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Abstract Reward decomposition is the process of identifying reward types for explaining the

decisions of reinforcement learning. However, the decomposition is nontrivial in that a total reward

can be formulated in a large number of possible sub-rewards (i.e., ill-posed problem). In this work,

we introduce a transferable reward-decomposition method for inverse reinforcement learning (IRL)

that returns a unique pair of primary goal and its residual rewards, separately. Our method lowers

the computational complexity of reward decomposition by reusing the exploration results of IRL.

Through evaluations in two simulated environments, our method successfully decomposed residual

reward component and transferable to novel environments.
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1. Introduction

Inverse Reinforcement Learning (IRL) is a problem of
identifying a reward function from demonstrations.
However, most identification process does not expose the
underlying structure of the reward value, though the
structure information can provide better understanding of
an assigned task and its transferability. For instance,
suppose that a safe-driving task. A recovered reward
function may consist of goal-reaching reward and
obstacle-crashing penalty functions. By replacing the
reaching reward with a new one, we will be able to easily
transfer the safety behavior to the new setup without
conflicts.

The decomposition of a reward function is often
ambiguous and costly in that there can be infinitely large
number of subreward combinations (i.e., ill-posed
problem). Further, conventional value-wise comparison
candidates
computationally expensive optimization doubling the
recovery complexity of IRL [, A desired method should
show the ability to find meaningful sub-reward functions
without prior knowledge in an efficient manner.

of  meaningful  subreward requires

In this work, we present a novel reward-decomposition

method that finds
sub-reward functions. Assuming the form of a primary

explainable and transferable

reward function is given, our method finds the residual
reward function maximally disentangling from the
primary one. Our method requires lower computation
cost by reusing the state-action distribution outputs from
IRL. Our method can work on top of any existing IRL
frameworks. We evaluate our method with a
state-of-the-art baseline method in two simulated

environments and show our method outperforms.
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[Fig. 1] Approximation phase and Reward Projection

phase guides to optimal primary Q function, Q; .

2. Method
We first define the problem of finding primary and

residual reward pair (rp, rr) with a Markov decision

process (MDP). Our MDP is a tuple (S, 4, P, R, y) with
an unknown reward function R = rp + T, where the

symbols S, A, P, and y denote the state space, the action
space, a stochastic transition function and a discount



factor, respectively. Our proposed method finds R that
equals that of expert demonstrations maximally
disentangling the sub-rewards T and r. Note that we

assume a set of demonstrations DE and a set of reward

candidates Rp for primary reward are given (i.e., rpE R).
P

We find the residual reward r by subtracting the primary
reward T, from the total reward R (i.e., ro= R — rp). We
can estimate R and rp given the demonstrations DE via
IRL. To maximally disentangling T from r, we

introduce two phases of T estimation method:

1) Approximation: This phase learns a single Q function
with implicitly learned reward T using Inverse soft-Q

learning®” (IQ-Learn), which helps not only providing
additional optimization projective that we want but also
sharing the exploration experience with another IRL
process. Our method particularly finds a Q function that
maximizes the disentanglement while regulating non-zero
rewards of T and r given the demonstrations. We denote
uﬂ as the state-action distribution of a policy . T, refers
to the expert policy while T and LS denote optimal

policies given T and r, respectively. We define the

objective-loss function L as
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where D f is a measure of symmetric statistical

divergence. In this work, we use Jensen-Shannon
divergence. By plugging the function L as an objective
function of IQ-Learn, we obtain a Qp with the primary

reward rp.

2) Projection: We minimize the difference between the
approximated Qp and the optimal Q; by projecting Qp

from the approximation phase onto the space of Q
functions from the primary reward candidates Rp. To do

that, we update Qp minimizing a regulated soft Bellman

€rror:

E(Qp, rp(s, a, s')) = (Qp(s, a) — pr(sv) — ro(s, a, s'))

where Vp is a state-value function. We compute an error

per sample in demonstrations as well as explorations. We

then update Qp and . using their gradients. Finally, we
obtain the target residual reward T (=R - rp) from the

best r and R computed from another IQ-Learn.

3. Experiments

We tested our method on a gridworld and a synthetic
simulated robotics task. Our objective is to answer the
following questions: 1) Can our method decompose into
disentangled sub-rewards? 2) Does our method learn
transferrable rewards?
Gridworld environment: In the gridworld environment,
there are three goals with a reward. By setting one of the
signal as primary reward, we can qualitatively verify that
two additional goal signals are inferred with a negligible
primary goal signal.
Mujoco simulation: In the synthetic robotic reaching
tasks, the agent must bring the end-effector to the desired
position while avoid the collision with the obstacles. The
agent has given a set of candidates for primary reward
(distance between end-effector and the goal). After
inferring a residual reward, we transfer the residual
reward to other similar MDPs but with different settings
to verify transferability. First, we choose the same MDP
to check a consistency of the residual reward. Second, we
choose the MDP with different goal and obstacle
configuration. After finding new optimal policy for a new
MDP, we check the success case (reaching the goal
without hitting the obstacles) of baseline method and our
methods.
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[Fig. 2] Experiment in gridworld. All rewards are

normalized to unity. From the left, ground truth, total
reward from IRL, (primary and residual reward from our
method.
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[Fig. 3] Simulated mujoco robotics tasks. To check the

transferability, the residual rewards are used in novel
MDP.

[Table 1] Testing Consistency and Transferability Testing
of Residual Reward in a synthetic robotics tasks.

Th MDP with .
Rate of Success (%) ¢ same . Wi Randomized MDP
demonstrations
Our method 50.9 43.8
IRL with regression 413 7.8

4. Conclusion
We introduced a novel method for transferable-reward
decomposition for IRL. We successfully decomposed a
residual reward and a primary reward from given
demonstrations.
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