
Ultimate Movement System

About The Asset

Ultimate Movement System is a replicated character movement constructor. You can
create and modify your own movement types with a single component. Completely
Game-driven and adapted animations with distance matching, orientation warping, and IK.

You can easily create new movement types, movement models, overlay states,
stances, poses, and different gait profiles according to your game needs. All can have
specific speeds, acceleration, deceleration, friction, and rotation rates (Check out the last
image).

The goal of this asset is to have a good-looking movement system with limited
resources. The example content uses only 2 animations for Forward and Backward
locomotion and still, 8-way locomotion is possible with orientation warping. Different
movement types will be added to further updates.

Customizing The Movement System Base
All of the accessible variables are exposed in the components that you have in the

character. Overall it will handle the initialization process automatically. You can find the
default values by clicking onto the Manager_MovementBase in the character blueprint.​

​

The exposed variables on the details panel are self-explanatory, you can change the default
stance, rotation mode, gait profile, overlay state and movement model by the enumerations.

You can also change the things like look input sensitivity, slope walk speed (basically max
and min walk speed on slope) and turn in place threshold.​
​

​
​
But the most important part is the MovementData mapping. In this mapping you are able to
create different movement properties like walk speed, acceleration, deceleration, friction,
and rotation rate based on the movement type, overlay, stance, pose, movement model, and
gait profile.​

Also, it’s important to have a movement data for your custom state. You should add it to the
mapping in order to your custom movement logic work. You can see the example mapping in
the image below.

Movement Data

You don’t have to implement for every state you have, but you need at least one per state
like default states for example.

​
​

Creating a Custom Movement Type

​ After you add your custom data to the related enumeration blueprint (Movement type,
overlay, stance, etc.) you will be able to see them in the movement base component. First
thing you need to do is setting up the movement input handler. You can duplicate one of the
existing functions and pin to the custom output like the image below;

​

Take HandleGroundedMovement function for example, it’s really basic and just updates the
character velocity by adding movement input based on the control rotation.
​

​

Same goes to rotation as well, You should create a new custom function called
Update(YourMovementMode)Rotation and add it to the UpdateCharacterRotation function
like the examples below;

​
Different from the movement input, the function you have for the rotation may or may not be
built different. For example if you go to the example Update_GroundedRotation function you
will see a bunch of enumeration switchers and different checks.

These are all movement type related and acts based on the given conditions. The important
function you need to call after your logic implemented is the SetCharacterRotation

It will automatically lerp the current character rotation to target value you have. Also
important to connect the CalculateFinalRotation to InterpSpeed so it will take effect from the
MovementData’s RotationRate variable.

Then you will also add new state machines to the animation blueprint as well. As you can
find examples in the BaseLayer you can create new state machines and cache them to use
in the MovementTypes statate machine.

​

Then you can create a new state in the MovementTypes and add the conditions as the
others. Basically checks the movement type enumeration value.

​

AnimBP Implementation Tips

Other applications such as pose or movement model is straight forward and they will just
follow the movement data that you put into. But for a custom stance, you will have to modify
the animation blueprint and add the new states based on your requirement.

The first thing you need to do is adding a state to BasePoses layer. If it’s grounded
movement you can add it to the GroundedPosesCached like in the examples so it will be
using the cached value. Also important to create new float variables and update them as the
examples to keep blending correct.
​

Or you can simply add a new logic to the Base Pose Blending state machine if you are not
using the grounded movement type.
​

Do not forget to use Base Pose Input Cached in the BaseLayer, the custom movement type
state machine that you created as the IDLE state.

For cycles you can use the Cycles Cached and implement your custom cycle logic to the
Cycle States state machine.​

Basically you can create a new state in it and it will be used in your CustomMovementType
State Machine that you created. So BasePoseInputCached is for idle state, Cycles Cached
for moving state. You should keep that in mind.
​

After all these done, and you add your new movement data to the component defaults, it
should be all working as you set it up. All you need to do is calling the function to update the
movement mode from anywhere you like. It will be using your custom Movement State
Machine. It’s all upto you how complex it’s going to be. You can also check out the examples
to get more information.
Here is how you can change the movement type;

​

Creating A New Overlay State

Creating a new overlay state is a few steps as the movement type. Right after you add a
new value to the Enum_OverlayStates, you should add a new MovementData overlay state
to your movement type, could be also for the one which is Grounded Movement Type.

Then all you have to do is adding a new state to the OverlayLayer -> Overlay States as the
examples. Conditions are basically checks the overlay state enum.
​

An overlay animation must be a single frame animation. You can add different scenarios to
here like in the examples;​

Then you should add Curves to your animations like in the image below;​

Also good to mention there is a Animation Data Modifier that will add all of the curves for
you. You still have to change the values tho.

​

Then you can change the overlay state whenever you want by calling the function below.

	Ultimate Movement System
	About The Asset
	Customizing The Movement System Base
	​​
	Creating a Custom Movement Type
	AnimBP Implementation Tips
	
	Creating A New Overlay State

