 465 423 tsv

Grey wolf 35.33 119.5
Goat 27.66 115

"animal";"body";"brain"

"Mountain beaver";1.35;8.1

"Cow" ;465,423 .Csv
"Grey wolf";35.33;119.5

"Goat";27.66;115

Text File Structure

What is a text file?

e Text files (.txt) are files with text that:
o Use a specific character set
o No rules for structure and no formatting

(e.g., italics or bolding)

o No media (e.g., image and video) i oo
1 From: lipman@oasys.dt.navy.mil (Robert Lipman)
L. ft t th t t d b I' Subject: CALL FOR PRESENTATIONS: Navy Sciviz/VR Seminar
o Lines of text that are separated by newline
CALL FOR PRESENTATIONS
CharaCterS Or \\‘ in Python NAVY SCIENTIFIC VISUALIZATION AND VIRTUAL REALITY SEMINAR
o Can be viewed and edited in simple text Se————
Carderock Division, Naval Surface Warfare Center
. (formerly the David Taylor Research Center)
edltors Bethesda, Maryland
SPONSOR: NESS (Navy Engineering Software System) is sponsoring a
one-day Navy Scientific visualization and virtual Reality Seminar.
The purpose of the seminar is to present and exchange information for
Navy-related scientific visualization and virtual reality programs,
research, developments, and applications.
Encoding and Character Sets
"
(N
L
|
ap IF- - U+0041
. ’ i
T Encoding U+0063
Character sets Unique numeric identifier
1000001
01100011
Text vs. Byte Types in Python
e .encode(): turn a character
string into a byte string
e decode(): turn a byte string
into a character string Bytes is immutable - once created, the object cannot be

e Python string type: str - holds ~ modified

Unicode data.

e Python bytes types: bytesand Bytesarray is mutable - it can be modified after creation

bytearray

Gathering Data with APIs

API (Application Programming Interface)

Bl ey

e Example: Login with Social Media/Email Account

e Benefits for data gathering
o Developer tools/libraries for efficient data gathering

o APIs are endorsed by data providers

JSON File Structure
JSON File Structure

e JSON: Javascript Object Notation {
"Directed by": "Steven Spielberg",
"Produced by"|: [

e Structure 1: JSON Objects "Kathleen Kennedy",
"Steven Spielberg"

e Different from flat files

o Key-value pairs]

G "Written by": "Melissa Mathison"
o Interpret as Python dictionary "Star‘r‘ing")'/ [!
o Keys must be strings “Dee Wallace"”,
"Henry Thomas",
e Structure 2: JSON Array "Peter Coyote",

"Robert MacNaughton",

o Ordered list of values "Drew Barrymore"

o Interpret as Python list X]

JavaScript Object Notation (JSON) is a popular format for representing data! JSON is built on
two key structures:

- JSON Objects: A collection of key-value pairs. In Python, JSON objects are interpreted
as dictionaries, and you can access them like you would a standard Python Dictionary.
Note that JSON object keys must be strings.

- JSON Arrays: A JSON array is an ordered list of values. In Python, JSON arrays are
interpreted and accessed like Python Lists. The values for JSON objects and arrays can
be any valid JSON data type: string, number, object, array, Boolean or null.

When objects and arrays are combined, it is called nesting. Through nesting, JSON becomes
great for representing and accessing complicated data hierarchies. For example, in the JSON
file below, the collection attribute is neatly nestled within the metadata attribute, indicating the
book collection data comes under metadata

Web Scraping

Data is oftentimes not easily accessible from websites. To get this data, data wranglers
sometimes need to use web scraping, which allows us to extract data from websites using code.

Website data is written in HTML (HyperText Markup Language), which uses tags to structure the
page. Because HTML and its tags are just text, the text can be accessed using parsers.

We can gather HTML data by downloading HTML files manually or accessing them
programmatically.

HTML File Structure
Hypertext Markup Language (HTML) files

This is a heading.
<!DOCTYPE htmlL> _
<html> This is a paragraph.
<head>
<meta ="utf-8" />
<title>HTML Structure</title>
</head>
<body>

<h1>This is a heading.</h1>

<p>This is a paragraph.</p>

<p>This is another paragraph</p>

This is a span.

 Another span!
</body>

</html> This is another paragraph

This is a span. Another span!

Relational Databases for Data Wrangling

Storing Data - Database

A database is an organized collection of data that is structured to facilitate the storage,

retrieval, modification, and deletion of data

Structured Query Language
(SQL)
< Relational database

Non-relational database

Data Wrangling and Relational Databases

Storing data onto the
database ﬁ
Import data from the
database
Databases primer

A database is an organized collection of structured data to facilitate data storage, retrieval,
modification, and deletion.

Database

Databases have many advantages for data wrangling, including :
- They're fast and can be optimized for speed
- They have administrative features like access controls
- They can check for data integrity to ensure data is entered in the appropriate format,
which is critical for data wrangling.

There are two main types of databases: relational and non-relational, with relational being the
most popular.

Relational databases
Data in a relational database is organized by column, very similar to tabular data like an Excel
spreadsheet but with rigid rules:

- Each column has a unique name

- All the data in a column must be the same data type

- Descriptive column names are important
SQL, or Structured Query Language, is a standard and popular language for communicating
with relational databases.

Other File Formats

Other file formats

Excel files
Pickle files
HDF5 files
SAS files
STATA files

ﬁlpandas

Non-Relational Databases

e Non-relational DBs can store many types of data .

e MongoDB is a NoSQL database Nty Sl et
. " "address": {
e For relational data, it allows you to: "zip" : "W1IOLL",

"city" : "London",

o Embed documents within other documents

"hobbies": ["gardening", "travelling", "reading"],
"familydetails":{

o Store relationships "motherName": "Alicia",
. . "fatherName": "Ricky",
e Easily store and retrieve unstructured data : "sibling":["Carol"]
o Binary JSON (BSON) }
BSON
JSOI\l \x16\x00\x00\x00 // total document size
A i \x02 // 0x02 = type String
{"hello": "world"} hello\x00 // field name

\x06\x00\x00\x00world\x00 // field value
\x00 // 0x00 = type EOO ('end of object')

Assessing Data

Unclean Data: Dirty vs. Messy

What Is Dirty Data? A
e

Inaccurate Data

GPS Data on Crop Atmospheric Forecast for
Yield Interference Equipment and
Resources

Dirty Data = Low Quality

What Is Messy Data?

"37.0902° N,95.7129° W,3/3/2022"

"37.0902° N,95.7129° W,3/3/2022","45.5017° N, 73.5673° W,7/15/2022","51.5074°
N, 0.1278° W, 11/25/2022","40.7128° N, 74.0060° W, 4/18/2022,"33.4484°
N,112.0740° W,9/30/2022","35.6895° N, 139.6917° E, 6/8/2022"

latitude longitude date
37.0902°N |95.7129°W 3/3/2022
45.5017° N |73.5673°W 7/15/2022

GPS D‘:/tiael?in Crop 51.5074°N |0.1278° W 11/25/2022

Messy Data = Bad Structure

Dimensions of Data Quality

Completeness

Completeness is a metric that evaluates whether the data is sufficient for addressing
specific questions or solving a particular problem

- o e
— Y S remove
missing value
- e | e = —rr— oA L AL
- e e i' - - -
et - e e
ap e e NaN | NaN|NaN - o |
- e e replace with
a e - P default values
- o -
Issues How to fix

Validity

Validity is a metric that evaluates how well the data conforms to a
defined set of rules for data, also known as a schema.

@

I ® l check the

300 BPM range

LCad ,]
W check data
12345.0 type

Issues How to fix

Accuracy

Accuracy is a metric that evaluates whether the data accurately
represents the reality it aims to depict.

Ju—
— check data
source
e—

n |
+5 Ibs
. cross.reference
data
Issues How to fix

Consistency

Consistency is a metric that evaluates whether the data is following a standard format, and
whether its information matches with information from other data sources.

jan 071980 | |12 pec 2022 Jan 071980 | |Dec 12 2022
adapt the same
Aug 131987 | 05 Jan 2021 Aug 1319871 | Jan 052021 standard

- Dec 22 1974 08 Feb 2022 Dec 22 1974 Feb 08 2022
—_——
N

D N
e — — cross-reference

2023 2022
Issues How to fix

Uniqueness

Uniqueness is a metric that evaluates whether there is duplicate or
overlapping values in the data.

John K. Smith
John Smith
programmatically
remove duplicates
—

Issues How to fix

AT

=

Assess Data Quality Visually

Visual Assessment Programmatic Assessment

* Jupyter Notebook via pandas e Functions or methods, e.g. df.info ()

e Text editor

e Plot data
® Spreadsheet applications
Tidy Data
What is Tidy Data?
e Each column is a variable Movie ID [ranking title critic_score
0 1 The Wizard of Oz 99
. . 1 2 Citizen Kane (194: 100
e Each row is an observation 2 3 The Third Man (1¢ 100
j 4 Get Out (2017) 99
e Each type of observational unit forms a table. g 5 Mad Max: Fury R 97
. 6 The Cabinet of Dr 100
Movie ID | Viewer Income Age 7 il 2 s L
5 Mark 300060 - & 8 Inside Out (2015) 98
! c
1 Tariq 130,000 30 9 9 The Godf?ther (1.‘ 99
3 Olea £0.000 e 10 10 Metropolis (1927 99
ga_ : 11 11 E.T. The Extra-Ter 98
3 Candice 100,000 32 12 Modern Times (1¢ 100
4 Olga 60,000 45

Designing Analytical Datasets
What is Analytical Data?

Data that helps us perform analyses
P G./\f

Producing EDA Statistical ML models
visualizations analysis

Unit of Analysis: Merging data from additional sources by defining a clear analysis unit can help
enrich your dataset's value. Units of analysis can be individuals, groups, artifacts (i.e., items like
books), and geographical units (e.g., states).

Note that while a unit of analysis is the item you want to structure your data around, a unit of
observation is the item you can actually observe.

Unique keys: Unique keys can help with merging multiple datasets/data tables. Note that both
primary keys and unique keys can be used to uniquely identify records in a table; however, a
primary key does not allow NULL values, whereas a unique key can allow one NULL value per
column and can be used for additional uniqueness constraints on columns other than the
primary key.

Assessing Data Structure Visually

Common Data Structure Issues

e Column headers are values, not variable names.

e Multiple variables are stored in one column.

e Variables are stored in both rows and columns.

e Multiple types of observational units are stored in the same

table.

e Asingle observational unit is stored in multiple tables.

Cleaning Data

Data Structuring Issues and Techniques

Unpivoting or Melting

Column headers are

Name = R 7 R e values, not variable names
Amy Linn 1 4 0 0
Marc Fletcher 2 3 0 0
Naima Barry 0 0 2 3
John Carter 1 2 0 0 ‘
Name Test Score freq
Amy Linn <50 1
Amy Linn 50-70 4
Amy Linn 70-90 0
Amy Linn 90-100 0
Marc Fletcher <50 2
Pivoting
Product Classification Product Year Revenue \ Year 2021 2022 2023
0 Early Prototype C 2021 0 u Product Classification Product
1 Early Prototype A 2021 0 Early Prototype A 0.0 NaN NaN
2 Pilot B 2021 3885 N c 00 NaN NaN
3 Pilot A 2022 2193 N Pilot A NaN 21930 NaN
4 Pilot B 2022 4224 B 38850 42240 NaN
5 Product A 2023 3918 Product A NaN NaN 39180
6 Product B 2023 5093 B NaN NaN 5093.0

Merging

Transposing

7 The Wizard of 0 (1939 I y Not Col

ID Movie Viewer 1D Review Rating
0|The Wizard of Oz (1939) Mark,Mary 0|Great movie, e 5
1|Get Out (2017) Tariq,Candice 1|Could have hat 3
2 [The Wizard of Oz (1939) Olga 2|Ok. Not Collected ‘
3 [Dunkirk (2017) Candice,Tariq 3|l loved it, recoi 5
4(The Jungle Book (2016) Olga e 4|A great movie, 4
5 |High Noon (1952) Aaron = 5|Will not watch 1
6 |Get Out (2017) Olga 6|Loved it! Not Collected
7 [The Wizard of Oz (1939) Aaron 7|Timeless! Not Collected
ID Movie Viewer Review Rating

0 The Wizard of Oz (1939) Mark,Mary Great movie, e 5

1 Get Out (2017) Tarig,Candice Could have hac 3

2 The Wizard of Oz (1939) Olga Ok. Not Collected

3 Dunkirk (2017) Candice,Tariq | loved it, recol 5

4 The Jungle Book (2016) Olga A great movie, 4

S High Noon (1952) Aaron Will not watch 1

6 Get Out (2017) Olga Loved it! Not Collected

ID 2

3 4

0

1 Test Score

Students Amy Linn Marc Fletcher

95 50

Naima Barry John Smith

100 73

[T
™

L

ID Students Test Score
1 Amy Linn 95
2 Marc Fletcher 50
3 Naima Barry 100
4 John Smith 73

Appending or Concatenating

Name Age Test Score
Amy Linn 14 95
Marc Fletcher 15 50
Naima Barry N/A 100
Name Age Test Score
Amy Linn 14 95
n Marc Fletcher 15 50
‘ ' A::I I:> Naima Berry N/A 100
John Carter 14 N/A
D:ED Dewey Cobb 14 100
Amy Linn 14 85
Name Age Test Score
John Carter 14 N/A
Dewey Cobb 14 100
Amy Linn 14 85
Group-by and Aggregation
date score
March 9
March 1 sum mean
March 3| mmd |9
April 5 March 13 4.3
: April 15 5
April 6
April 4

Dealing With Outliers
What Are Outliers?

An outlier is a data point that is considerable distinct and from other data samples

Student Age Distribution

Age of 120 is an outlier

x

Age of 120 is impossible

Frequency

Identify Outliers

One Standard
Deviation
| p— |

Mean

34.1%|34.1% Outliers\

Eo s
13.6% 13.6%

Outlier

2.3% 2.3%

Interquartile Range (IQR)

Outliers

Outliers
o0 o0
Minimum Maximum
(Q1-1.5*IQR) Median (Q3+1.5*IQR)

Q1 Q3

Dealing With Missing Data

It's important to identify if the missing values in the dataset are correctly represented.
Sometimes the missing values are represented as characters like "-" and "#" or texts like "no
data", which can be easily missed using the .isna() method. So we should always check if
missing values are correctly represented and replace them with proper values like np.nan

Cleaning Text Data
Cleaning Text Data Process

The sun shone,
and the soft air sky
‘ a fluttered its leaves drone (0,33)
|

Tokenization Y
E—— T _ ‘
Fhe-boy ran [thel[sun]/shone]
wings engine
from*fox. [fluttered fits|[leaves]
Normalization Tokenization Vectorization

Normalization + additional cleaning.
Normalization involves getting text into a standard format (e.g., converting sentences into
lowercase).
Additional cleaning operations can include:
- Removing words that aren’t relevant to us, like “a”, “the”, and “is” that are called
stopwords.
- Reducing words to their root base, which means turning all mentions of going and gone
to go). It is also known as stemming.

Tokenization: In this stage, you divide your text into individual tokens from your dataset.

Vectorization: In this stage, you convert these tokens into a machine-readable format so they
can then for example be used to train machine-learning models!

Cleaning Time Series Data

Some key considerations to remember are:
- Convert dates as pandas datetime objects using pd.to_datetime(COLUMN_NAME)
- Set your dataframe's index as the date/time column to turn the index into a Datetime
index for more advanced functionality using df = df.set_index(COLUMN_NAME)

- Use resampling with time series to provide a time-based grouping with a target
frequency, and aggregate based on that. For example, to get the yearly (Y) mean of
values in the "COLUMN_NAME" column, use:
df.resample("Y")[COLUMN_NAME].mean()

Testing Data Cleaning Visually
Testing Data Cleaning

Test-Driven development

| 2

Reassess

Data Assessment vs Data Testing

Data Assessment Data Testing
glio =
101 . —
aio -
Flexible implementations - Write specific test cases to

keeping your eyes out for issues check targeted issues directly

Storing and Publishing Cleaned Data
Storing and Publishing Cleaned Data

df.to_csv(‘demo/2023_ad_cleaned.csv’, index=False, encoding="utf-8")

df.to_sql(‘clean_data’, con=connection, if_exists='append',|index_label=’ID1)

Storing and Publishing Cleaned Data

e Two versions of your data - raw data and cleaned data.

A “doc” folder for documentations

(0]

A “data” folder for raw data files

<
v
o o

A “src” folder for source code and Jupyter Notebooks

A “results” folder for cleaned data files and analysis

5]

Course 3: Data Visualization with Matplotlib and
Seaborn

Data Visualization with Matplotlib and Seaborn

Exploratory vs. Explanatory Analyses

There are two main reasons for creating visuals using data:

- Exploratory analysis is done when you are searching for insights. These visualizations
don't need to be perfect. You are using plots to find insights, but they don't need to be
aesthetically appealing. You are the consumer of these plots, and you need to be able to
find the answer to your questions from these plots.

- Explanatory analysis is done when you are providing your results for others. These
visualizations need to provide you the emphasis necessary to convey your message.
They should be accurate, insightful, and visually appealing.

The five steps of the data analysis process:
- Extract - Obtain the data from a spreadsheet, SQL, the web, etc.
- Clean - Here, we could use exploratory visuals.
- Explore - Here, we use exploratory visuals.
- Analyze - Here, we might use either exploratory or explanatory visuals.
- Share - Here is where explanatory visuals live.

PRODUCTIVITY

T

pandas |.||I_II \

% matplotlib

FLEXIBILITY

Design of Visualizations

Levels of Measurement & Types of Data

The Four Levels of Measurement

In order to choose an appropriate plot type or method of analysis for your data, you need to
understand the types of data you have. One common method divides the data into four levels of
measurement:

Qualitative or categorical types (non-numeric types)
- 1. Nominal data: pure labels without inherent order (no label is intrinsically greater or
less than any other)
- 2. Ordinal data: labels with an intrinsic order or ranking (comparison operations can be
made between values, but the magnitude of differences are not be well-defined)
Quantitative or numeric types
- 3. Interval data: numeric values where absolute differences are meaningful (addition and
subtraction operations can be made)
- 4. Ratio data: numeric values where relative differences are meaningful (multiplication
and division operations can be made)

All quantitative-type variables also come in one of two varieties: discrete and continuous.
- Discrete quantitative variables can only take on a specific set values at some maximum
level of precision.
- Continuous quantitative variables can (hypothetically) take on values to any level of
precision.
Distinguishing between continuous and discrete can be a little tricky — a rule of thumb is if there
are few levels, and values can't be subdivided into further units, then it's discrete. Otherwise, it's
continuous. If you have a scale that can only take natural number values between 1 and 5,
that's discrete. A quantity that can be measured to two digits, e.g. 2.72, is best characterized as
continuous, since we might hypothetically be able to measure to even more digits, e.g. 2.718. A
tricky case like test scores measured between 0 and 100 can only be divided down to single
integers, making it initially seem discrete. But since there are so many values, such a feature is
usually considered as continuous.

Data Ink Ratio

LOW DATA-INK RATIO g HIGH DATA-INK RATIO
50%

40%

30%

20%

10%

0 A B C D E F

The data-ink ratio, credited to Edward Tufte, is directly related to the idea of chart junk. The
more of the ink in your visual that is related to conveying the message in the data, the better.

Design Integrity

It is key that when you build plots you maintain integrity for the underlying data.

One of the main ways discussed here for looking at data integrity was with the lie factor. Lie
factor depicts the degree to which a visualization distorts or misrepresents the data values being
plotted. It is calculated in the following way:

Avisual /visualsart

lie factor =
¢ factor Adata/datagan

The delta symbol (A) stands for difference or change. In words, the lie factor is the relative
change shown in the graphic divided by the actual relative change in the data. Ideally, the lie
factor should be 1: any other value means that there is some mismatch in the ratio of depicted
change to actual change.

THE SHRINKING FAMILY DOCTOR

In California
Percentage of Doctors Devoted Solely to Family Practice

1964 ° b 1975 1990
27% 16.0% 12.0%

1: 2,247 RATIO TO POPULATION
8.023 Doctors

The number of pixels related to the largest image is 79,000 and 16,500 for the smallest. The
percentage change is 27% to 12%. So, the lie factor is calculated as

(79000 — 16500) /16500

lie factor —
1 actor (27 — 12)/12

=3.03

Using Color

Color can both help and hurt a data visualization. Three tips for using color effectively.
- Before adding color to a visualization, start with black and white.
- When using color, use less intense colors - not all the colors of the rainbow, which is the
default in many software applications.
- Color for communication. Use color to highlight your message and separate groups of
interest. Don't add color just to have color in your visualization.

Designing for Color Blindness

THREE TYPES OF CONES
AN

SHORT
(prefer blue)

A

MEDIUM

(prefer green)

A

LONG
(prefer red)

To be sensitive to those with colorblindness, you should use color palettes that do not move
from red to green without using another element to distinguish this change like shape, position,
or lightness. Both of these colors appear in a yellow tint to individuals with the most common
types of colorblindness. Instead, use colors on a blue to orange palette.

Shape, Size, & Other Tools

- AVERAGE SAT SCORES BY COLLEGE

V¥ | STUDENT-FACULTY
Eogh e |RATIO

4 10
L , B 20

B 30
B 4«
450 + > ® PRIVATE

@ P PUBLIC

VERBAL SAT SCORE

400 -

400 450 500 550
MATH SAT SCORE

In general, color and shape are best for categorical variables, while the size of marker can
assist in adding additional quantitative data, as we demonstrated here.

Only use these additional encodings when absolutely necessary. Often, overuse of these
additional encodings suggest you are providing too much information in a single plot. Instead, it
might be better to break the information into multiple individual messages, so the audience can
understand every aspect of your message.

Univariate Exploration of Data

Tidy Data

In this course, it is expected that your data is organized in some kind of tidy format. In short, a
tidy dataset is a tabular dataset where:

- each variable is a column

- each observation is a row

- each type of observational unit is a table
The first three images below depict a tidy dataset. This tidy dataset is in the field of healthcare
and has two tables: one for patients (with their patient ID, name, and age) and one for
treatments (with patient ID, what drug that patient is taking, and the dose of that drug).

PATIENTS TREATMENTS

Each variable in a tidy dataset must have its own column

PATIENTS TREATMENTS

Each observation in a tidy dataset must have its own row

PATIENTS TREATMENTS

Each observational unit in a tidy dataset must have its own table

The next image depicts the same data but in one representation of a non-tidy format (there are
other possible non-tidy representations). The Drug A, Drug B, and Drug C columns should form
one 'Drug' column, since this is one variable. The entire table should be separated into two
tables: a patients table and a treatments table.

Only the second rule of tidy data is satisfied in this non-tidy representation of the above data:
each observation forms a row

While the data provided to you in the course will all be tidy, in practice, you may need to perform
tidying work before exploration. You should be comfortable with reshaping your data or perform
transformations to split or combine features in your data, resulting in new data columns. These
operations collectively are called data-wrangling.

This is also not to say that tidy data is the only useful form that data can take. In fact, as you
work with a dataset, you might need to summarize it in a non-tidy form in order to generate
appropriate visualizations. You'll see one example of this (bivariate plotting) in the next lesson,
where categorical counts need to put into a matrix form in order to create a heat map.

Bar Charts

A bar chart depicts the distribution of a categorical variable. In a bar chart, each level of the
categorical variable is depicted with a bar, whose height indicates the frequency of data points
that take on that level.
- For nominal data, the bars can be ordered by frequency to easily see which category is
the most common.
- Ordinal data should not be re-ordered because the inherent ordering of the levels is
typically more important to display.

enoer counr

MALE FEMALE MALE FEMALE

Absolute vs. Relative Frequency

In the previous concept, all bar charts were encoded with absolute frequency, which is the total
number of data points for each category. While this can be helpful, there are times when you
want to look at the frequency of a category as it relates to the total number of data points, this is
relative frequency.

Changing the count axis to reflect relative proportions makes it easier to see how much each
category contributes to the whole.

Good 744

Absolute

Moderate 252
Frequency

Unhealthy

Moderate Unhealthy

Relative
Frequency

Moderate

Unhealthy

Moderate Unhealthy

Pie Charts

A pie chart is a common univariate plot type that is used to depict relative frequencies for levels
of a categorical variable. Frequencies in a pie chart are depicted as wedges drawn on a circle:
the larger the angle or area, the more common the categorical value taken. Use a Pie chart only
when the number of categories is less, and you'd like to see the proportion of each category on
a chart.

160 1

140 1

120

100

count

8 8 8

3 “ 5
generation_id

Guidelines to Use a Pie Chart
If you want to use a pie chart, try to follow certain guidelines:

- Make sure that your interest is in relative frequencies. Areas should represent parts of a
whole, rather than measurements on a second variable (unless that second variable can
logically be summed up into some whole).

- Limit the number of slices plotted. A pie chart works best with two or three slices, though
it's also possible to plot with four or five slices as long as the wedge sizes can be
distinguished. If you have a lot of categories, or categories that have small proportional
representation, consider grouping them together so that fewer wedges are plotted, or
use an 'Other' category to handle them.

- Plot the data systematically. One typical method of plotting a pie chart is to start from the
top of the circle, then plot each categorical level clockwise from most frequent to least
frequent. If you have three categories and are interested in the comparison of two of
them, a common plotting method is to place the two categories of interest on either side
of the 12 o'clock direction, with the third category filling in the remaining space at the
bottom.

If these guidelines cannot be met, then you should probably make use of a bar chart instead. A
bar chart is a safer choice in general. The bar heights are more precisely interpreted than areas
or angles, and a bar chart can be displayed more compactly than a pie chart. There's also more
flexibility with a bar chart for plotting variables with a lot of levels, like plotting the bars
horizontally.

Histograms

A histogram is used to plot the distribution of a numeric variable. It's the quantitative version of
the bar chart. However, rather than plot one bar for each unique numeric value, values are
grouped into continuous bins, and one bar for each bin is plotted to depict the number. You can
use either Matplotlib or Seaborn to plot histograms. There is a mild variation in the calling syntax
and what each library offers. For example, seaborn supports overlaying Gaussian Density
Estimates.

16000 q

14000 4

12000 1

10000 q

8000 1

6000

4000 1

2000 1

Figures, Axes, and Subplots

At this point, you've seen and had some practice with some basic plotting functions using
matplotlib and seaborn. The previous page introduced something a little bit new: creating two
side-by-side plots through the use of matplotlib's subplot() function. If you have any questions
about how that or the figure() function worked, then read on. This page will discuss the basic
structure of visualizations using matplotlib and how subplots work in that structure.

1.0

20000 A
0.8 1

15000 -
0.6

10000 A
0.4 4

0.2 1 5000 A

0.0 T T T T 0 T T
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10

(Left) First matplotlib creates a figure object. (Center) Then an axes is placed on it. (Right) Then
the chart is drawn.

Descriptive Statistics, Outliers and Axis Limits

Symmetric Right-Skewed Left-Skewed

MEAN = MEDIAN

Unimodal

Scales and Transformations

14500 27800
7400 135200
8800 141600
19600 143500

*40K *80K *120K +160K +200K

211600 156400 Price

12900 157900
114000 72500
119400 a85000
a25800 =140000
a26000 =198000

5K +10K 20K +40K +80K +160K

Bivariate Exploration of Data

Scatterplots and Correlation

If we want to inspect the relationship between two numeric variables, the standard choice of plot
is the scatterplot. In a scatterplot, each data point is plotted individually as a point, its x-position
corresponding to one feature value and its y-position corresponding to the second.

A scatterplot is used to show the relationship between two quantitative variables. The two
variables are indicated on X and Y-axis, respectively. Through the scatterplots, we can see
clearly how these two variables correlate with each other.

et

Scatterplots for
. quantitative variable
Y5) quantitative variable

second | feature values

first| feature values

To quantify how strong the correlation is between the variables, we use a correlation coefficient.
Pearson correlation coefficient (r) captures linear relationships. It is a value ranging from -1 to
+1. A positive value of r indicates the increase in one variable tends to increase another
variable. On the other hand, a negative r means the increase in one variable tends to cause a
decrease in another variable. A value close to 0 indicates a weak correlation, and a value close
to -1 and +1 indicates a strong correlation.

r=0.893

Overplotting, Transparency, and Jitter

If we have a very large number of points to plot or our numeric variables are discrete-valued,
then it is possible that using a scatterplot straightforwardly will not be informative. The
visualization will suffer from overplotting, where the high amount of overlap in points makes it
difficult to see the actual relationship between the plotted variables.

&0
L)
[]
L)
]
i

T T T T T T T T T T T T
2013 014 2015 2016 2017 2018 2013 014 2015 2016 2017 2018

50

comb
8 &
PP & ¢ &
L
——————d
P G 06 0 & 8
pEEE—— - ¢ ®mee

=}

Heat Maps

A heat map is a 2-d version of the histogram that can be used as an alternative to a scatterplot.
Like a scatterplot, the values of the two numeric variables to be plotted are placed on the plot
axes. Similar to a histogram, the plotting area is divided into a grid and the number of points in
each grid rectangle is added up. Since there won't be room for bar heights, counts are indicated
instead by grid cell color.

Violin Plots

Violin plots are a common way of showing the relationship between quantitative and qualitative
variables. Instead of simply plotting summary statistics, violin plots use a kernel density estimate
(KDE).

A KDE is like a smoothed histogram, an estimate of the data's probability distribution function.
For each level of a qualitative variable, a distribution of the values on the quantitative variable is
plotted. But beware, since these are estimates of densities, these can sometimes show unreal,
particularly at the bounds of the distribution. For instance, given a distribution of cost could
produce a violin with parts below zero.

Violin plots for
quantitative variable

V3) qualitative variable

Central
South
North

Central

North Central South
TEAM

TEAM | SCORE.
[south || 51 |
[North_|[53 |
central || 63|
R

Box Plots

Relationships between numerical and categorical data are commonly shown uses box or violin
plots.

100 =g-----—--mmmm e mm oo

90 +--- —~<€— Upper Extreme -----

80 —------f--------mom - e
<— Upper Quartile

70 =---4 }------mmmmm -

60 H----1 }--------mmmmmmmm -
<— Median

50 4----4 }--------mmmmmm -

40 =-—— f

30 4 - F-- <— Lower Quartile

20 o} <—— Whisker

10 o--- -=—t— <«— Lower Extreme -----

0 ® «—— Outlier/single data point

Box plots simply display salient summary statistics on a plot, such as means, medians, and
quartile boundaries.
- Central line indicates the median
Upper and lower edges show the 1st and 3rd quartiles
Whiskers outside of the box indicate the largest and smallest values
Outliers are plotted as points and are often in the 98th or 99th percentile of data

TEAM: SOUTH
SCORE STATISTICS

maXx

Qa) 4

Q3

median

(Q2)

Q1

TEAM: NORTH
SCORE STATISTICS

min
Qo 4

Q1 53
55

Q3

max
(Q4)

8.0 53 [North Central South
15%* IQR=8.25

L PS5 - UPPERWHISKERIBOUND)

68

Clustered Bar Charts

To depict the relationship between two categorical variables, we can extend the univariate bar
chart seen in the previous lesson into a clustered bar chart. Like a standard bar chart, we still
want to depict the count of data points in each group, but each group is now a combination of
labels on two variables. So we want to organize the bars into an order that makes the plot easy
to interpret. In a clustered bar chart, bars are organized into clusters based on levels of the first
variable, and then bars are ordered consistently across the second variable within each cluster.

Faceting

One general visualization technique that will be useful for you to know about to handle plots of
two or more variables is faceting. In faceting, the data is divided into disjoint subsets, most often
by different levels of a categorical variable. For each of these subsets of the data, the same plot
type is rendered on other variables. Faceting is a way of comparing distributions or relationships
across levels of additional variables, especially when there are three or more variables of
interest overall. While faceting is most useful in multivariate visualization, it is still valuable to
introduce the technique here in our discussion of bivariate plots.

Epagas s 7 8 9 10

Group =B

4 5 6 7 8 9 101112

Adaptation of Univariate Plots

Histograms and bar charts were introduced in the previous lesson as depicting the distribution
of numeric and categorical variables, respectively, with the height (or length) of bars indicating
the number of data points that fell within each bar's range of values. These plots can be adapted
for use as bivariate plots by, instead of indicating count by height, indicating a mean or other
statistic on a second variable.

&0 [}
’ 5
0 = ¢
* Y
.
40 40 [H
£ £ N B
g g L 8
o 0
- m
o
Y 5
10 [} 4
. 0
C(.P‘" ‘G’“L' 4}0“‘: v,c?"" &:.P@ cc?‘" ‘G’“L' &U’@ v,c?"" &0@ cc?‘" ‘G’“L' &G’@ v’c}"" &0@
o L I, & Ity & & Ity N
& & ¢ & & ¢ & & v
& & &
x o & o «f o
Wlass Wlass Wlass

Line Plots

The line plot is a fairly common plot type that is used to plot the trend of one numeric variable
against the values of a second variable. In contrast to a scatterplot, where all data points are
plotted, in a line plot, only one point is plotted for every unique x-value or bin of x-values (like a
histogram). If there are multiple observations in an x-bin, then the y-value of the point plotted in
the line plot will be a summary statistic (like mean or median) of the data in the bin. The plotted

points are connected with a line that emphasizes the sequential or connected nature of the
x-values.

If the x-variable represents time, then a line plot of the data is frequently known as a time series
plot. For example, we have only one observation per time period, like in stock or currency
charts.

Q-Q Plots

There might be cases where you are interested to see how closely your numeric data follows
some hypothetical distribution. This might be important for certain parametric statistical tests,
like checking for assumptions of normality. In cases like this, you can use a quantile-quantile
plot, or Q-Q plot, to make a visual comparison between your data and your reference
distribution.

Observed Standard Scores
o

-1

3 2 -1 0 1 2 3
Expected Standard Scores

Swarm Plots

In this lesson, you saw many ways of depicting the relationship between a numeric variable and
a categorical variable. Violin plots depicted distributions as density curves, while box plots took
a more summary approach, plotting the quantiles as boxes with whiskers. Another alternative to
these plots is the swarm plot. Similar to a scatterplot, each data point is plotted with position
according to its value on the two variables being plotted. Instead of randomly jittering points as
in a normal scatterplot, points are placed as close to their actual value as possible without
allowing any overlap.

Fl 4 . P
.

2 2 = . o :
SEE W
5 0 5 0 5 0 ..E‘ .§ . .:%‘:.

ouy, w .
2 2 ' IURE R S
L :
4 4 -4

Alpha Beta Gamma Delta Alpha Beta Gamma Delta Alpha Beta Gamma Delta
cat_var cat_var cat_var

Rug and Strip Plots

You might encounter, or be interested in, marginal distributions that are plotted alongside
bivariate plots such as scatterplots. A marginal distribution is simply the univariate distribution of
a variable, ignoring the values of any other variable. For quantitative data, histograms or density
curves are fine choices for marginal plot, but you might also see the rug plot employed. In a rug
plot, all of the data points are plotted on a single axis, one tick mark or line for each one.
Compared to a marginal histogram, the rug plot suffers somewhat in terms of readability of the
distribution, but it is more compact in its representation of the data.

Alpha % 55 ENEN-EN SOUED NI &

Beta | & ss seme mEsIemeENSIEEE » = =

—<{-—-
—==ar (==
R — _0‘
s

cat_var

Delta 4 cEBEENmele s e &

3T % 4§ 1 5 3 N N
num_var num_var

Stacked Plots

One common plotting technique has not been discussed thus far in the course, and that’s
stacking. Stacked bar charts and histograms are not uncommon, but there are often better plot
choices available.

The most basic stacked chart takes a single bar representing the full count, and divides it into

colored segments based on frequencies on a categorical variable. If this sounds familiar, that's
because it almost perfectly coincides with the description of a pie chart, except that the shape

being divided is different.

200

mm Geta
. Gamma
mm Alpha
mm Delta

175

150

125

1o0

Alpha
075

050

025

Gamma 0.00 4 : ' ' ; . .
o 50 100 150 200 250 300

Ridgeline Plots

R1D

0.25 1 ______,...-""_'\'__

I]uﬂ T T T T T T T
RO&

0.25 1 _'../,..—-.._\‘___‘H_

ﬂﬂﬂ T T T T T T T
ROT

0.25 1 _.’___/-—-\\‘__

Duﬂ T T T T T T)
RO3

0.25 -I _—-f/—\-_

ﬂﬂﬂ T T T T T T T
RO%

0.25 1 ___-__'__ﬁ_‘_

Duﬂ T T T T T T 1
R1l

0.25 1 __..--"""._""""‘-.,__

ﬂﬂﬂ T T T T T T T
k12

Duﬂ T T T T) 1)
F14

0.25 1 I

000 T f T T T T T
ROS

0.25 -I ﬂ

Duﬂ T T T T) 1)
k15

0.25 1 L

I]uﬂ T T T T T T T
RO4

0.25 -I _,..--""f‘-"““--.__

ﬂUﬂ T T T T T T T
R13

0.25 ~| M

Duﬂ T T T T T 1 T
RO1

0.25 1 L —

Duﬂ T T T T T 1 T

0.25 1 L
0.00

0.25 1 —

Duﬂ T T T T T T T

Multivariate Exploration of Data

Non-Positional Encodings for Third Variables

Shape for qualitative data

A

.Iﬂ.’i. >

Q
e
1]
o
=
w
b
-
Q
]
=

O®A BB AC

2000 4000 6000 8000 10000

Loan Amount

Non-Positional Encodings for Third Variables
There are four major cases to consider when we want to plot three variables together:

- Three numeric variables

- two numeric variables and one categorical variable

- one numeric variable and two categorical variables

- three categorical variables
A numerical variable is a variable where the value has meaning (e.g., weight or age), but a
value such as a phone number doesn't have meaning in the numbers alone. A categorical
variable is a variable that holds a type (e.g., species or hair color).
If we have at least two numeric variables, as in the first two cases, one common method for
depicting the data is by using a scatterplot to encode two of the numeric variables, then using a
non-positional encoding on the points to convey the value on the third variable, whether numeric
or categorical. (You will see additional techniques later in the lesson that can also be applied to
the other two cases, i.e., where we have at least two categorical variables.)
Three main non-positional encodings stand out: marker color, marker shape, marker size

Color Palettes

Color is a very common encoding for variables, for both qualitative and quantitative variables.
You've already seen this employed in previous lessons where position could not be used to
encode a value:

- color for category in a clustered bar chart

- color for count in a heat map (both as a 2-d histogram and as a 2-d bar chart)
Here, we'll look at how to employ color in scatterplots, as well as discuss more about color
palette choices depending on the type of data you have.

Qualitative Sequential Diverging
Palette Palette Palette

o H
! R

Be Mindful of Be Mindful of

Color Blindness Transparency
Normal Simulated |
Vision Protanopia

- - 'x-
. - '\/.

Faceting in Two Directions

Term = 36 | Borrower Rating = A Term = 36 | Borrower Rating = B Term =36 | Borrower Rating =C
$e o 8

o
g o’

000.

'
'..r
® P

QU
-t
]
-2
=
wv
[
1
7]
-]
-

o ®
Aol ot : $A

Term =48 | Borrower Rating = A Term = 48 | Borrower Rating =B Term = 48 | Borrower Rating =C

) .‘
)
.o“: !‘ 00

Interest Rate

2500 5000 7500 10000 2500 5000 7500 10000 2500 5000 7500 10000

Loan Amount Loan Amount Loan Amount

Other Adaptations of Bivariate Plots

You also saw one other way of expanding univariate plots into bivariate plots in the previous
lesson: substituting count on a bar chart or histogram for the mean, median, or some other
statistic of a second variable. This adaptation can also be done for bivariate plots like the heat
map, clustered bar chart, and line plot, to allow them to depict multivariate relationships.

Plot Matrices

To move back to bivariate exploration for a bit, you might come out of your initial univariate
investigation of the data wanting to look at the relationship between many pairs of variables.
Rather than generate these bivariate plots one by one, a preliminary option you might consider
for exploration is the creation of a plot matrix. In a plot matrix, a matrix of plots is generated.
Each row and column represents a different variable, and a subplot against those variables is
generated in each plot matrix cell. This contrasts with faceting, where rows and columns will
subset the data, and the same variables are depicted in each subplot.

20 40 60
sugars protein

Correlation Matrices

For numeric variables, it can be useful to create a correlation matrix as part of your exploration.
While it's true that the Panda's .corr function is perfectly fine for computing and returning a
matrix of correlation coefficients, it's not too much trouble to plot the matrix as a heat map to
make it easier to see the strength of the relationships.

10

08

0.8

num_varl

-04

num_var2
.

-0z

-00

num_var3
\

I I
num_varl num_varz num_var3

Feature Engineering

This is not so much an additional technique for adding variables to your plot, but a reminder that

feature engineering is a tool that you can leverage as you explore and learn about your data. As

you explore a dataset, you might find that two variables are related in some way. Feature

engineering is all about creating a new variable with a sum, difference, product, or ratio between

those original variables that may lend a better insight into the research questions you seek to
400000

LRI

North East South West \[egdy] East South West

Crimes (total)
Population

Region Region

Crimes per 100k

i

East South West

Region

Explanatory Visualizations

Revisiting the Data Analysis Process

Exploratory Exploratory Explanatory

Exploratory Exploratory / Explanatory

The previous three lessons in the course have been focused on exploratory analyses. In phases
with exploratory visualizations, the primary audience for the visuals will be you, the analyst. The
plots that have been created and demonstrated haven't been particularly polished, just
descriptive enough for you to gain insights into the data.

This lesson is focused on taking those insights and creating explanatory analyses. Here, your
audience will be broader: your goal will be to convey your findings to other people who don't
have the level of hands-on experience with the data as you. Visualizations under this banner
should be focused on telling a specific story that you want to convey to that particular audience.
Many times, these visualizations evolve from visuals created during the exploratory process, just
polished up to highlight the specific intended insights. These highlights might change depending
on the audience you're presenting to. You'll revisit those design concepts from earlier in the
course to make your plots informative not just for yourself, but also compelling and
understandable for others.

Tell A Story

Telling stories with data follows these steps:
- Start with a Question
- Repetition is a Good Thing
- Highlight the Answer
- Call Your Audience To Action

The question | want to answer in this practice is that "Do more students feel science is
interesting after attending the science camp?" To answer this question, | built a stacked bar
chart that highlights the comparison of the percentage in student's feelings before and after the
science camp.

Student interest in science

I Excited Kind of Interested [OK [Not Great [} Bored
o -
75%
25
o
(=]
2 50%
]
<
]
o
25%
0%
before after
Feeling

As you can see, although a similar percentage of students who feel science is not great or
boring, it's very clear that there is a large increase in the percentage of students who feel
science is interesting or exciting.

So my conclusion is that we should have more science camps because they will increase
student's interest in science.

Polishing Plots

Choose an appropriate plot

Your choice of plot will depend on the number of variables that you have and their types:
nominal, ordinal, discrete numeric, or continuous. Choice of plot also depends on the specific
relationship that you want to convey. For example, whether you choose a violin plot, box plot, or
adapted bar chart depends on how much data you have and whether distributions are
significant or important. You'll be more likely to use a violin plot if you have a lot of data and the
distributions are meaningful, and more inclined to use a box plot or bar chart if you have less
data, or the distributions are less reliable.

Choose appropriate encodings

Your variables should impact not just the type of plot that is chosen, but also the variable
encodings. For example, if you have three numeric variables, you shouldn't just assign
x-position, y-position, and color encodings randomly. In many cases, the two variables that are

most important should take the positional encodings; if one represents an outcome or
dependent variable, then it should be plotted on the y-axis. In other cases, it makes sense to
plot the dependent measure with color, as though you are taking a top-down view of the plane
defined by the two independent measures plotted on the axes.

Pay attention to design integrity

When setting up your plotting parameters, remember the design principles from earlier in the
course.

Make sure that you minimize chart junk and maximize the data-ink ratio, as far as it maintains
good interpretability of the data. When deciding whether or not to add non-positional encodings,
make sure that they are meaningful. For example, using color in a frequency bar chart may not
be necessary on its own, but will be useful if those colors are used again later in the same
presentation, matched with their original groups. By the same token, avoid using the same color
scheme for different variables to minimize the chance of reader confusion.

You should also ensure that your plot avoids lie factors as much as possible. If you have a bar
chart or histogram, it is best to anchor them to a 0 baseline. If you're employing a scale
transformation, signal this clearly in the title, axis labels, and tick marks.

Label axes and choose appropriate tick marks

- For your positional axes, make sure you include axis labels. This is less important in
exploration when you have the code available and have an extended flow to your work,
but when you're conveying only the key pieces to others, it's crucial. When you add an
axis label, make sure you also provide the units of measurement, if applicable (e.g.,
stating "Height (cm)" rather than just "Height").

- As for tick marks, you should include at least three tick marks on each axis. This is
especially important for data that has been transformed: you want enough tick marks so
that the scale of the data can be communicated there. If your values are very large or
very small numbers, consider using abbreviations to relabel the ticks (e.g., use "250K"
instead of "250000").

Provide legends for non-positional variables

Make sure that you add a legend for variables not depicted on the axes of your plot. For color
encoding, you can add a color bar to the side of the plot. The most important new thing here is
that you provide a descriptive label to your legend or color bar, just as you would the axes of
your plot.

Title your plot and include descriptive comments

Finally, make sure that you provide a descriptive title to your plot. If this is a key plot that
presents important findings to others, aim to create a title that draws attention to those main
points, rather than just state what variables are plotted.

Also, realize that while a visualization might be the core mechanism by which you convey
findings, it need not stand alone. Comments in the text below or surrounding the plot can

provide valuable context to help the reader understand your message, or reinforce the main
points that they should have gotten.

	Data Analyst
	Course 1: Introduction to Data Analysis with Pandas and NumPy
	The Data Analysis Process
	Problems Solved by Data Analysts
	Data Analysis Process Overview
	Packages Overview

	Jupyter Notebooks
	Notebook Interface
	Code Cells
	Markdown Cells
	Converting Notebooks
	Scripting Your Analysis

	Exploring and Inspecting Data
	Data Wrangling and EDA
	Gathering Data
	Reading CSV Files
	Assessing and Building Intuition

	Manipulating Data using Pandas and NumPy
	Common Issues in Data
	Basic Data Cleaning with Pandas
	Pandas Query
	Pandas Data Types
	Data Type Optimization
	Concatenating Data
	Types of Merges
	Pandas Explode

	Communicating Results
	Optimization Using NumPy
	Pandas Groupby
	Summation
	Measures of Center
	Measures of Spread
	Exploring Data with Visuals
	Communicating Results

	
	Course 2: Advanced Data Wrangling
	Introduction to Data Wrangling
	Gathering Data
	Flat File Structure
	Text File Structure
	Gathering Data with APIs
	JSON File Structure
	Web Scraping
	HTML File Structure
	Relational Databases for Data Wrangling
	Other File Formats

	Assessing Data
	Unclean Data: Dirty vs. Messy
	Dimensions of Data Quality
	
	Assess Data Quality Visually
	Tidy Data
	Designing Analytical Datasets
	Assessing Data Structure Visually

	Cleaning Data
	Data Structuring Issues and Techniques
	Dealing With Outliers
	Dealing With Missing Data
	Cleaning Text Data
	Cleaning Time Series Data
	Testing Data Cleaning Visually
	Storing and Publishing Cleaned Data

	
	Course 3: Data Visualization with Matplotlib and Seaborn
	Data Visualization with Matplotlib and Seaborn
	Exploratory vs. Explanatory Analyses

	Design of Visualizations
	Levels of Measurement & Types of Data
	Data Ink Ratio
	Design Integrity
	Using Color
	Designing for Color Blindness
	Shape, Size, & Other Tools

	Univariate Exploration of Data
	Tidy Data
	Bar Charts
	Absolute vs. Relative Frequency
	Pie Charts
	Histograms
	Figures, Axes, and Subplots
	Descriptive Statistics, Outliers and Axis Limits
	Scales and Transformations

	Bivariate Exploration of Data
	Scatterplots and Correlation
	Overplotting, Transparency, and Jitter
	Heat Maps
	Violin Plots
	Box Plots
	Clustered Bar Charts
	Faceting
	Adaptation of Univariate Plots
	Line Plots
	Q-Q Plots
	Swarm Plots
	Rug and Strip Plots
	Stacked Plots
	Ridgeline Plots

	Multivariate Exploration of Data
	Non-Positional Encodings for Third Variables
	Color Palettes
	Faceting in Two Directions
	Other Adaptations of Bivariate Plots
	Plot Matrices
	Correlation Matrices
	Feature Engineering

	Explanatory Visualizations
	Revisiting the Data Analysis Process
	Tell A Story
	Polishing Plots

