

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Plan de Estudios 2026 de la Licenciatura en Matemáticas

MÓDULOS, CATEGORÍAS Y ÁLGEBRA HOMOLÓGICA

Clave Semestre		Créditos	Área de conocimiento	Matemáticas					
	A pa	artir del 7	10	Campo	Álgel	bra			
				Etapa					
Modalidad	'	Curso (X) Taller ()	Lab () Sem ()	Tipo	T (X)	P()	T/P ()	
Obligatorio () Carácter Obligatorio E ()		Optativo (X) Optativo E ()	Horas						
						Sem	ana	Seme	stre
					Teóri	cas	5	Teóricas	80
					Práct	icas	0	Prácticas	0
					Total		5	Total	80

Seriación					
Ninguna ()					
Obligatoria ()					
Asignatura antecedente					
Asignatura subsecuente					
	Indicativa (X)				
Asignatura antecedente	Teoría de Anillos y de Galois.				
Asignatura subsecuente	Seminario de Álgebra A, Seminario de Álgebra B, Seminario de Álgebra C.				

Objetivos generales:

Analizar y desarrollar los conceptos del álgebra homológica partiendo desde la teoría de módulos hasta categorías abelianas.

Objetivos específicos:

- Descubrir el comportamiento homológico de la categoría de módulos a través de sus objetos y funtores.
- Precisar nociones de categorías de módulos para teoría de categorías mediante conceptos que involucren propiedades universales. Indagar en construcciones de otro tipo de funtores para determinar sus propiedades.

	Índice temático				
	Tema	Horas semestre			
		Teóricas	Prácticas		
1	Teoría de Módulos	30	0		
2	Categorías y Funtores	20	0		
3	Álgebra Homológica	30	0		
	Total		80		

	Contenido Temático					
	Tema y subtemas					
1	Teoría de Módulos					
	1.1 Módulos.					
	1.2 Teoremas de isomorfismo.					
	1.3 Sucesiones exactas.					
	1.4 Suma y producto directo.					
	1.5 Estructura del grupo Hom(-,-) y propiedades.					
	1.6 Módulos libres, proyectivos e inyectivos.					
	1.7 Producto tensorial de módulos.					
	1.8 Módulos sobre dominios de ideales principales (opcional).					
2	Categorías y Funtores					
	2.1 Categorías y funtores.					
	2.2 Transformaciones naturales y adjunciones.					
	2.3 Productos fibrados y categorías abelianas.					
	2.4 Lema de Yoneda (opcional).					
	2.5 Más propiedades universales (opcional).					
	2.6 Límites y colímites (opcional).					
3	Álgebra Homológica					
	3.1 Homología. Resoluciones proyectivas e inyectivas. Dimensión. Complejos y					
	homología de complejos. Sucesiones exactas de complejos y la sucesión larga de homología. Homotopía.					

3.2	Funtores derivados. Teorema de comparación. Teorema de corrimiento. Lema
	de la herradura.
3.3	Los funtores de torsión Tor(-,-). Propiedades de los funtores de torsión.

- Los funtores de extensión Ext(-,-). Propiedades de los funtores de extensión. 3.4
- 3.5 Aplicaciones.
- Introducción a las categorías derivadas (opcional). 3.6

Estrategias didácticas		Evaluación del aprendizaje			
Exposición	(X)	Exámenes parciales	(X)		
Trabajo en equipo	()	Examen final	(X)		
Lecturas	()	Trabajos y tareas	(X)		
Trabajo de investigación	()	Presentación de tema	()		
Prácticas (taller o laboratorio)	()	Participación en clase	(X)		
Prácticas de campo	()	Asistencia	()		
Aprendizaje por proyectos	()	Rúbricas	()		
Aprendizaje basado en problemas	()	Portafolios	()		
Casos de enseñanza	()	Listas de cotejo	()		
Otras (especificar)		Otras (especificar)			

Perfil profesiográfico				
Título o grado	Licenciatura en Matemáticas, Matemáticas Aplicadas, Física, Actuaría,			
	Ciencias de la Computación o equivalente.			
Experiencia docente	Con experiencia docente en el área o en áreas circundantes.			
Otra característica	Especialista en el área de la asignatura a juicio del comité de			
	asignación de cursos.			

Bibliografía básica:

Anderson, F. W., y Fuller, K. R., Rings and categories of modules, Vol. 13. Springer Science & Business Media, 1992.

https://link.springer.com.pbidi.unam.mx:2443/book/10.1007/978-1-4612-4418-9

Hilton, P. J., y Stammbach, U., A course in homological algebra, Vol. 4. Springer Science & 2. Business Media, 2012.

https://link.springer.com.pbidi.unam.mx:2443/book/10.1007/978-1-4419-8566-8

3. Lluis-Puebla, E., *Álgebra homológica, cohomología de grupos y k-teoría algebraica clásica*, Sociedad Matemática Mexicana, 2005.

https://www.pesmm.org.mx/Serie%20Textos archivos/T5.pdf

4. MacLane, S., *Homology*, Springer Science & Business Media, 2012.

https://link.springer.com.pbidi.unam.mx:2443/book/10.1007/978-3-642-62029-4

5. Rotman, J. J., An introduction to homological algebra. Vol. 2. New York: Springer, 2009.

https://www.matem.unam.mx/~iavier/homologica/rotman.pdf

https://link.springer.com.pbidi.unam.mx:2443/book/10.1007/b98977

Bibliografía complementaria:

- 1. Cartan, H., y Eilenberg, S., *Homological algebra*. Vol. 19. Princeton university press, 1999.
- 2. Gelfand, S. I., y Manin, Y. I., *Methods of homological algebra*. Springer Science & Business Media, 2013.

https://link.springer.com.pbidi.unam.mx:2443/book/10.1007/978-3-662-12492-5

3. Stenström, B., *Rings of Quotients: An Introduction of Methods of Ring Theory*. Springer-Verlag, Berlin, 1975.

https://link.springer.com.pbidi.unam.mx:2443/book/10.1007/978-3-642-66066-5

4. Weibel, C. A., An introduction to homological algebra. No. 38. Cambridge university press, 1994.

https://www-cambridge-org.pbidi.unam.mx:2443/core/books/an-introduction-to-homological-algebra/AAA3F16482097015CD12D4376D505282

Recursos digitales y software:

• GAP (Groups, Algorithms, Programming): es uno de los programas más completos para trabajar con grupos, álgebra abstracta, teoría de grupos y problemas de álgebra computacional. Puedes definir grupos, realizar cálculos con ellos, y explorar propiedades como clases laterales, subgrupos, homomorfismos, etc. Enlace:

https://www.gap-system.org/

• Macaulay2: incluye algoritmos básicos para calcular resoluciones libres de módulos sobre anillos cociente. Permite calcular grupos de extensión y cohomología de haces coherentes. Enlace:

https://macaulay2.com/

• **Singular:** es un sistema de álgebra computacional para cálculos polinómicos, con especial énfasis en álgebra conmutativa y no conmutativa. Enlace:

https://www.singular.uni-kl.de/