
​ ​ ​ ​ ​ ​
This lab and write-up are from Professor Dahlin. This page is nearly identical to professor
Dahlin’s http://www.cs.utexas.edu/~dahlin/Classes/439/labs/shlab.pdf​ ​ ​
​ ​ ​ ​
​ ​ ​ ​ ​

CPSC 405 Operating Systems Lab 1
​ ​ ​ ​
​ ​ ​
​ ​ ​ ​
​ ​ ​ ​ ​
The purpose of this assignment is to become more familiar with the concepts of process control
and signalling. You’ll do this by writing a simple Unix shell program that supports job control.
​ ​ ​ ​ ​
Logistics
​ ​ ​ ​ ​
You may work in a group of up to two people in solving the problems for this assignment. The
only “hand- in” will be electronic. Any clarifications and revisions to the assignment will be
posted on the course Web page or slack.
​ ​ ​ ​ ​
Note: This project will be graded on the default vagrant box running Ubuntu 12.04 LTS 32-bit.
Although you are welcome to do testing and development on any platform you like, we can not
assist you in setting up other environments, and you must test and do final debugging in
Vagrant. The statement “It worked on my machine” will not be considered in the grading
process.
​ ​ ​ ​ ​
Hand Out Instructions
​ ​ ​ ​ ​
We provide a file shlab-handout.tar that contains a template for your program along with a
number of useful helper functions. Get it from the class web page. E.g.,
​ ​ ​ ​ ​
vagrant:~$ wget http://zacharski.org/files/courses/cs405/shlab-handout.tar

​ ​ ​ ​ ​
Put the file shlab-handout.tar to the protected directory in which you plan to do your work. Then
do the following:
​ ​ ​ ​ ​
• Type the command tar xvf shlab-handout.tar to expand the tarfile. 1
• Type the command make to compile and link some test routines.
• Type your team member names, (ignore eids) at the top of the file README.
​ ​ ​ ​ ​
Looking at the tsh.c (tiny shell) file, you will see that it contains a functional skeleton of a simple
Unix shell. To help you get started, we have already implemented the less interesting functions.
Your assignment is to complete the remaining empty functions listed below. As a sanity check

http://www.cs.utexas.edu/~dahlin/Classes/439/labs/shlab.pdf
http://vagrantup.com

for you, we’ve listed the approximate number of lines of code for each of these functions in our
reference solution (which includes lots of comments).
​ ​ ​ ​ ​

●​ eval: Main routine that parses and interprets the command line. [70 lines]
●​ builtin_cmd: Recognizes and interprets the built-in commands: quit, fg, bg, and jobs.

[25 lines]
●​ do_bgfg: Implements the bg and fg built-in commands. [50 lines]
●​ waitfg: Waits for a foreground job to complete. [20 lines]
●​ sigchld handler: Catches SIGCHILD signals. [80 lines]
●​ sigint handler: Catches SIGINT (ctrl-c) signals. [15 lines]
●​ sigtstp handler: Catches SIGTSTP (ctrl-z) signals. [15 lines]

Each time you modify your tsh.c file, type make to recompile it. To run your shell, type tsh to the
command line:
​ ​ ​ ​ ​ ​ ​
unix> ./tsh
tsh> [type commands to your shell here]

​ ​ ​ ​ ​ ​ ​
General Overview of Unix Shells
​ ​ ​ ​ ​ ​ ​
A shell is an interactive command-line interpreter that runs programs on behalf of the user. A
shell repeatedly prints a prompt, waits for a command line on stdin, and then carries out some
action, as directed by the contents of the command line.
​ ​ ​ ​ ​ ​
The command line is a sequence of ASCII text words delimited by whitespace. The first word in
the command line is either the name of a built-in command or the pathname of an executable
file. The remaining words are command-line arguments. If the first word is a built-in command,
the shell immediately executes the command in the current process. Otherwise, the word is
assumed to be the pathname of an executable program. In this case, the shell forks a child
process, then loads and runs the program in the context of the child. The child processes
created as a result of interpreting a single command line are known collectively as a job. In
general, a job can consist of multiple child processes connected by Unix pipes.
​ ​ ​ ​
If the command line ends with an ampersand ”&”, then the job runs in the background, which
means that the shell does not wait f or the job to terminate before printing the prompt and
awaiting the next command line. Otherwise, the job runs in the foreground, which means that
the shell waits for the job to terminate before awaiting the next command line. Thus, at any point
in time, at most one job can be running in the foreground. However, an arbitrary number of jobs
can run in the background.
​ ​ ​ ​ ​
For example, typing the command line
​ ​ ​ ​ ​
tsh> jobs

causes the shell to execute the built-in jobs command. Typing the command line
​ ​ ​ ​ ​
tsh> /bin/ls -l -d

runs the ls program in the foreground. By convention, the shell ensures that when the program
begins
​ ​ ​ ​ ​
executing its main routine
​ ​ ​ ​ ​
int main(int argc, char *argv[])

the argc and argv arguments have the following values:
​ ​ ​ ​ ​
• argc == 3,
• argv[0] == ‘‘/bin/ls’’,
• argv[1]== ‘‘-l’’,
• argv[2]== ‘‘-d’’.
​ ​ ​ ​ ​
Alternatively, typing the command line
​ ​ ​ ​ ​
tsh> /bin/ls -l -d &

runs the ls program in the background.
​ ​ ​ ​ ​
Unix shells support the notion of job control, which allows users to move jobs back and forth
between background and foreground, and to change the process state (running, stopped, or
terminated) of the processes in a job. Typing ctrl-c causes a SIGINT signal to be delivered to
each process in the foreground job. The default action for SIGINT is to terminate the process.
Similarly, typing ctrl-z causes a SIGTSTP signal to be delivered to each process in the
foreground job. The default action for SIGTSTP is to place a process in the stopped state,
where it remains until it is awakened by the receipt of a SIGCONT signal. Unix shells also
provide various built-in commands that support job control. For example:
​ ​ ​ ​ ​
• jobs: List the running and stopped background jobs.
• bg <job>: Change a stopped background job to a running background job.
• fg <job>: Change a stopped or running background job to a running in the foreground.
• kill <job>: Terminate a job.
​ ​ ​ ​
​ ​ ​
​ ​ ​
​ ​ ​ ​
​ ​ ​ ​ ​

​ ​ ​ ​
Lab 1: Fork/exec
​ ​ ​ ​ ​
In this phase of the project, you will learn about the fork and exec system calls that you will use
in the rest of the project.
​ ​ ​ ​ ​
Part 1-1: Reading
​ ​ ​ ​ ​
Read every word of sections 3 and 4 of chapter 8 of Bryant and O’Hallaron. Read every word of
this handout before you write any code.
​ ​ ​ ​ ​
Part 1-2: Fibonacci
​ ​ ​ ​ ​
Update fib.c so that if invoked on the command line with some integer argument n, it recursively
computes the nth Fibonacci number (n ≤ 13).
​ ​ ​ ​ ​
e.g.,
​ ​ ​ ​ ​
unix> fib 3​
2​
unix> fib 10​
55​

​ ​ ​ ​ ​
The trick is that each recursive call must be made by a new process, so you will call fork() and
then have the new child process call doFib().
​ ​ ​ ​ ​
The parent must wait for the child to complete and you need to figure out how to pass the result
of the child’s computation to its parent.
​ ​ ​ ​ ​
Part 1-3: Fork/Exec
​ ​ ​ ​ ​
The fork system call creates a child process that is nearly identical to the parent. The exec call
replaces the state of the currently running process with a new state to start running a new
program in the current process.
​ ​ ​ ​ ​
Your job is to create a prototype for the shell you will be creating later. This prototype waits for a
line of input. If the line is “quit”, it exits. Otherwise, it parses the line and attempts to execute the
program at the path specified by the first word with the arguments specified by the remaining
words. It waits for that job to finish. Then it waits for the next line of input​

●​ The prompt should be the string “psh> ”.​ ​ ​ ​ ​ ​ ​

http://zacharski.org/files/courses/cs405/computerSystemsCh8.pdf

●​ The command line typed by the user should consist of a name and zero or more
arguments, all separated by one or more spaces. If name is a built-in command, then
psh should handle it immediately and wait for the next command line. Otherwise, psh
should assume that name is the path of an executable file, which it loads and runs in the
context of a child process (In this context, the term job refers to this child process). Your
shell then waits for that job to finish. Then it waits for the next line of input. All
commands and jobs are executed in the foreground. In this phase you don’t have to
worry about background jobs. You also can assume that jobs execute until they exit; you
don’t need to worry about signal handling.

●​ Your shell should implement one built-in command: quit. If the user types quit, your shell
should exit.

​ ​ ​ ​ ​
E.g.,
​ ​ ​ ​ ​
psh> /bin/ls -l -d​

​ ​ ​ ​ ​
runs the ls program in the foreground.

We have provided psh.c, which provides framework for your shell, and util.h/util.c which
provides some helper functions. Read these files.
​ ​ ​ ​ ​
Update the file psh.c by implementing the functions eval(), which the main() function calls to
process 1 line of input, and builtin cmd(), which your eval() function should call to parse and
process the built-in quit command. (Later, you will extend the built-in command function to
handle other built-in commands.)
​ ​ ​ ​ ​
Lab 2a: Signal handling, Shell

Part 2a-1: Reading
Read every word of section 5 of chapter 8 of Bryant and O’Hallaron. Examine the code for the
Signal() function in util.c.
​ ​ ​ ​ ​
Part 2a-2: Signal handling
​ ​ ​ ​ ​
Write a program in handle.c that first uses the getpid() system call to find its process ID, then
prints that ID, and finally loops continuously, printing “Still here\n” once every second. Set up a
signal handler so that if you hit ˆc (ctrl-c), the program prints “Nice try.\n” to the screen and
continues to loop.
​ ​ ​ ​ ​
Note: The printf() function is technically unsafe to use in a signal handler. A safer way to print
the message is to call

​ ​ ​ ​ ​
size_t bytes;
const int STDOUT = 1;
bytes = write(STDOUT, ‘‘Nice try.\ n’’, 10); if(bytes != 10)

​ ​ ​ ​ ​
exit(-999);

​ ​ ​ ​
​ ​ ​
​ ​ ​
​ ​ ​ ​
​ ​ ​ ​ ​
Note: You should use the nanosleep() library call rather than the sleep() call so that you can
maintain your 1-second interval between “Still here” messages no matter how quickly the user
hits ˆc.
​ ​ ​ ​ ​
You can terminate this program using kill -9. For example, if the process ID is 4321

unix> kill -9 4321

​ ​ ​ ​ ​
Part 2a-3: Signal sending
​ ​ ​ ​ ​
Update the program from Part 2-2 to catch the SIGUSR1 signal, print “exiting”, and exit with
status equal to 1.
​ ​ ​ ​ ​
Now write a program mykill.c that takes a process ID as an argument and that sends the
SIGUSR1 signal to the specified process ID.
​ ​ ​ ​
​ ​ ​
​ ​ ​
​ ​ ​ ​
​ ​ ​ ​ ​
e.g.,
​ ​ ​ ​ ​
unix> handle​
 4321​
 Still here​
 Still here​
 Still here
 unix> mykill 4321​
 exiting​
 unix>​

​ ​ ​ ​ ​
Part 2a-4: Signal mechanicS​ ​ ​ ​ ​

If you compile a C program with the -S flag, the compiler produces the assembly language
corresponding the the code it would generate for the program.
​ ​ ​ ​ ​
e.g.,
​ ​ ​ ​ ​
unix> gcc -S handle.c​
unix> cat handle.S​
...​

​ ​ ​ ​ ​
Also, in the gdb debugger, you can see the assembly code for a function e.g.,
​ ​ ​ ​ ​
unix> gdb handle
(gdb) disassemble main
Dump of assembler code for function main: 0x0000000100000970 <main+0>: push
%rbp 0x0000000100000971 <main+1>: mov %rsp,%rbp 0x0000000100000974 <main+4>:
push %r12 0x0000000100000976 <main+6>: push %rbx
...

​ ​ ​ ​ ​
In gdb, you can put a breakpoint for a function
​ ​ ​ ​ ​
(gdb) break main
Breakpoint 1 at 0x10000097b: file handle.c, line 30.
(gdb)

​ ​ ​ ​ ​
and you can step to the next C/C++ instruction or stepi to the next assembly instruction

(gdb) run​ ​ ​ ​ ​
Starting program: /Users/dahlin/Classes/439/labs/shlab/src/handle​ ​ ​

​
Breakpoint 1, main (argc=1, argv=0x7fff5fbff6e0) at handle.c:30 30 int pid =
getpid();
(gdb) step
31 printf("%d\ n", pid);

​ ​ ​ ​ ​
(gdb) stepi
0x0000000100000989 31 printf("%d\ n", pid);
(gdb) stepi
0x000000010000098b 31 printf("%d\ n", pid);
(gdb)

​ ​ ​ ​ ​
Finally, you can tell GDB to pass a particular signal to your program
​ ​ ​ ​ ​
(gdb) handle SIGUSR1 pass

Signal Stop Print Pass to program Description SIGUSR1 Yes Yes Yes User defined
signal 1 ​
(gdb) handle SIGUSR1 nostop
Signal Stop Print Pass to program Description SIGUSR1 No Yes Yes User defined
signal 1
(gdb)

​ ​ ​ ​ ​
In the file README, answer the following questions
​ ​ ​ ​ ​

1.​ What is the last assembly language instruction executed by the signal handler function
that you write?

2.​ After the instruction just identified executes, what is the next assembly language
instruction executed?

3.​ When the signal handler finishes running, it must restore all of the registers from the
interrupted thread to exactly their values before the signal occurred. How is this done?​
​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Lab 2b: Shell
​ ​ ​ ​ ​
In this phase of the project, you will implement your simple shell, tsh. Your tsh shell should have
the following features:
​ ​ ​ ​ ​

●​ The prompt should be the string “tsh> ”.
●​ The command line typed by the user should consist of a name and zero or more

arguments, all separated by one or more spaces. If name is a built-in command, then tsh
should handle it immediately and wait for the next command line. Otherwise, tsh should
assume that name is the path of an executable file, which it loads and runs in the context
of an initial child process (In this context, the term job refers to this initial child process).​

●​ tsh need not support pipes (|) or I/O redirection (< and >).
●​ Typing ctrl-c (ctrl-z) should cause a SIGINT (SIGTSTP) signal to be sent to the current

foreground job, as well as any descendents of that job (e.g., any child processes that it
forked). If there is no foreground job, then the signal should have no effect.

●​ If the command line ends with an ampersand &, then tsh should run the job in the
background. Otherwise, it should run the job in the foreground.

●​ Each job can be identified by either a process ID (PID) or a job ID (JID), which is a
positive integer assigned by tsh. JIDs should be denoted on the command line by the
prefix ’%’. For example, “%5” denotes JID 5, and “5” denotes PID 5. (We have provided
you with all of the routines you need for manipulating the job list.)

●​ tsh should support the following built-in commands:​​
The quit command terminates the shell​

The jobs command lists all background jobs​

The bg <job> command restarts <job> by sending it a SIGCONT signal, and ​
then runs it in the background. the <job> argument can either by a PID or JID.
The fg <job> command restarts <job> by sending it a SIGCONT signal, and then
runs it in the foreground. The <job> argument can either by a PID or JID.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
●​ tsh should reap all of its zombie children. If any job terminates because it receives a

signal that it didn’t catch, then tsh should recognize this event and print a message with
the job’s PID and a description of the offending signal.

​ ​ ​ ​ ​ ​ ​
Checking Your Work
​ ​ ​ ​ ​ ​ ​
We have provided some tools to help you check your work.
​ ​ ​ ​ ​ ​ ​
Reference solution. The Linux executable tshref is the reference solution for the shell. Run this
program to resolve any questions you have about how your shell should behave. Your tsh shell
should emit output that is identical to the reference solution (except for PIDs, of course, which
change from run to run).
​ ​ ​ ​ ​ ​ ​
Shell driver. The sdriver.pl program executes a shell as a child process, sends it commands and
signals as directed by a trace file, and captures and displays the output from the shell.
​ ​ ​ ​ ​ ​ ​
Use the -h argument to find out the usage of sdriver.pl:
unix> ./sdriver.pl -h​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​
Usage: sdriver.pl [-hv] -t <trace> -s <shellprog> -a <args> Options:

​ ​ ​ ​
​ ​ ​ ​ ​
-h​ ​ ​ ​ Print this message​
-v​ ​ ​ ​ Be more verbose​
-t <trace>​ ​ ​ Trace file​
-s <shell>​ ​ ​ Shell program to test​
-a <args>​ ​ ​ Shell arguments​
-g​ ​ ​ ​ Generate output for autograder​

​ ​ ​
​ ​ ​ ​ ​
We have also provided 16 trace files (trace{01-16}.txt) that you will use in conjunction
with the shell driver to test the correctness of your shell. The lower-numbered trace files do very
simple tests, and the higher-numbered tests do more complicated tests.
​ ​ ​ ​ ​
You can run the shell driver on your shell using trace file trace01.txt (for instance) by
typing:

unix> ./sdriver.pl -t trace01.txt -s ./tsh -a "-p"

(the -a "-p" argument tells your shell not to emit a prompt), or

unix> make test01

​ ​ ​ ​ ​
Similarly, to compare your result with the reference shell, you can run the trace driver on the
reference shell by typing:
​ ​ ​ ​ ​
unix> ./sdriver.pl -t trace01.txt -s ./tshref -a "-p"

​ ​ ​ ​ ​
or
​ ​ ​ ​ ​
unix> make rtest01

​ ​ ​ ​ ​
For your reference, tshref.out gives the output of the reference solution on all races. This might
be more convenient for you than manually running the shell driver on all trace files.
​ ​ ​ ​ ​
The neat thing about the trace files is that they generate the same output you would have gotten
had you run your shell interactively (except for an initial comment that identifies the trace). For
example:
​ ​ ​ ​ ​
bass> make test15
./sdriver.pl -t trace15.txt -s ./tsh -a "-p" #
trace15.txt - Putting it all together

tsh> ./bogus
./bogus: Command not found.
tsh> ./myspin 10
Job (9721) terminated by signal 2
tsh> ./myspin 3 &
[1] (9723) ./myspin 3 &
tsh> ./myspin 4 &
[2] (9725) ./myspin 4 &
tsh> jobs
[1] (9723) Running ./myspin 3 &
[2] (9725) Running ./myspin 4 &
tsh> fg %1
Job [1] (9723) stopped by signal 20
tsh> jobs
[1] (9723) Stopped ./myspin 3 &
[2] (9725) Running ./myspin 4 &
tsh> bg %3​
%3: No such job​
tsh> bg %1​
[1] (9723) ./myspin 3 &​
tsh> jobs​

[1] (9723) Running ./myspin 3 &​
[2] (9725) Running ./myspin 4 &​
tsh> fg %1​
tsh> quit​
bass>​

​ ​ ​ ​ ​
Your solution shell will be tested for correctness on a Linux machine, using the same shell driver
and trace files that were included in your lab directory. Your shell should produce identical
output on these traces as the reference shell, with only two exceptions:
​ ​ ​ ​ ​
• The PIDs can (and will) be different.
​ ​ ​ ​ ​
• The output of the /bin/ps commands in trace11.txt, trace12.txt, and trace13.txt will be different
from run to run. However, the running states of any mysplit processes in the output of the /bin/ps
command should be identical.
​ ​ ​ ​ ​
Hints
​ ​ ​ ​ ​
General hints
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

●​ The waitpid, kill ,fork, execve, setpgid, and sigprocmask functions will come in very
handy. The WUNTRACED and WNOHANG options to waitpid will also be useful.​

●​ Programs such as more, less, vi, and emacs do strange things with the terminal settings.
Don’t run these programs from your shell. Stick with simple text-based programs such as
/bin/ls, /bin/ps, and /bin/echo.

​ ​ ​ ​ ​ ​ ​
Hints for part 2b
​ ​ ​ ​ ​ ​ ​

●​ Use the trace files to guide the development of your shell. Starting with trace01.txt, make
sure that your shell produces the identical output as the reference shell. Then move on
to trace file trace02.txt, and so on.​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​
●​ When you implement your signal handlers, be sure to send SIGINT and SIGTSTP

signals to the entire foreground process group, using “-pid” instead of “pid” in the
argument to the kill function. The sdriver.pl program tests for this error.​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​

●​ One of the tricky parts of the assignment is deciding on the allocation of work between
the waitfg and sigchld handler functions. We recommend the following approach:

​ ​ ​ ​ ​ ​ ​
 ​ ​ – In waitfg, use a busy loop around the sleep function.

– In sigchldhandler, use exactly one call to waitpid.
​ ​ ​ ​ ​ ​

While other solutions are possible, such as calling waitpid in both waitfg and sigchld
handler, these can be very confusing. It is simpler to do all reaping in the handler.​​
​ ​ ​ ​ ​
Note that you probably can do something simpler for the prototype psh you build in part
1. Then, be ready to change how this works when you get to part 3.​ ​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​
●​ In eval, the parent must use sigprocmask to block SIGCHLD signals before it forks the

child, and then unblock these signals, again using sigprocmask after it adds the child to
the job list by calling addjob. Since children inherit the blocked vectors of their parents,
the child must be sure to then unblock SIGCHLD signals before it execs the new
program.​ ​ ​ ​ ​ ​
The parent needs to block the SIGCHLD signals in this way in order to avoid the race
condition where the child is reaped by sigchld handler (and thus removed from the job
list) before the parent calls addjob.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
●​ When you run your shell from the standard Unix shell, your shell is running in the

foreground process group. If your shell then creates a child process, by default that child
will also be a member of the foreground process group. Since typing ctrl-c sends a
SIGINT to every process in the foreground group, typing ctrl-c will send a SIGINT to your
shell, as well as to every process that your shell created, which obviously isn’t correct.​
​ ​ ​ ​ ​ ​
Here is the workaround: After the fork, but before the execve, the child process should
call setpgid(0, 0), which puts the child in a new process group whose group ID is
identical to the child’s PID. This ensures that there will be only one process, your shell, in
the foreground process group. When you type ctrl-c, the shell should catch the resulting
SIGINT and then forward it to the appropriate foreground job (or more precisely, the
process group that contains the foreground job).

​ ​ ​ ​ ​ ​ ​
Hand In Instructions
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​

●​ Make sure you have included your names in the README.
●​ Create a tar file handin.tar that contains all of your source files, the README, and your

Makefile.
●​ Attach the tar file to an email sent to the gmail address submit.o.bot with subject line:

cpsc405 lab 1.

​ ​ ​ ​ ​
Good luck!
​ ​ ​ ​
​ ​ ​

