Computer Integrated Interventional Systems Laboratory
Johns Hopkins University

Hongyi Fan

Bridging 3D Slicer to Simulation
Software via ROS

Research Project Report

=
W
JOHNS HOPKINS

UNIVERSITY

Table of Content

Table of Content
Background
Project Goals
Technical Approach
Architecture Overview
ROS Module in 3D Slicer
Simulator
RViz
AMBF
Results
Robot Synchronization with RViz
Robot Synchronization with AMBF
Performance Evaluation
Significance and Conclusion
Management Summary
Source Code
Documentation

Reference

O N g U R W W N

N O N e o S o O e}
W W W W N = o o o

Background

One of the most commonly used tools for research and prototyping in medical
imaging is 3D Slicer, which is an open-source platform. In the field of robotics, the
standard development framework is the open-source middleware suite called the
Robot Operating System (ROS). In the past, various attempts have been made to
connect these two tools, but they all relied on middleware and custom interfaces. The
fact that there is not yet a successful integration of the two tools brings difficulties to
research and developments related to robotic intervention.

On the other hand, robotics simulation software like Asynchronous Multi-body
Framework (AMBF) is a powerful robot simulation tool that is integrated with ROS.

In this project, we proposed to develop a ROS module for 3D Slicer which allows
direct usage of ROS packages within the software and builds real-time communication
with robotic simulation software.

Project Goals

1. To create a ROS module in 3D Slicer that is directly loadable by the software. The
module should maintain a ROS node while running, and establish communications
with the ROS core including subscribing, publishing the messages, and reading
parameters from the ROS parameter server.

2. Establish communication between 3D Slicer and robotics simulation software via
ROS. The selection of simulation software can be arbitrary as long as it uses ROS,
preferably also Unified Robot Description Format (URDF). AMBF and RViz are chosen
to be used for this project.

3. Given the published robot state in ROS, the 3D Slicer should be able to load robot
link meshes and sync the robot to the simulation in real time.

Technical Approach

Architecture Overview

Figure 1: High-level structure of ROS Module with general simulators like RViz

Figure 2: High-level structure of ROS Module with AMBF

For AMBF specifically, while the overall structure remains vastly unchanged, it does
not provide robot descriptions in URDF format. Instead, we let AMBF publish the
mesh file paths for each link to the parameter server, and the parameter is then
parsed within the ROS module for mesh loading.

ROS Module in 3D Slicer

As mentioned in the previous section, the 3D Slicer platform offers interfaces that
allow developers to create extensions and implement new features.

An extension module leaves several parts for the developer to implement. Mainly, the
code is distributed over two spaces: Widget and Logic. The Module Widget manages
the functionalities associated with GUI components and the Logic class maintains the
processing of the module and its interaction with the MRML scene.

Scripted module implementation

Observe

Modify

MRML node g

@ Laboratory for Percutaneous Surgery — Copyright ® Queen’s University, 2022 -16- (-25“.‘-.’-1?'5
Figure 3: 3D Slice Module implementation provided by Perk Lab,

In our case, the functionality of real-time synchronization is achieved by setting up a
timer at 200 Hz inside the module Wiget. Each timer timeout event triggers an update
to the robot model inside the MRML scene.

Application

Module Plugin

gSlicerMyModule
: public QPlugin

MRML

Module Logic

vtkSlicerMyModuleLogic

Module GUI

gSlicerMyModuleWidget
: public QWidget

Figure 4: Module components diagram provided by Kitware;

In 3D Slicer, the environment is called an MRML scene. MRML stands for Medical
Reality Markup Language. The data and elements in the scene are managed in form
of MRML nodes.

The goal of our work is to provide real-time visualization of a robot. To achieve this,
the module parses the robot's description from the ROS parameter server and creates
an MRML model node for each link using the link's mesh file. An MRML display node
is then added for each model node to visualize them in the scene. In order to
synchronize the robot's motion, the module creates an MRML transform node for
each model node and subscribes to the tf topic to receive updates on the robot's link
poses. Whenever there is a new update on the tf topic, the module parses the tf
transforms and updates the corresponding MRML transform nodes accordingly.

3D Slicer

—
ROS Module \

ROS Mode
Tral
Mesh
MEML MRML MREML
Model Display Transform
Mode Mode Mode

N /

Figure 5: Lower level structure of ROS Module in 3D Slicer

Simulator

RViz

RViz is a tool that enables users to display and interact with robot data in three
dimensions using the Robot Operating System (ROS). It can be used to visualize
various types of information, such as point clouds, laser scans, and geometric data.
Robot developers and researchers often use RViz to test and analyze their algorithms
and systems.

In this project, we use RViz to confirm the ability to connect simulators and 3D Slicer
through ROS. We load a URS5 robot in RViz, which automatically publishes the robot's
URDF file to the ROS parameter server. When we launch RViz with a UR5 simulation,
a joint controller window appears, allowing the user to manipulate the robot's joint
angles. The pose of each link is then published to the tf topic.

With the default setup, the ROS Module in 3D Slicer can synchronize the robot.

File Panels Help

dinteract | $3Move Camera [iselect == Measure .~ 2DPoseEstimate ¢ 2D Nav Goal = @
I Displays [o] @ Views D
~ ## Global Options =
Type: | Orbit (rviz, - Zero
Fixed Frame base_link yp iaz)
Background Color [48; 48; 48 ~ Current V... Orbit (rviz)
Frame Rate 30 Near Cl... 0.01
Default Light v Invert ...

~ v Global Status: Ok
v Fixed Frame OK
r 2 Grid v
~ i, RobotModel v
» « Status: Ok
Visual Enabled v
Collision Enabled
Update Interval 0

Target ... <Fixed Frame>
Distance 2.51796

Node: /joint_state_pub... - 0O X

shoulder_pan_joint -0.57

Alpha 1 shoulder_[ift_joint 4.46
Robot Description robot_description
TF Prefix elbow_joint 145
+ Links
- TF —_—
v

wrist_1_joint -5.62

wrist_2_joint -0.76

wrist_3_joint =511

Randomize

Center

Figure 6: URS Simulation with robot state publisher

AMBF

AMBEF is an open-source, 3D versatile simulator for robots that was developed in 2019.
This multi-body framework provides real-time dynamic simulation of multiple bodies
such as robots, free bodies, and multi-link puzzles, along with real-time haptic
interaction with various input devices. The framework also integrates a real surgeon's
console, whether haptic or not, to control simulated robots in real time.

Controlling Devices: []

Figure 7: AMBF Simulator with Galen surgical system

In this project, we achieve the synchronization of the Galen Surgical Robot between
the AMBF simulator and 3D Slicer.

I _\
~

galen.yaml

Define joint
relationships between
rigid bodies

Figure 8: ADF defines Galen Surgical Robot using individual components

AMBEF allows developers to write plugins to achieve custom functionalities.

Differing from the previous simulator, AMBF does not use URDF for robot description.
It uses a YAML-based description file called ADF. To address this difference, the AMBF
plugin designed for this project publishes the robot’s link and the path to their mesh
files in a special format to the ROS parameter server.

Figure 9: AMBF publishes the mesh file path for each rigid body, separated by
semicolons

The ROS module exclusively searches and parses the robot mesh paths parameter
from the ROS parameter server. The parameter only contains the name of the link
and its mesh file path because AMBF automatically handles the joint offsets before
querying its pose. On the contrary, ROS Module has to parse and apply the offset
before updating the pose of the links.

The AMBF simulator plugin inquires about the pose of each rigid body in the
simulation world and publishes them to the tf topic.

Results

The ROS Module in 3D Slicer was able to synchronize with both RViz and AMBF free
of error, and without noticeable latency.

Robot Synchronization with RViz

Eile Panels Help

yinteract [Iselect = Measure

¥ Move Camera

shoulder_pan_joint

shoulder_Iift_joint

elbow_joint

wrist_1_joint

wrist_2_joint

wrist_3_joint

Cen

PEHLATISNEN Node: [joint_state_pub...

Randomize

File Edit View Help

=

» (&)

= b |

»

ERER = B

ter

Reset

Figure 10: Robot synchronization with RViz

Robot Synchronization with AMBF

Controlling Devices: []

Fle Eam View Help
@ Modules: -,

(]

1 Help & Acknowledgemg

il

I [»

B>))

E Display

Foo Bar

- Data Probe

Show Zoomed Slice

Figure 11: Galen Robot synchronization with AMBF

Controlling Devicef File Edit View Help
@ Modules: 4 » E"_E » I [» » -é‘- - » a »

(-

b Help & Acknowledgem¢

~ Display

Foo Bar

-' Data Probe

Show Zoomed Slice

Figure 12: Galen Robot synchronization with AMBF. Note the dynamics feature in
AMBEF is preventing the tool from passing through other rigid bodies.

Performance Evaluation

In order to assess the performance of the system, I configured the simulator to
include the AMBF software and a Galen Surgical Robot model, which consists of 25
rigid bodies and one skull model. The 3D Slicer ROS module updates at a maximum
rate of 200Hz. During the evaluation, I manually generated motion in AMBF by
manually manipulating the robot, and for each update, I recorded the time difference
between the timestamp of the first rigid body's TF transforms and the timestamp of
the end of the robot model update in 3D Slicer.

The evaluated result is as shown below:

Frequency

0.05

0.04 -

0.01 A1

0.00

T T T
200 400 600 800
Frame

Figure 13: Latency vs Frames plot

T
1000

160 ~

140 ~

= =

[=] kJ

(=] o
1 1

80

60

40 |

20

T
0.000

T T T T T
0.005 0.010 0.015 0.020 0.025
Latency (s)

Figure 13: Latency histogram

T
0.030

Statistics (Unit - Second):
Mean: 0.0136355261192251
Median: 0.013400077819824219
std: 0.0043685298720561976

Since average delays in TF are < 1ms. We can say that the source of delay is mainly
from robot model updates in 3D Slicer.

The statistics show that delay of the ROS module is stable at around 13ms.

Significance and Conclusion

In this project, I developed a ROS module for 3D Slicer that includes a ROS node. The
module is able to parse URDFs from the ROS parameter server, load meshes for each
link, and reconstruct the robot within the 3D Slicer scene. When working with a
simulator like RViz, the module is able to synchronize the robot's motion in real-time.
Additionally, the module also works with AMBF. It reads the path of the mesh file for
each link from the parameter server and updates the robot's motion based on the
rigid body poses in the AMBF simulator. Overall, this ROS module effectively bridges
3D Slicer with simulators and allows for real-time synchronization of robot motion. It
is an important contribution to the field of robotic intervention research and
development that utilizes 3D Slicer.

There is space for improvement. At the current stage, the communication is One-Way
from the simulator/robot to 3D Slicer. 3D Slicer, as a powerful tool that is capable of
Registration, Segmentation, etc., does not provide any input or feedback for the
virtual context. In the future development, having 3D Slicer as a source of input back
to the simulator is an important direction.

Management Summary

Source Code

The source code for this project is controlled using GitHub. Resources along with the
source code are located in a repository under the CIIS-Lab organization.

Link to the GitHub repository:

https://github.com/LCSR-CIIS/3D-Slicer_ROS_Module_with_AMBF

Documentation

The instruction for installing and building this project is located in the GitHub
repository in the form of README markdown language.

The conclusive report (this document) is saved in the OneDrive folder.

Acknowledgment

Thank you to Dr. Adnan Munawar, Dr. Manish Sahu, and Prof. Russell Taylor for
providing weekly feedback and guidance throughout the project.

Reference

[1] Connolly, Laura et al. “Bridging 3D Slicer and ROS2 for Image-Guided Robotic
Interventions.” Sensors (Basel, Switzerland) vol. 22,14 5336. 17 Jul. 2022,
do0i:10.3390/s22145336

[2]PerkLab. “PerkLab/Perklabbootcamp: Materials for the Yearly Perklab Bootcamp
Course.” GitHub, https://github.com/PerkLab/PerkLabBootcamp.git.

[3]Finet, Julien. “Loadable Modules.” Kitware, 1 Apr. 2019,
https://www.slideserve.com/eytan/loadable-modules-powerpoint-ppt-presentation.

[4]Hongyi, Fan et al. “VR (Virtual Reality) Guided Skull-Base Surgery ”, 19 Apr. 2022,
https://livejohnshopkins.sharepoint.com/:w:/s/CIS2-VRGuidedSkullBasedSurgery-Robo
tControlwithSimulationint/EeFmaBGXAnBIgUVAEsx]7-EBHS3ugMrzRG3yTO4KrkwRV
A?e=NZ9A5p

	
	
	
	
	Bridging 3D Slicer to Simulation Software via ROS
	Table of Content
	
	Background
	Project Goals
	
	Technical Approach
	Architecture Overview

	
	
	
	ROS Module in 3D Slicer
	Simulator
	RViz
	AMBF

	Results
	Robot Synchronization with RViz
	Robot Synchronization with AMBF
	Performance Evaluation

	Significance and Conclusion
	Management Summary
	Source Code
	Documentation

	Acknowledgment
	Reference

