Apollo 12 - Rendezvous - Dish Fling

FOOTAGE - Apollo 12 - Rendezvous - Dish Flings and Bounces (12:47-13:12)

Footage Synopsis (12:47)

With less than 4 minutes before Lunar docking complete, the Apollo 12 Ascent Module (AM) begins a 90 degree pitch down rotation. For the first 25 degrees of this rotation the S-Band Dish counter-rotates so as to appear to "track earth" (disc is faced AWAY from the CSM, towards the aft of the Ascent Module (in the direction of earth). As the dish moves to track earth, it also begins to twist towards the side about 15 degrees, and appears to be under stress.

At the 25 degree mark (of the 90 degree Pitch down), something snaps, and the dish suddenly "flings and then oscillates side-to-side like a pendulum with decreasing amplitude, 9 times noticeably" before stopping. After settling out, the dish doesn't move again.

The decreasing motion of the oscillation is a clear indicator of GRAVITY. Without Gravity, there is no explanation for this motion.

Moon Landing Hoax - Hypothesis:

This footage is non-genuine. We are witnessing something here on earth, likely within a test facility, and possibly using a non-life-size model.

NASAX used a thin wire to maintain the dish's absolute orientation, as though it were tracking the earth. This mechanism failed and the wire or connector snapped under duress as the dish was twisting to the side, unable to rotate as the wire was trying to enforce. The dish's decreasing amplitude pendulum motion clearly shows the presence of Gravity.

Additionally, this is the S-Band antenna through which the LM is communicating to earth. There is a manual switch between using the Omni-antenna and the S-Band. In case of this failure, the S-Band would FULLY lose communications with earth, requiring this manual switchover, and an acknowledgement of the issue. Neither happened, not in transcript nor in mission report. Almost as if they didn't want to draw attention to this mishap, because the pendulum behavior alone is a dead giveaway of the gravity involved here. They chose to NOT address it at all within the transcripts or mission report, hoping it would simply not be noticed.

There is no viable explanation for this being genuine footage (as shown in the rest of this document).

Video Synopsis (with Audio - and 6 second Lag inserted)

[12:49] 145:31:43 90 degree Pitch Maneuver begins

[13:00]145:31:54 - Wire Breaks, Dish Flings.

[13:04] 145:31:51 STATIC SOUND - 3 seconds before Wire breaks.

[13:09] 145:31:56 Bean: "My antenna's okay." ← should say more than this!

<u>Critical Issues with this Apollo 12 Footage:</u>

#1: No legitimate Apollogist explanation exists for this Dish Flinging. The attempted explanations they make are all **critically flawed**.

#2: The dish bounces less with each oscillation (like a pendulum coming to rest). This behavior definitively indicates the presence of Gravity.

#3: With the antenna flung to more than 30 degrees off target, the **S-Band should have entirely dropped its signal** instead of inserting static. Static was flawed "damage control" on NASAX's part to cover this up.

#4: "My antenna is OK" (Bean) is the ONLY thing they said about this. **This was a big deal, so why was nothing more said about it**, or conferring on how to fix it, or mitigate the issue? Why didn't it show up in the Debriefing? It shows up nowhere else, almost as if it didn't happen.

#5: Apollo 12's S-Band Tracked Earth, but **they forgot to do this at all for Apollo 11**. Does this make sense?

<u>Supplemental point - 2 second Audio Discrepancy:</u>

There exists a **2-second discrepancy in Audio-Lag** compared to the video, which cannot be reconciled. The static was inserted into the audio feed 2-3 seconds too soon. A human error in fakery. The other 3 reference points to indicate timing would all perfectly align to the video if skewed to be earlier by 7 seconds. But this then introduces a 3-second error on the Static insertion. **A strong sign of fakery.**

Sources:

FOOTAGE - Non-Inverted: (8:47) - USED FOR FRAME CAPS

https://youtu.be/JhSbCwBClXk?t=527

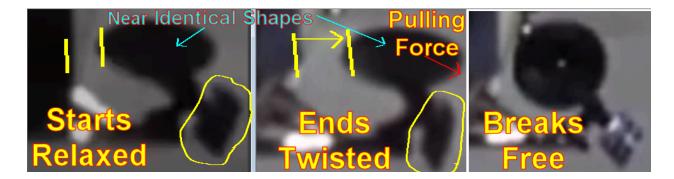
FOOTAGE: Other places to find this footage, 24 FPS interpolated: (12:55)

https://www.youtube.com/watch?v=EeeeTVr4Lyg https://youtu.be/EeeeTVr4Lyg?t=767

https://www.gettyimages.com/detail/video/apollo-12-lunar-module-during-lunar-orbital-rendezvous-news-footage/150883567

Source Folder for Frame Caps, KRITA and MP4's:

https://drive.google.com/drive/folders/1A8OQf-Zh9rr4snJVhJ 3ptERtwKDJhWr?usp=drive link


Best Video showing that Radar Dish stays stil (but twists) as Craft Rotates:

https://drive.google.com/file/d/13Z3GqEKreqFB4K2uGupUzcFdMMxN3iAj/view?usp=drive_link

Frame Analysis of the "Tracking Earth - Stresses Dish"

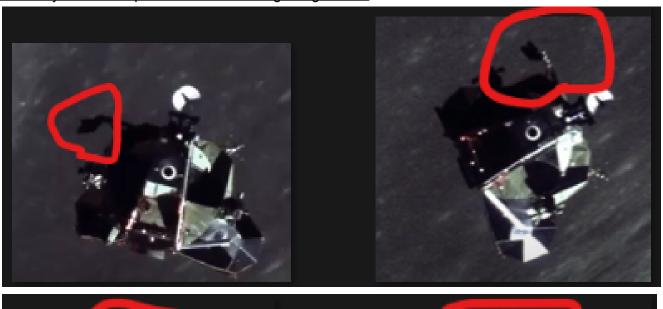
Video showing Dish "Tracking Earth" until Wire breaks and Dish Flings:

A12 - Dish Flings when Wire Breaks - KRITA VIDEO

Frame Analysis of the "Decreasing Bounce Amplitude" - Gravity!

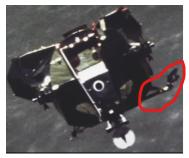
After breaking free, it bounces visibly 9X before coming to a rest. Easy to see in this video: 9 Bounces - Raw Video

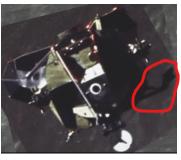
9 Bounces - Frame Captures in KRITA:


9 Bounces Frame Caps, Video

Apollo 11 Transmits S-Band from Dish not pointed at Earth!

Apollo 11 - Rendezvous - with S-Band Not Aimed


Frame Captures - Apollo 11 Rendezvous - has Rigid Dish - VIDEO


Four Keyframes of Apollo 11 demonstrating a Rigid Dish:

To be certain, I used KRITA to Rotate/Scale the AM after a 30 and 90 degree Rotation along an axis almost perpendicular to the view angle. Here you can clearly see NO CHANGE in the relative Dish angle compared to the rest of the AM. (0, 30, 90 degrees snapshots here)

Apollo 11 source footage from NASA:

https://www.nasa.gov/history/afj/ap11fj/19day6-rendezvs-dock.html

Journal time: 127:43:50

https://youtu.be/TApollo 11 Flight Journal - Day 6, part 2: Rendezvous and

DockingB4TenTk-Bc?t=172

Acquisition Of Signal on Rev 27	<u>127:51:36 GET</u>
Docking	128:03:00 GET

Apollogist Counter Arguments:

- The fuse is pulled on it, thus it magically releases it to be flung.
 FALSE. Breakers were pulled 93 seconds earlier for the Rendezvous Dish not the S-Band Dish.
- 2. Dish stops moving even after a 135 degree rollover which indicates "no gravity!" FALSE, for two reasonable explanations:
 - 1. Both hinges tighten up. At the end. Maybe model is the real deal, and they simply took it out of "neutral" to re-engage the actual motors.
 - 2. Simulation's earth orientation unknown. If the camera was pointed at a downward slope, that would hold the dish where it was after rotating.
- 3. RCS Thruster blew on it.

AWFUL PROPOSAL, implies a critical design failure. This would have been a repeated issue, and these RCS thrusters are not aligned with this dish. Also, at the time the dish is flung (they say "blown") there is no associated acceleration on the AM (as these RCS thrusters were overpowered at this stage of empty fuel tanks, and an acceleration would be noticeable).

Fully Unaddressed Issues by Apollogists:

- 1. No arguments above provide a reasonable explanation for the Dish Fling. What would cause it to fling?
- 2. Why was there static but not a LOST SIGNAL?
- 3. Why was nothing said about this issue, other than "My antenna is OK"?
- 4. Why did it settle down with a pendulum-like motion? (decreasing amplitude, same period, reversing before hitting hinge extremes)

Pulling the "Rendezvous Breakers":

CONCLUSION: FALSE. Breakers pulled 92 seconds beforehand and for a different Dish!

Journal Transcript:

https://www.nasa.gov/history/afj/ap12fj/17day6_ftstd.html

145:30:02 Conrad: All right, let me stop my radar - have you got it?

145:30:04 Gordon: I've got it. 145:30:05 Conrad: You've got it.

145:30:06 Bean: Okay, you need to pull both rendezvous circuit breakers.

145:30:08 Conrad: Okay, wait just a second. Is the rendezvous radar in the right place?

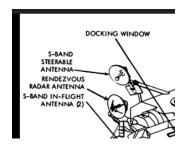
145:30:13 Gordon: It's 320, 320, which is where it should be.

145:30:16 Conrad: Okay. Got those out. Rendezvous radar breakers are pulled from the Verb 44.

145:31:31 Conrad: All right, Dick, I'm going to pitch over 90-degrees now.

145:31:39 Carr: Roger, Intrepid. ← fling happens 9 seconds later.

Fling happens 92 seconds AFTER the radar breakers are pulled.


Mentions Antenna issue, but says "It's OK" - really?

145:31:56 Bean: My antenna's okay. <= references this issue? Doesn't look OK.

145:32:25 Carr: Intrepid, Houston. Give us Low Bit Rate. *←* why?

PDF on "Rendezvous Radar"

https://www.nasa.gov/wp-content/uploads/static/history/alsi/ApolloLMRadarTND6849.pdf

ANALYSIS - AUDIO TRACK has 6 seconds of Lag

Journal Transcript: [Video Time]

https://www.nasa.gov/history/afj/ap12fj/17day6 ftstd.html

[12:43] 145:31:31 Conrad: All right, Dick, I'm going to pitch over 90-degrees now.

145:31:34 Gordon: Okay, let's go.

145:31:35 Conrad: Okay, I'm going Omni aft, Houston.

[12:49] 145:31:37[43] 90 degree Pitch Maneuver begins

[12:51] 145:31:39 Carr: Roger, Intrepid. ← fling happens 9 seconds later.

[????] 145:31:41 Conrad: Let me have this one [garble]. [Pause.]

[13:00]145:31:48[54] - Wire Breaks, Dish Flings.

[13:04] 145:31:52 STATIC SOUND. 4 Seconds Audio Lag

[13:07] ??? someone speaks?? WHO? "Go have 'em ", "what happened?"

[13:09] 145:31:56 Bean: My antenna's okay. (5 seconds after static)

[13:13] 145:32:01 Conrad: Okay. Pitch down 90 and yaw...

[13:28] 145:32:16[22] 90 deg Pitch maneuver ENDS. (39 sec, 90 deg, 2.3 deg/sec)

[13:31] 145:32:18 Bean: You're right, Pete. Now look, [garble] right now.

[13:38] 145:32:25 Carr: Intrepid, Houston. Give us Low Bit Rate.

[13:43] 145:32:31 Bean: Will do.

[13:47] 145:32:34 Conrad: Okay, Dick. Now, I'm going to yaw left 120.

[13:48] 145:32:35[41] Yaw Maneuver Begins! (AS HE'S SAYING IT)

[13:51] 145:32:38 Gordon: Okay. Go ahead; I'm ready.

[13:53] 145:32:39 Conrad: Okay <= done at 13:54

[14:14] 145:33:01[07] Yaw Maneuver hits 90 deg

[14:21] 145:33:07 Conrad: 90.

[14:27] 145:33:13[19] Yaw Maneuver ENDS (120 deg, 39 secs, 3 deg/sec)

[14:31] 145:33:17 Gordon: That's not enough. (2 sec) That's good.

[16:30] 145:35:14 DOCKED! (SKEW 6-7 second Audio Lag) 2:03 after YAW

[16:38] **145:35:22 Conrad:** Got capture? ← references docking 8 seconds after docking)

[16:43] 145:35:27 Conrad: Very good. We're in good shape. Go ahead [garble].

Aligned to video with audio overlay:

https://youtu.be/EeeeTVr4Lyq?t=759

How to Calculate the Audio-Overlay 6 second Lag, MINIMUM:

(the lag must be between 6-7 seconds)

See Spreadsheet for more detailed Analysis Math:

Spreadsheet - Apollo 12 - Rendezvous - Audio Track Lag = 6 sec

Reference Video with 6-7 seconds of Audio Track Lag:

https://youtu.be/EeeeTVr4Lyg?t=759

1st Issue: As Conrad announces his intention, the maneuver begins. 6 sec fixes this:

[13:47] 145:32:34 Conrad: Okay, Dick. Now, I'm going to yaw left 120.

[13:48] 145:32:35[41] Yaw Maneuver Begins! (AS HE'S SAYING IT)

[13:51] 145:32:38 Gordon: Okay. Go ahead; I'm ready.

[13:53] 145:32:39 Conrad: Okay <= done 13:54, Yaw should start after this, 6 sec.

2nd Issue: Conrad says "90" 7 seconds too late: (6 sec fixes this, makes it 1 second):

[14:14] 145:33:01[07] Yaw Maneuver hits 90 deg

[14:21] 145:33:07 Conrad: 90.

3rd Issue: "Got Capture" on Docking happens 8 seconds after docking. 6 sec fixes this [16:30] 145:35:14 DOCKED! (SKEW 6-7 second Audio Lag) 2:03 after YAW [16:38] 145:35:22 Conrad: Got capture? ← references docking 8 seconds after docking)

4th Issue: Faked Static starts with 4 second LAG.

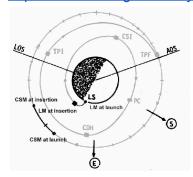
[13:00]145:31:48[54] - Wire Breaks, Dish Flings.

[13:04] 145:31:52 STATIC SOUND. 4 Seconds Audio Lag

Options for Laq:

- 1. 4 seconds works for STATIC ONLY. Fails for Issue #1 and #2 badly.
- 2. 5 seconds fails for 1st issue badly, as well is not reasonable for the other 2.
- 3. 6 seconds works well enough. MINIMUM for 1st issue.
- 4. 7 seconds Works the Best for all issues.
- 5. 8 seconds Not likely, esp for Issue #2 and #3.
- 6. 9 seconds fails badly for 3rd Issue.

CONCLUSION:

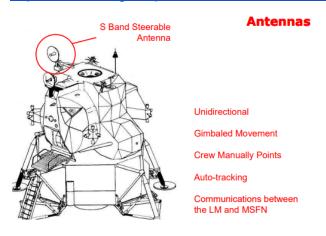

Since lower lag works best for Apollogists, we'll choose 6 seconds (vs 7 seconds) of Audio Lag for this analysis to reduce contention with these findings.

Proof: Was the Dish Really Pointing at Earth?

<u>ANSWER</u>: YES - Apollo 12's simulation attempted to "target earth", but the apparatus that was trying to force this broke, causing the antenna to "fling" as it broke away from the constraint.

A12 Flight Journal for Lunar Rendezvous:

https://www.nasa.gov/history/afi/loressav.html



Source Footage shows CSM was looking **FORWARD** (towards the EARTH), which means the LM was facing backwards (bottom towards Earth, and dish is aimed more forward).

Apollo 12 - Rendezvous - Dish Flings and Bounces

Properties/Purposes of the Dish Antenna:

https://ntrs.nasa.gov/api/citations/20090015392/downloads/20090015392.pdf

FYI: How It was Filmed - CSM mounted Camera:

https://www.nasa.gov/history/afj/ap12fj/17day6_ftstd.html

"As the 2 spacecraft come around the far side of the moon, the Yankee Clipper will be configured for television to show the final phases of rendezvous and docking."

https://www.nasa.gov/history/afj/ap12fj/18day6 Imjett rev33 35.html

"This is Apollo Control Houston. The television transmission is now nill. We copied preliminary docking time of 145 hours, 36 minutes"

More sources of Design docs:

https://www.transformingthechurch.org/apollo-lm-comm-system-exerience-report.pdf

https://ntrs.nasa.gov/api/citations/19720012253/downloads/19720012253.pdf

https://airandspace.si.edu/collection-objects/antenna-steerable-s-band-apollo/nasm_A19770614 000

Steerable Antenna Operation:

https://ntrs.nasa.gov/api/citations/19730005491/downloads/19730005491.pdf

Dish Image:

https://apollohoax.net/forum/index.php?action=dlattach;topic=2022.0;attach=1297;image

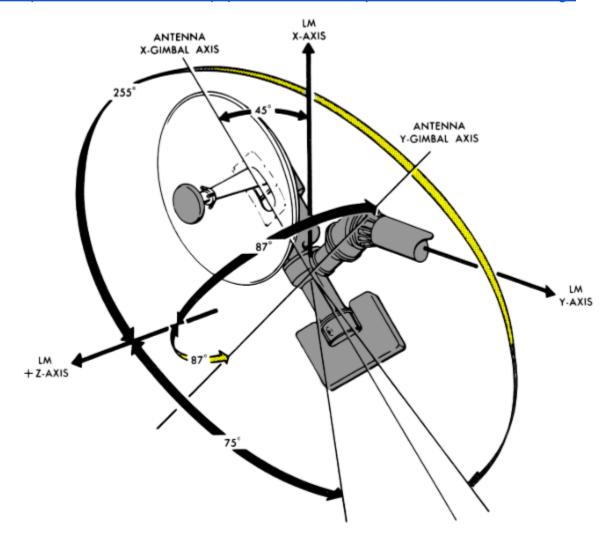


Figure 2.7-23. S-Band Steerable Antenna - Antenna Gimbaling