

DB Migration to the Cloud​ 2

Key Considerations​ 2
Migration Lifecycle​ 3
Migration Approach​ 3
Migrating Method​ 3

Importing with Data Pump with database link​ 4
###START###​ 4

Prerequisite on source​ 4
Prerequisite on target​ 7
Step 1 (Optional) :Create export user and Grant privileges to the user on the source database - It
is optional , We can take the export as SYS user​ 7
Step 2: Create a dump file using expdp​ 8
Step 3: Validate the TNSPING Response from Source to target​ 9
Step 4: Create Database Link on Source database​ 9
Step 5: Copy the exported dump file to the target DB instance using DBMS_FILE_TRANSFER​ 9
Step 6: Validate the data_pump_dir and progress of transfer details on target​ 11
Step 7: There are two option for import​ 11

Option 1: Run IMPORT command from Source system​ 11
Option 2: Import the data file to the target DB instance using DBMS_DATAPUMP​ 12

Step 8: Validate the object in Target RDS Instance​ 14
Step 9: Clean up​ 14
Supported platforms​ 14
Compare Available Method​ 15

Migrate to EC2 using Data Pump​ 16
Prerequisite on source​ 17
Prerequisite on target​ 19
Step 1 (Optional) :Create export user and Grant privileges to the user on the source database - It
is optional , We can take the export as SYS user​ 20
Step 2: Create a dump file using expdp​ 20
Step 3: Validate the TNSPING Response from Source to target​ 21
Step 4: Create Database Link on Source database​ 21
Step 5: We have a tree option to transfer export backup dump.​ 21
Step 6: Validate the data_pump_dir and progress of transfer details on target​ 23
Step 7: There are two option for import​ 23

Option 1: Run IMPORT command from Source system​ 23
Option 2: Import the data file to the target DB instance using DBMS_DATAPUMP​ 24
Option 3: Run IMPORT command from Target system​ 25

Step 8: Validate the object in Target RDS Instance​ 26
Using Full Transportable Export Import​ 26

Find The Endian Format of the source and target​ 27
Verify that the set of tablespaces to be transported is self-contained​ 28
Take the tablespace read only​ 28
Take the full transportable export​ 28
Copy the files to target​ 28

Import the transportable data​ 29
Using RMAN Convert Transportable Tablespace​ 29
Using RMAN Transport Tablespace​ 31

DB Migration to the Cloud

Key Considerations
Deciding the right migration method is a very challenging and complex task and we have to consider
several factors before arriving at the right migration method.

We should focus on some point before con considerations for migrating a database to the cloud:

●​ Database size: This is the single most important factor along with available downtime.
●​ Database version and edition: Cloud providers do not support all editions or older DB

versions like Oracle 10g and below, hence comparing the source DB version and edition with
the allowed/available one is important.

●​ ARCHIVELOG mode: Migration methods such as RMAN hot backup, DataGuard-based
migration, and many other methods require databases to be running in ARCHIVELOG mode.

This is why this information should be captured before deciding the migration method.

●​ Migration level: Migration can be at different levels, such as DB server, DB schema, or even
the table level.

●​ OS endianness (Little endian/ big endian): Cloud providers do not support all OSs, hence
chances of having to do a cross-platform migration is very high. For cross-platform migration,
it is very important to know the OS endianness so that the appropriate migration method can
be selected.

●​ 32-bit/64-bit: 32-bit servers are not very common, but if you have very old legacy systems
running on 32-bit, then you need to consider moving them as-is or converting them to 64-bit
systems.

●​ Application nature (mission-critical/performance sensitive/big data): The application
nature defines the downtime availability, hence it affects the migration method used.

●​ Available downtime and available time for migration: Some database migrations might
have zero or very little downtime. This is an important factor to remember while determining
the migration method Network bandwidth between on-premise and the cloud: Network
bandwidth plays an important role with large database migrations.

●​ Application compatibility: While doing database migration, you need to consider whether
the application is compatible with the proposed cloud deployment model.

●​ Cloud provider (Oracle Cloud, AWS, or Microsoft Azure): Different cloud vendors have
different migration methods. Amazon AWS has a database migration service called DMS,
which is not available in Oracle Cloud.

●​ Cloud deployment model (IaaS, PaaS, DBaaS): The migration method depends on the
database deployment model, for example, you can’t do a RMAN backup restore in Oracle
Schema as a service deployment.

●​ Cloud type (public/private): Migration methods for a private cloud in your own datacenter will
be different than for a public cloud.

Migration Lifecycle

Migration is multistep process; the different stages are like :

●​ Analyse : In the Analyze phase, you go through the customer requirements and key
considerations.

●​ Identify : These inputs help in the next phase, called Identify, where you identify the migration
method.

●​ Prepare : The Prepare phase is all about getting ready for migration by having things in
place. For example, you prepare the target environment for DB migration.

●​ Migrate
●​ Validate

Migration Approach

At a high level, all DB migration method consists of three phases, as shown in
BAckup
Transfer
Restore

Migrating Method
There are various ways you can do DB migration to Oracle or Amazon Cloud, including

●​ Export/Import,
●​ using SQL Developer,
●​ and RMAN based restore.

Other methods are:

●​ Create a DataGuard in the cloud
●​ Perform on-premise backups to the cloud and restore the cloud backup to create the DB in the

cloud

●​ Perform a DB server VM backup and restore the machine backup to the cloud, then restore it
as new cloud VM

●​ Use Oracle Golden Gate-based DB replication to the cloud
●​ For AWS, Data Migration Services (DMS) is also a very effective method

Comparison of Migration Methods

Database migration from On-premise to AWS RDS

Method: Importing using Oracle Data Pump

There are two methods.

●​ Importing with Data pump using S3 bucket
●​ Importing with Data Pump with database link

Importing with Data Pump with database link

###START###

Prerequisite on source

●​ You must have execute privileges on the DBMS_FILE_TRANSFER and

DBMS_DATAPUMP packages.

●​ You must have write privileges to the DATA_PUMP_DIR directory on the

source DB instance.

●​ You must ensure that you have enough storage space to store the dump

file on the source instance and the target DB instance.

●​ Get the schema size from source database

set linesize 150
set pagesize 5000
col owner for a15
col segment_name for a30
col segment_type for a20
col TABLESPACE_NAME for a30
clear breaks
clear computes
compute sum of SIZE_IN_GB on report
break on report

select OWNER,sum(bytes)/1024/1024/1000 "SIZE_IN_GB" from
dba_segments where owner in ('APPLSYS') group by owner order by
owner;

●​ Get the count of object (group by object type)

set lines 333 pages 111
col OWNER for a19
col OBJECT_TYPE for a21

select owner, object_type, count(*) from dba_objects where owner in
('APPLSYS') and status='VALID' group by owner, object_type order by
owner;

●​ Get the user DDL, role user default tablespace and tablespace details for

owner related objects.

set head off
set pages 0
set long 9999999

SQL> select Dbms_metadata.get_ddl('USER','APPLSYS') from dual;

SQL> SELECT
DBMS_METADATA.GET_GRANTED_DDL('ROLE_GRANT','APPLSYS
') FROM DUAL;

SQL> SELECT
DBMS_METADATA.GET_GRANTED_DDL('SYSTEM_GRANT','APPLS
YS') FROM DUAL;

●​ Get the user TABLESPACE Details.

SELECT owner,tablespace_name FROM dba_segments WHERE
owner='APPLSYS';

SQL> EXEC DBMS_TTS.TRANSPORT_SET_CHECK(ts_list =>
'APPS_TS_TX_DATA');

SQL> SELECT * FROM transport_set_violations;

●​ Get the TABLESPACE usage .

select t.tablespace, t.totalspace as " Totalspace(MB)",
round((t.totalspace-nvl(fs.freespace,0)),2) as "Used
Space(MB)", nvl(fs.freespace,0) as "Freespace(MB)",
round(((t.totalspace-nvl(fs.freespace,0))/t.totalspace)*100,2)
as "%Used", round((nvl(fs.freespace,0)/t.totalspace)*100,2) as
"% Free" from (select round(sum(d.bytes)/(1024*1024)) as
totalspace,d.tablespace_name tablespace from dba_data_files d
group by d.tablespace_name) t, (select
round(sum(f.bytes)/(1024*1024)) as freespace,f.tablespace_name
tablespace from dba_free_space f group by f.tablespace_name)
fs where t.tablespace=fs.tablespace (+) order by "% Free";

Prerequisite on target

●​ Create the required tablespaces before you import the data as per above
output

select tablespace_name from dba_data_files;

select b.tablespace_name, tbs_size SizeMb, a.free_space FreeMb
from (select tablespace_name, round(sum(bytes)/1024/1024 ,2) as
free_space
 from dba_free_space
 group by tablespace_name) a,
 (select tablespace_name, sum(bytes)/1024/1024 as tbs_size
 from dba_data_files
 group by tablespace_name) b
where a.tablespace_name(+)=b.tablespace_name;

Note: Increase the size of tablespace before start the import process
(Reference)

●​ If the user account into which the data is imported doesn't exist, create the
user account and grant the necessary permissions and roles. If you plan to
import data into multiple user schemas, create each user account and
grant the necessary privileges and roles to it. As per above output

Step 1 (Optional) :Create export user and Grant privileges to the user
on the source database - It is optional , We can take the export as SYS
user

Note
If the source database is an Amazon RDS instance, you can skip this step. You
use your Amazon RDS master user account to perform the export.

The following commands create a new user and grant the necessary
permissions.

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Database.html#Appendix.Oracle.CommonDBATasks.CreatingTablespacesAndDatafiles

CREATE USER export_user IDENTIFIED BY user123;
GRANT CREATE SESSION, CREATE TABLE, CREATE DATABASE LINK TO
export_user;
ALTER USER export_user QUOTA unlimited on APPS_TS_TX_DATA;
GRANT READ, WRITE ON DIRECTORY data_pump_dir TO export_user;
GRANT SELECT_CATALOG_ROLE TO export_user;
GRANT EXECUTE ON DBMS_DATAPUMP TO export_user;
GRANT EXECUTE ON DBMS_FILE_TRANSFER TO export_user;

Step 2: Create a dump file using expdp

We have multiple option to take

1.st option if we want to take backup in a single file with unlimited size

expdp schemas=APPLSYS directory=DATA_PUMP_DIR
dumpfile=exp_APPLSYS.dmp logfile=expAPPLSYS.log

2nd option , We can take backup in multiple file with limit size

Create parameter File

DUMPFILE=SOURCE_SID_FULL_%u_11JULY.DMP
LOGFILE=SOURCE_SID_FULL_11JULY.LOG
SCHEMAS=SCHEMA_1,SCHEMA_2
DIRECTORY=DATA_PUMP_DIR
PARALLEL=16
COMPRESSION=ALL << If the destination is Standard edition, don’t use
this
FILESIZE=5G

Run the export backup

expdp parfile=exp_on_prem.pf

Step 3: Validate the TNSPING Response from Source to target

tnsping database-1.ccknm69zyn6v.us-east-1.rds.amazonaws.com:1521/ORCL

Step 4: Create Database Link on Source database

CREATE DATABASE LINK onprem_to_rds
CONNECT TO admin IDENTIFIED BY indiandba123
USING
'(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=database-1.ccknm6
9zyn6v.us-east-1.rds.amazonaws.com)
(PORT=1521))(CONNECT_DATA=(SID=ORCL)))';

Step 5: Copy the exported dump file to the target DB instance using
DBMS_FILE_TRANSFER

Checks Some point before transfer the export dump:

1.​ Validate the Available disk storage on target RDS to store export dump
files. (Reference)

If it’s just a single file

BEGIN
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'DATA_PUMP_DIR',
 source_file_name => 'sample.dmp',
 destination_directory_object => 'DATA_PUMP_DIR',
 destination_file_name => 'sample_copied.dmp',
 destination_database => 'to_rds');
END;

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIOPS.StorageTypes.html

/

If it’s multiple export file

Depending on the number of files, edit the PL/SQL blocks below - change
the numbers - several in one loop, and open multiple command prompts or
terminal sessions and run several, covering all files – change the file
date/names accordingly, and run it in SQLPlus:

This does files 01 to 09
begin
for i in 1..9 loop
DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'DATA_PUMP_DIR',
 source_file_name =>
'SOURCE_SID_FULL_0'||i||'_11JULY.DMP',
 destination_directory_object => 'DATA_PUMP_DIR',
 destination_file_name =>
'SOURCE_SID_FULL_0'||i||'_11JULY.DMP',
 destination_database => 'onprem_to_rds'
);
 end loop;
end;
/

This does files 10 to 15

begin
for i in 1..9 loop
DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'DATA_PUMP_DIR',
 source_file_name =>
'SOURCE_SID_FULL_1'||i||'_11JULY.DMP',
 destination_directory_object => 'DATA_PUMP_DIR',
 destination_file_name =>
'SOURCE_SID_FULL_1'||i||'_11JULY.DMP',
 destination_database => 'onprem_to_rds'
);
 end loop;
end;
/

Yet Another Oracle DBA Blog: Migrating a database from an on prem server
to Amazon RDS

Step 6: Validate the data_pump_dir and progress of transfer
details on target

select * from dba_directories where directory_name='DATA_PUMP_DIR';

SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir('DATA_PUMP_DIR'))
ORDER BY MTIME;

Step 7: There are two option for import

Option 1: Run IMPORT command from Source system

1.​ To know the DATA_PUMP_DIRECTORY local on RDS

2.​ Validate the TNSPING Response from Source to target using
TNSNAMES.ora file entry

RDS =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST =
database-1.ccknm69zyn6v.us-east-1.rds.amazonaws.com)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = ORCL)
)
)

Then validate the tnsping RDS response

http://yetanotheroracledbablog.blogspot.com/2019/08/migrating-database-from-on-prem-server.html
http://yetanotheroracledbablog.blogspot.com/2019/08/migrating-database-from-on-prem-server.html

3.​ Validate the data_pump_dir details on target

select * from dba_directories where directory_name='DATA_PUMP_DIR';

SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir('DATA_PUMP_DIR'))
ORDER BY MTIME;

4.​ Now import the data in the cloud DB with a user who has the required
privileges. On the local DB:

​ If it’s just a single file

impdp admin/indiandba123@rds directory=DATA_DUMP_DIR
dumpfile=exp_APPLSYS.dmp full=yes

​ If it’s just a multiple file

impdp admin/indiandba123@rds
DUMPFILE=SOURCE_SID_FULL_%u_11JULY.DMP
logfile=import_SOURCE_SID_FULL_11JULY.log parallel=16 full=y
directory=DATA_PUMP_DIR PARTITION_OPTIONS=DEPARTITION
<< use this if the target is SE and source has partitions

Issue: Import Failed with multiple dump file
Solution: Data Pump Import, IMPDP, Fails with Errors ORA-39246 and
ORA-39059 (Doc ID 1512192.1)

Option 2: Import the data file to the target DB instance using
DBMS_DATAPUMP

Connect to the DB instance with the Amazon RDS master user account to perform the
import.

1.​ To know the DATA_PUMP_DIRECTORY local on RDS

2.​ Validate the data_pump_dir details on target

select * from dba_directories where directory_name='DATA_PUMP_DIR';

SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir('DATA_PUMP_DIR'))
ORDER BY MTIME;

3.​ Now import the data in the cloud DB with a user who has the required

privileges. On the local DB:

DECLARE
 v_hdnl NUMBER;
BEGIN
 v_hdnl := DBMS_DATAPUMP.OPEN(
 operation => 'IMPORT',
 job_mode => 'SCHEMA',
 job_name => null);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'sample_copied.dmp',
 directory => 'DATA_PUMP_DIR',
 filetype => dbms_datapump.ku$_file_type_dump_file);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'sample_imp.log',
 directory => 'DATA_PUMP_DIR',
 filetype => dbms_datapump.ku$_file_type_log_file);
 DBMS_DATAPUMP.METADATA_FILTER(v_hdnl,'SCHEMA_EXPR','IN
(''SCHEMA_1'')');
 DBMS_DATAPUMP.START_JOB(v_hdnl);
END;
/

Step 8: Validate the object in Target RDS Instance

Verify the data in the cloud DB using SQL Developer. While copying the dump
file may take more time, the import is expected to be instantaneous since it is
done locally in the cloud. In case of data mismatch, specific table/objects may
need to be imported again. The exact steps for fixing the partially successful
migration depend on the specific issues encountered.

Step 9: Clean up
After the data has been imported, you can delete the files that you don't want to
keep. You can list the files in DATA_PUMP_DIR using the following command.

SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir('DATA_PUMP_DIR'))
ORDER BY MTIME;

To delete files in DATA_PUMP_DIR that you no longer require, use the
following command.

EXEC UTL_FILE.FREMOVE('DATA_PUMP_DIR','<file name>');

Database Migration from On-premise to AWS EC2

Supported platforms

You can query the V$TRANSPORTABLE_PLATFORM view to see the
platforms that are supported and to determine each platform's endian format
(byte ordering).

SQL> COLUMN PLATFORM_NAME FORMAT A32
SQL> SELECT * FROM V$TRANSPORTABLE_PLATFORM;

PLATFORM_ID PLATFORM_NAME ENDIAN_FORMAT
----------- -------------------------------- --------------

 1 Solaris[tm] OE (32-bit) Big
 2 Solaris[tm] OE (64-bit) Big
 7 Microsoft Windows IA (32-bit) Little
 10 Linux IA (32-bit) Little
 6 AIX-Based Systems (64-bit) Big
 3 HP-UX (64-bit) Big
 5 HP Tru64 UNIX Little
 4 HP-UX IA (64-bit) Big
 11 Linux IA (64-bit) Little
 15 HP Open VMS Little
 8 Microsoft Windows IA (64-bit) Little
 9 IBM zSeries Based Linux Big
 13 Linux 64-bit for AMD Little
 16 Apple Mac OS Big
 12 Microsoft Windows 64-bit for AMD Little
 17 Solaris Operating System (x86) Little

If the source platform and the target platform are of different endianness, then
an additional step must be done on either the source or target platform to
convert the tablespace being transported to the target format. If they are of the
same endianness, then no conversion is necessary and tablespaces can be
transported as if they were on the same platform.

Compare Available Method

Available Method

Using Data Pump Data Pump Supports cross platform backup and
restore.

Using Full Transportable
Export Import

●​ The endian should be the same on source
and target for this method.

Using Transportable
Tablespace

●​ Source and Target database should be on
same Operating System version

●​ Endian Format should be the same on
source and target.

Using RMAN Transport
Tablespace

●​ Supports cross platform backup and
restore.

●​ No need to take the source tablespaces in
read only mode, which means this method
can be applied to production databases

Using RMAN Convert
Transportable
Tablespace

●​ Source and Target database can be on
different Operating System version

●​ Endian Format can be different on source
and target.

Migrate to EC2 using Data Pump

• Oracle Data Pump is a logical backup and restore utility
• Data Pump Supports cross platform backup and restore.
• We can perform backup/restore at table/user/tablespace/database level
• Data Pump supports parallel options , which perform the backup and restore
using a parallel worker process and thus helps in faster job completion.

Lab Setup Details

Source​ ​ ​ Target

OS ​ ​ ​ ​ ​ ​ ​ Window​ ​ ​ Linux
Location ​ ​ ​ ​ ​ ​ On premise ​ ​ AWS
Version ​ ​ ​ ​ ​ ​ 19c ​ ​ ​ ​ 19c
Database Name ​ ​ ​ ​ ​ ONPREM​ ​ ​ PROD
Database Type​ ​ ​ ​ ​ PDB ​ ​ ​ ​ PDB

Workflow

• In source identify the Schema to be migrated
• Create directory object to store the backup
• Take the data pump export (expdp) backup of the schema
• Create directory object on target to store the backup
• Copy the dump files to target
• Perform data pump import (impdp) to restore the backup of the schema

Prerequisite on source

●​ You must have execute privileges on the DBMS_FILE_TRANSFER and

DBMS_DATAPUMP packages.

●​ You must have write privileges to the DATA_PUMP_DIR directory on the

source DB instance.

●​ You must ensure that you have enough storage space to store the dump

file on the source instance and the target DB instance.

●​ Get the schema size from source database

set linesize 150
set pagesize 5000
col owner for a15
col segment_name for a30
col segment_type for a20
col TABLESPACE_NAME for a30
clear breaks
clear computes
compute sum of SIZE_IN_GB on report
break on report

select OWNER,sum(bytes)/1024/1024/1000 "SIZE_IN_GB" from
dba_segments where owner in ('APPLSYS') group by owner order by
owner;

●​ Get the count of object (group by object type)

set lines 333 pages 111
col OWNER for a19
col OBJECT_TYPE for a21

select owner, object_type, count(*) from dba_objects where owner in
('APPLSYS') and status='VALID' group by owner, object_type order by
owner;

●​ Get the user DDL, role user default tablespace and tablespace details for

owner related objects.

set head off
set pages 0
set long 9999999

SQL> select Dbms_metadata.get_ddl('USER','APPLSYS') from dual;

SQL> SELECT
DBMS_METADATA.GET_GRANTED_DDL('ROLE_GRANT','APPLSYS
') FROM DUAL;

SQL> SELECT
DBMS_METADATA.GET_GRANTED_DDL('SYSTEM_GRANT','APPLS
YS') FROM DUAL;

●​ Get the user TABLESPACE Details.

SELECT owner,tablespace_name FROM dba_segments WHERE
owner='APPLSYS';

SQL> EXEC DBMS_TTS.TRANSPORT_SET_CHECK(ts_list =>
'APPS_TS_TX_DATA');

SQL> SELECT * FROM transport_set_violations;

●​ Get the TABLESPACE usage .

select t.tablespace, t.totalspace as " Totalspace(MB)",
round((t.totalspace-nvl(fs.freespace,0)),2) as "Used
Space(MB)", nvl(fs.freespace,0) as "Freespace(MB)",
round(((t.totalspace-nvl(fs.freespace,0))/t.totalspace)*100,2)
as "%Used", round((nvl(fs.freespace,0)/t.totalspace)*100,2) as
"% Free" from (select round(sum(d.bytes)/(1024*1024)) as
totalspace,d.tablespace_name tablespace from dba_data_files d
group by d.tablespace_name) t, (select

round(sum(f.bytes)/(1024*1024)) as freespace,f.tablespace_name
tablespace from dba_free_space f group by f.tablespace_name)
fs where t.tablespace=fs.tablespace (+) order by "% Free";

Prerequisite on target

●​ Create the required tablespaces before you import the data as per above
output

select tablespace_name from dba_data_files;

select b.tablespace_name, tbs_size SizeMb, a.free_space FreeMb
from (select tablespace_name, round(sum(bytes)/1024/1024 ,2) as
free_space
 from dba_free_space
 group by tablespace_name) a,
 (select tablespace_name, sum(bytes)/1024/1024 as tbs_size
 from dba_data_files
 group by tablespace_name) b
where a.tablespace_name(+)=b.tablespace_name;

Note: Increase the size of tablespace before start the import process
(Reference)

●​ If the user account into which the data is imported doesn't exist, create the
user account and grant the necessary permissions and roles. If you plan to
import data into multiple user schemas, create each user account and
grant the necessary privileges and roles to it. As per above output

Create tablespace
Create user
Grant to users

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.CommonDBATasks.Database.html#Appendix.Oracle.CommonDBATasks.CreatingTablespacesAndDatafiles

Step 1 (Optional) :Create export user and Grant privileges to the user
on the source database - It is optional , We can take the export as SYS
user

Note
If the source database is an Amazon RDS instance, you can skip this step. You
use your Amazon RDS master user account to perform the export.

The following commands create a new user and grant the necessary
permissions.

CREATE USER export_user IDENTIFIED BY user123;
GRANT CREATE SESSION, CREATE TABLE, CREATE DATABASE LINK TO
export_user;
ALTER USER export_user QUOTA unlimited on APPS_TS_TX_DATA;
GRANT READ, WRITE ON DIRECTORY data_pump_dir TO export_user;
GRANT SELECT_CATALOG_ROLE TO export_user;
GRANT EXECUTE ON DBMS_DATAPUMP TO export_user;
GRANT EXECUTE ON DBMS_FILE_TRANSFER TO export_user;

Step 2: Create a dump file using expdp

We have multiple option to take

1.st option if we want to take backup in a single file with unlimited size

expdp schemas=APPLSYS directory=DATA_PUMP_DIR
dumpfile=exp_APPLSYS_19092023.dmp logfile=expAPPLSYS_19092023.log

2nd option , We can take backup in multiple file with limit size

Create parameter File

DUMPFILE=SOURCE_SID_FULL_%u_11JULY.DMP
LOGFILE=SOURCE_SID_FULL_11JULY.LOG
SCHEMAS=SCHEMA_1,SCHEMA_2
DIRECTORY=DATA_PUMP_DIR
PARALLEL=16
COMPRESSION=ALL << If the destination is Standard edition, don’t use
this
FILESIZE=5G

Run the export backup

expdp parfile=exp_on_prem.pf

Step 3: Validate the TNSPING Response from Source to target

tnsping database-1.ccknm69zyn6v.us-east-1.rds.amazonaws.com:1521/ORCL

Step 4: Create Database Link on Source database

CREATE DATABASE LINK onprem_to_EC23
CONNECT TO admin IDENTIFIED BY admin123
USING
'(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=ip-10-0-11-164.ap-south-1.

compute.internal)
(PORT=1521))(CONNECT_DATA=(SID=PROD)))';

Step 5: We have a tree option to transfer export backup dump.
1.​ Through FTP
2.​ Through S3 Bucket
3.​ Copy the exported dump file to the target DB instance using DBMS_FILE_TRANSFER

Here we use DBMS_FILE_TRANSFER

Checks Some point before transfer the export dump:

1.​ Validate the Available disk storage on target EC2 to store export dump
files.

If it’s just a single file

BEGIN
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'DATA_PUMP_DIR',
 source_file_name => 'EXP_APPLSYS_19092023.DMP',
 destination_directory_object => 'DATA_PUMP_DIR',
 destination_file_name => 'EXP_APPLSYS_19092023.DMP',
 destination_database => 'onprem_to_EC2');
END;
/

If it’s multiple export file

Depending on the number of files, edit the PL/SQL blocks below - change
the numbers - several in one loop, and open multiple command prompts or
terminal sessions and run several, covering all files – change the file
date/names accordingly, and run it in SQLPlus:

This does files 01 to 09
begin
for i in 1..9 loop
DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'DATA_PUMP_DIR',
 source_file_name =>
'SOURCE_SID_FULL_0'||i||'_11JULY.DMP',
 destination_directory_object => 'DATA_PUMP_DIR',
 destination_file_name =>
'SOURCE_SID_FULL_0'||i||'_11JULY.DMP',
 destination_database => 'onprem_to_rds'
);
 end loop;
end;
/

This does files 10 to 15

begin
for i in 1..9 loop
DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'DATA_PUMP_DIR',
 source_file_name =>
'SOURCE_SID_FULL_1'||i||'_11JULY.DMP',
 destination_directory_object => 'DATA_PUMP_DIR',
 destination_file_name =>
'SOURCE_SID_FULL_1'||i||'_11JULY.DMP',
 destination_database => 'onprem_to_rds'
);
 end loop;
end;
/

Step 6: Validate the data_pump_dir and progress of transfer
details on target

select * from dba_directories where directory_name='DATA_PUMP_DIR';

Step 7: There are two option for import

Option 1: Run IMPORT command from Source system

1.​ Validate the TNSPING Response from Source to target using
TNSNAMES.ora file entry

EC2 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST =
database-1.ccknm69zyn6v.us-east-1.rds.amazonaws.com)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)

 (SERVICE_NAME = PROD)
)
)

Then validate the tnsping RDS response

2.​ Validate the data_pump_dir details on target

select * from dba_directories where directory_name='DATA_PUMP_DIR';

SELECT * FROM TABLE(rdsadmin.rds_file_util.listdir('DATA_PUMP_DIR'))
ORDER BY MTIME;

3.​ Now import the data in the cloud DB with a user who has the required
privileges. On the local DB:

​ If it’s just a single file

impdp admin/indiandba123@rds directory=DATA_DUMP_DIR
dumpfile=exp_APPLSYS.dmp full=yes

​ If it’s just a multiple file

impdp admin/indiandba123@rds
DUMPFILE=SOURCE_SID_FULL_%u_11JULY.DMP
logfile=import_SOURCE_SID_FULL_11JULY.log parallel=16 full=y
directory=DATA_PUMP_DIR PARTITION_OPTIONS=DEPARTITION
<< use this if the target is SE and source has partitions

Option 2: Import the data file to the target DB instance using
DBMS_DATAPUMP

Connect to the DB instance with the Amazon EC2 master user account to perform the
import.

1.​ Validate the data_pump_dir details on target

select * from dba_directories where directory_name='DATA_PUMP_DIR';

2.​ Now import the data in the cloud DB with a user who has the required

privileges. On the local DB:

DECLARE
 v_hdnl NUMBER;
BEGIN
 v_hdnl := DBMS_DATAPUMP.OPEN(
 operation => 'IMPORT',
 job_mode => 'SCHEMA',
 job_name => null);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'sample_copied.dmp',
 directory => 'DATA_PUMP_DIR',
 filetype => dbms_datapump.ku$_file_type_dump_file);
 DBMS_DATAPUMP.ADD_FILE(
 handle => v_hdnl,
 filename => 'sample_imp.log',
 directory => 'DATA_PUMP_DIR',
 filetype => dbms_datapump.ku$_file_type_log_file);
 DBMS_DATAPUMP.METADATA_FILTER(v_hdnl,'SCHEMA_EXPR','IN
(''SCHEMA_1'')');
 DBMS_DATAPUMP.START_JOB(v_hdnl);
END;
/

Option 3: Run IMPORT command from Target system

impdp schemas=APPLSYS directory=DATA_PUMP_DIR
dumpfile=exp_APPLSYS_19092023.dmp logfile=impAPPLSYS_19092023.log

Step 8: Validate the object in Target RDS Instance

Verify the data in the cloud DB using SQL Developer. While copying the dump
file may take more time, the import is expected to be instantaneous since it is
done locally in the cloud. In case of data mismatch, specific table/objects may
need to be imported again. The exact steps for fixing the partially successful
migration depend on the specific issues encountered.

●​ Get the count of object (group by object type)

set lines 333 pages 111
col OWNER for a19
col OBJECT_TYPE for a21

select owner, object_type, count(*) from dba_objects where owner in
('APPLSYS') and status='VALID' group by owner, object_type order by
owner;

Using Full Transportable Export Import

●​ This method is an enhancement of “transportable tablespace” feature and
more usability and easiness

●​ Migrate the data as data files instead of logical data as in the case of
regular export

●​ Faster method compared to regular export as the physical files are copied
from source to target

●​ Helps in migrating all the user defined tablespaces in single command
●​ The methods used is applicable for both Non-CDB as well as PDB
●​ Full transportable export and import can take the advantage of import

over network features and migrate the tablespaces with a single
command. In all cases manual copy of the data files are required

Workflow

●​ Create Database in AWS EC2

●​ Find out the endian format of the source and target.
●​ The endian should be the same on source and target for this method.
●​ In source identify the tablespaces to be migrated
●​ Verify that the set of tablespaces to be transported is self-contained
●​ Create directory object to store the backup
●​ Take the source tablespaces in read only mode.
●​ Take the full transportable export
●​ Make the source tablespaces into read write mode
●​ Copy the dump files and data files to target
●​ Create directory object to store the backup on target
●​ copy the data file to correct directories
●​ Perform full transportable import

Steps:

Find The Endian Format of the source and target

• This method will work only if source and target has the same endian
format

SQL> select platform_name, endian_format from
v$transportable_platform where platform_id in (select platform_id
from v$database);

Verify that the set of tablespaces to be transported is self-contained

SQL> EXECUTE
DBMS_TTS.TRANSPORT_SET_CHECK('APPS_TS_TX_DATA', TRUE);

SQL> SELECT * FROM TRANSPORT_SET_VIOLATIONS;

Take the tablespace read only

SQL> ALTER TABLESPACE APPS_TS_TX_DATA Read only;

Take the full transportable export

expdp full=y transportable=always directory=DATA_PUMP_DIR
dumpfile=exp_tbs.dmp logfile=exp_tbs.log

• This command will take the meta data backup of all non-system
tablespaces

• Transportable=ALWAYS and full=Y . These parameters tell Data pump
to take full transportable export rather than conventional export
Method.

Copy the files to target

• The following files to be copied.
Full transportable export dump files
All the data files which should be plugged in to the target database

• Any of the following methods can be used
• Scp
• Use s3 buckets

• Copy the data files to the correct directories to maintain the standard

Import the transportable data

• $ impdp directory=DATA_PUMP_DIR
dumpfile=EXP_TBS.DMP logfile=full_tts_imp.log
transport_datafiles='/oracle/oradata/PROD/APPS_TS_TX_DATA.DBF,'/oracl
e/oradata/PROD/USERS01.DBF’

• Import will create the users
• Cross verify if the objects and data is imported correctly

Using RMAN Convert Transportable Tablespace
●​ Similar to transportable tablespace using data pump
●​ Source and Target database can be on different Operating System version
●​ Endian Format can be different on source and target.

Workflow

●​ In source identify the Tablespaces to be migrated
●​ Make sure that the tablespaces are self contained
●​ Create the directory for directory object for the data pump
●​ Take the tablespaces to be transported into read only mode
●​ Take the meta data backup of the tablespaces using expdp with

TRANSPORT_TABLESPACES=<list of tablespaces> parameter.
●​ Using RMAN , convert the tablespaces into the endian format of the

target database

●​ Take the tablespaces to be transported back into read write mode
●​ Create a directory object on the target database.
●​ Copy the dump files and datafiles of the tablespaces to the target. Make

sure to copy the dump files to the physical path of the directory object
created before

●​ Import the transportable tablespace metadata using impdp with
parameter TRANSPORT_DATAFILES.

Steps:

●​ Identify the tablespaces to be transported. In this example “mytbs”
●​ Check if the tablespaces are self contained.

DBMS_TTS.TRANSPORT_SET_CHECK can be used for this.
CONN / AS SYSDBA
EXEC SYS.DBMS_TTS.TRANSPORT_SET_CHECK(ts_list => 'mytbs',
incl_constraints => TRUE);

PL/SQL procedure successfully completed.

●​ Check if any violations using transport_set_violations view

SELECT * FROM transport_set_violations;

●​ Take the tablespaces to be exported into read only mode.

SQL> alter tablespace mytbs read only;

●​ Create a directory object in the source database .

SQL> create directory dp_dir as ‘G:\wysheid\backup’;

●​ Perform transportable export backup using expdp

$ expdp system/oracle@sourcedb1 TRANSPORT_TABLESPACES=mytbs
TRANSPORT_FULL_CHECK=YES DIRECTORY=dp_dir
dumpfile=mytbs.dmp logfile=mytbs.log

RMAN> CONVERT TABLESPACE mytbs to platform='Linux x86 64-bit'
format ‘G:\wysheid\backup\%U';

●​ Take the tablespaces to be exported back into read write mode.

SQL> alter tablespace mytbs read write;

●​ Create directory object on the target database

SQL> create directory dp_dir as ‘/wysheid/backup’;

Copy the dump files and converted data files of the tablespaces to be
transported to the EC2 Instance. Make sure to copy the dump file to
the physical path of the directory object created

• S3
• SCP

Copy the data files to the standard location similar to that of the
other data files.

●​ Import the transportable tablespace into the target database

impdp system/oracle@targetdb1 DIRECTORY=dp_dir
TRANSPORT_DATAFILES='/wysheid/backup/mytbs.dbf'
dumpfile=mytbs.dmp logfile=impdp_mytbs.log

●​ Take the target tablespace into read write mode

SQL> alter tablespace mytbs read write;

●​ Validate the Object after Migration

Using RMAN Transport Tablespace

●​ Similar to Data pump full transportable export and import, but much
simplified

●​ No need to take the source tablespaces in read only mode, which means
this method can be applied to production databases

●​ Supports cross platform backup and restore.
●​ Import on target can be done via PLSQL script or impdp command.
●​ RMAN uses auxiliary instance to perform restoration of datafiles , which

means Point In Time based migration is possible
●​ There should be enough space to perform restoration data files on the

source

Workflow

●​ In source identify the Tablespaces to be migrated
●​ Create the directory for storing data files and dump files to be transported
●​ Create the directory for Auxiliary Instance destination
●​ From RMAN connect to Non-CDB or Root container in the case of CDB
●​ Make sure that we have RMAN backup based on the planned time stamp
●​ Execute ‘transport tablespace “ command from RMAN
●​ Copy the dump files and data files to target
●​ Perform the restoration by any of the following methods
●​ Execute “impscrpt.sql” by connecting to the target DB
●​ Run the impdp utility by specifying transport_datafiles parameter.

Steps:

●​ Identify the tablespaces to be transported
●​ Create the tablespace destination and auxiliary destination

$ rman target /

Here target should be Non-CDB database or root container of CDB

RMAN > transport tablespace
SOURCEDB:MYTBS,SOURCEDB:MYTBS_IDX auxiliary destination
'/wysheid/auxiliary' tablespace destination '/wysheid/backup‘ ;

●​ RMAN create and starts an automatic auxiliary instance

●​ Using the source database backup , restore and recover the database (
control file and datafiles) to auxiliary destination in the format
‘<auxiliary_destination> /<DB_NAME> ‘

●​ On the auxiliary database create a directory object pointing to “tablespace

destination”
●​ On the auxiliary database , converted the tablespaces to be transported

into read only mode
●​ Perform transportable export of those tablespaces using the directory

object created.
●​ Automatically Drop the directory object created
●​ Automatically delete the auxiliary database created.

Restore on Target

●​ Method 1

Copy the files to target server
Connect to target database
Execute the impscript.sql

●​ Method 2

●​ Create the directory object on the target database
●​ Copy the data file and dump file from source to the physical path on the

target
●​ Restore using impdp

impdp system/oracle@targetdb directory=DP_DIR dumpfile= 'dmpfile.dmp'
transport_datafiles= /wysheid/backup/mytab.dbf,
/wysheid/backup/mytab_idx.dbf

• Make sure that target tablespaces are in read write mode.

	
	
	DB Migration to the Cloud
	Key Considerations
	Migration Lifecycle
	Migration Approach
	Migrating Method

	Database migration from On-premise to AWS RDS
	Importing with Data Pump with database link
	###START###
	Prerequisite on source
	Prerequisite on target
	Step 1 (Optional) :Create export user and Grant privileges to the user on the source database - It is optional , We can take the export as SYS user
	Step 2: Create a dump file using expdp
	Step 3: Validate the TNSPING Response from Source to target
	Step 4: Create Database Link on Source database
	Step 5: Copy the exported dump file to the target DB instance using DBMS_FILE_TRANSFER
	Step 6: Validate the data_pump_dir and progress of transfer details on target
	Step 7: There are two option for import
	Option 1: Run IMPORT command from Source system
	Option 2: Import the data file to the target DB instance using DBMS_DATAPUMP

	Step 8: Validate the object in Target RDS Instance
	Step 9: Clean up

	Database Migration from On-premise to AWS EC2
	Supported platforms
	Compare Available Method

	Migrate to EC2 using Data Pump
	Prerequisite on source
	Prerequisite on target
	Step 1 (Optional) :Create export user and Grant privileges to the user on the source database - It is optional , We can take the export as SYS user
	Step 2: Create a dump file using expdp
	Step 3: Validate the TNSPING Response from Source to target
	Step 4: Create Database Link on Source database
	Step 5: We have a tree option to transfer export backup dump.
	Step 6: Validate the data_pump_dir and progress of transfer details on target
	Step 7: There are two option for import
	Option 1: Run IMPORT command from Source system
	Option 2: Import the data file to the target DB instance using DBMS_DATAPUMP
	Option 3: Run IMPORT command from Target system

	Step 8: Validate the object in Target RDS Instance

	Using Full Transportable Export Import
	
	Find The Endian Format of the source and target
	Verify that the set of tablespaces to be transported is self-contained
	Take the tablespace read only
	Take the full transportable export
	Copy the files to target
	Import the transportable data

	Using RMAN Convert Transportable Tablespace
	Using RMAN Transport Tablespace
	

