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Abstract Reward decomposition is the process of identifying reward types for explaining the 
decisions of reinforcement learning. However, the decomposition is nontrivial in that a total reward 
can be formulated in a large number of possible sub-rewards (i.e., ill-posed problem). In this work, 
we introduce a transferable reward-decomposition method for inverse reinforcement learning (IRL) 
that returns a unique pair of primary goal and its residual rewards, separately. Our method lowers 
the computational complexity of reward decomposition by reusing the exploration results of IRL. 
Through evaluations in two simulated environments, our method successfully decomposed residual 
reward component and transferable to novel environments. 
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1. Introduction 

 

  Inverse Reinforcement Learning (IRL) is a problem of 
identifying a reward function from demonstrations. 
However, most identification process does not expose the 
underlying structure of the reward value, though the 
structure information can provide better understanding of 
an assigned task and its transferability. For instance, 
suppose that a safe-driving task. A recovered reward 
function may consist of goal-reaching reward and 
obstacle-crashing penalty functions. By replacing the 
reaching reward with a new one, we will be able to easily 
transfer the safety behavior to the new setup without 
conflicts.  
  The decomposition of a reward function is often 
ambiguous and costly in that there can be infinitely large 
number of subreward combinations (i.e., ill-posed 
problem). Further, conventional value-wise comparison 
of meaningful subreward candidates requires 
computationally expensive optimization doubling the 
recovery complexity of IRL [1]. A desired method should 
show the ability to find meaningful sub-reward functions 
without prior knowledge in an efficient manner.  
  In this work, we present a novel reward-decomposition 

method that finds explainable and transferable 
sub-reward functions. Assuming the form of a primary 
reward function is given, our method finds the residual 
reward function maximally disentangling from the 
primary one. Our method requires lower computation 
cost by reusing the state-action distribution outputs from 
IRL. Our method can work on top of any existing IRL 
frameworks. We evaluate our method with a 
state-of-the-art baseline method in two simulated 
environments and show our method outperforms.  

 
[Fig. 1] Approximation phase and Reward Projection 
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2. Method 
  We first define the problem of finding primary and 
residual reward pair ( ) with a Markov decision 𝑟

𝑝
,  𝑟

𝑟

process (MDP). Our MDP is a tuple  with (𝑆,  𝐴,  𝑃,  𝑅,  γ)
an unknown reward function , where the 𝑅 = 𝑟

𝑝
+ 𝑟

𝑟

symbols , A, , and  denote the state space, the action 𝑆 𝑃 γ
space, a stochastic transition function and a discount 
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factor, respectively. Our proposed method finds  that 𝑅
equals that of expert demonstrations maximally 
disentangling the sub-rewards  and . Note that we 𝑟

𝑝
𝑟

𝑟

assume a set of demonstrations  and a set of reward 𝐷
𝐸

candidates  for primary reward are given (i.e., ).  𝑅
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𝑟
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∈ 𝑅
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We find the residual reward  by subtracting the primary 𝑟
𝑟

reward  from the total reward  (i.e., ). We 𝑟
𝑝

𝑅 𝑟
𝑟

= 𝑅 − 𝑟
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can estimate  and  given the demonstrations  via 𝑅 𝑟
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𝐷
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IRL. To maximally disentangling  from , we 𝑟
𝑝

𝑟
𝑟

introduce two phases of  estimation method:  𝑟
𝑝

 

1) Approximation: This phase learns a single Q function 
with implicitly learned reward  using Inverse soft-Q 𝑟

𝑝

learning[2] (IQ-Learn), which helps not only providing 
additional optimization projective that we want but also 
sharing the exploration experience with another IRL 
process. Our method particularly finds a Q function that 
maximizes the disentanglement while regulating non-zero 
rewards of  and  given the demonstrations. We denote 𝑟

𝑝
𝑟

𝑟

 as the state-action distribution of a policy .  refers µπ π π
𝐸

to the expert policy while  and  denote optimal π
𝑝

π
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policies given  and , respectively. We define the 𝑟
𝑝

𝑟
𝑟

objective-loss function  as  𝐿
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)],
where  is a measure of symmetric statistical 𝐷

𝑓

divergence. In this work, we use Jensen-Shannon 
divergence. By plugging the function  as an objective 𝐿
function of IQ-Learn, we obtain a  with the primary 𝑄

𝑝

reward . 𝑟
𝑝

 

2) Projection: We minimize the difference between the 

approximated  and the optimal  by projecting  𝑄
𝑝

𝑄
𝑝
* 𝑄

𝑝

from the approximation phase onto the space of Q 
functions from the primary reward candidates . To do 𝑅

𝑝

that, we update  minimizing a regulated soft Bellman 𝑄
𝑝

error:  
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where  is a state-value function. We compute an error 𝑉
𝑝

per sample in demonstrations as well as explorations. We 

then update  and  using their gradients. Finally, we 𝑄
𝑝

𝑟
𝑝

obtain the target residual reward   from the 𝑟
𝑟

(= 𝑅 − 𝑟
𝑝
)

best  and  computed from another IQ-Learn. 𝑟
𝑝

𝑅
 

3. Experiments 
  We tested our method on a gridworld and a synthetic 
simulated robotics task. Our objective is to answer the 
following questions: 1) Can our method decompose into 
disentangled sub-rewards? 2) Does our method learn 
transferrable rewards? 
Gridworld environment: In the gridworld environment, 
there are three goals with a reward. By setting one of the 
signal as primary reward, we can qualitatively verify that 
two additional goal signals are inferred with a negligible 
primary goal signal. 
Mujoco simulation: In the synthetic robotic reaching 
tasks, the agent must bring the end-effector to the desired 
position while avoid the collision with the obstacles. The 
agent has given a set of candidates for primary reward 
(distance between end-effector and the goal). After 
inferring a residual reward, we transfer the residual 
reward to other similar MDPs but with different settings 
to verify transferability. First, we choose the same MDP 
to check a consistency of the residual reward. Second, we 
choose the MDP with different goal and obstacle 
configuration. After finding new optimal policy for a new 
MDP, we check the success case (reaching the goal 
without hitting the obstacles) of baseline method and our 
methods. 

 
[Fig. 2] Experiment in gridworld. All rewards are 
normalized to unity. From the left, ground truth, total 
reward from IRL, (primary and residual reward from our 
method. 
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[Fig. 3] Simulated mujoco robotics tasks. To check the 
transferability, the residual rewards are used in novel 
MDP. 

 

[Table 1] Testing Consistency and Transferability Testing 
of Residual Reward in a synthetic robotics tasks. 

Rate of Success (%) 
The same MDP with 

demonstrations 
Randomized MDP 

Our method 50.9 43.8 
IRL with regression 41.3 7.8 

 

4. Conclusion 
We introduced a novel method for transferable-reward 

decomposition for IRL. We successfully decomposed a 
residual reward and a primary reward from given 
demonstrations.  

 

References 
[1] Christopher Grimm, Satinder Singh, “Learning 

Independently-Obtainable Reward Functions” ArXiv 
preprint, arXiv:1901.08649, 2019.  

[2] Garg, Divyansh and Chakraborty, Shuvam and Cundy, 
Chris and Song, Jiaming and Ermon, Stefano, 
“IQ-Learn: Inverse soft-Q Learning for Imitation,” In 
Conf. on Neural Information Processing System, 
2021.  


