Meta-learning: how does it work?

The application of machine learning algorithms or optimization and training of machine
learning models is known as meta-learning. WWhen an Al system uses meta-learning, it
can apply the concepts it learned for one task to various complex tasks. Meta-learning
can be implemented in multiple ways depending on the type of work and task at hand. As a
result of meta-learning, one network's parameters are transferred to other networks'
parameters. As far as meta-learning is concerned, there are two phases. The meta-learning
model is typically trained after the base model has completed multiple training steps.
Following the forward, backward, and optimization phases that train the base model, forward
training is performed on the optimization model. After calculating the meta loss, the gradients
of each meta parameter are calculated. Using an original model's forward training pass and
then aggregating the previous losses is one method for determining the meta loss.

There are wusually hundreds and thousands of meta-learning parameters in many
deep-learning models. However, creating a meta-learner for every new set of parameters
would be an expensive investment. Thus, coordinate sharing can be used to resolve this
problem.

Multi-task learning Meta-learning

quickly learn

learn tasks perform tasks Iearn to learn tasks
A.I A_, A./ newt:sk

’ll' w x ’IF x 7

o% . ofa .

It has always been a story of abstraction in machine learning. Earlier researchers spent their
days creating tasks manually for machine learning models, but with unsupervised
meta-learning, algorithms now propose their task distribution. Unsupervised meta-learning
reduces the amount of human intervention needed to solve tasks. Let's look at a few
examples of machine learning algorithms that use human supervision to find patterns and
extract knowledge. A common ML scenario is a regression, where a human provides a label
Y for a few examples. The goal is to return predictions that correctly assign the labels to
these examples. Reinforcement learning (RL) is another example where the input is a
dataset, and the output is a function that performs well on the dataset. RL algorithms use
many tools, such as kernel, tabular, and deep neural networks. Unsupervised learning aims
to acquire representations from unlabeled data that can be used to learn downstream tasks
more effectively from modest amounts of labeled data. Several prior unsupervised learning
works have attempted to accomplish this by developing proxy objectives based on
reconstruction, disentanglement, prediction, and other metrics. As an alternative, we develop
an unsupervised meta-learning method that explicitly optimizes the ability to learn from small
amounts of data. To accomplish this, we automatically construct tasks from unlabeled data
and then run meta-learning on them. As a surprising finding, we find that relatively simple




task construction mechanisms, such as cluster embeddings, are effective when integrated
with meta-learning. Based on our experiments across four image datasets, we have
demonstrated that our unsupervised meta-learning approach produces a learning algorithm
without any labeled data that applies to a variety of downstream classification tasks,
improving on the embeddings learned by four previous unsupervised learning methods.

1. run embedding learning 2b. gqts)matically construct tasks without supervision
1 enveddine fncion. % L4 [RIFE @ P w
“ L embedding function_ o X . . A n . “‘@/, :‘ uu.:ﬁ ., ...
% IR S Mg iu.)a
{xi} {z:} ' o
2a. cluster embeddings multiple times 3. run meta-learning on tasks
] 2 cce meta-learner /M | learning procedure F l
S uuﬂ
T T2

In the context of unsupervised meta-learning, we can imagine a meta-learner that can
achieve the worst-case regret in all possible task distributions within an environment. The
unsupervised meta-RL algorithm performs significantly better than learning from scratch and
is competitive with supervised meta-RL approaches on benchmark tasks. It is believed that
meta-learning algorithms with memory may perform best when the task proposal mechanism
is different. One of the most promising techniques for achieving artificial general intelligence
is meta-learning. As a result of unsupervised meta-learning, this goal is one step closer,
allowing humans to solve tasks with less supervision. If we are trying to solve many tasks, it
is complicated for the machine learning practitioners to translate all of them manually; hence
it is necessary to make the process automotive. The algorithms that perform this
optimization automatically are called meta-learning algorithms. It is important to note that
meta-learning algorithms consider not only one task but a distribution over many tasks when
evaluating a set of knobs. There may be a distribution over supervised learning tasks that
includes learning dog detectors, cat detectors, and bird detectors, for instance. The task
distribution in tasks is interrelated, information from one task may help solve other tasks
more efficiently, but a knob setting that works well on one task may not be the same for
others as the knob setting depends on the distribution of tasks. The task distribution for
meta-learning cannot be done without no prior knowledge in mind.

Some Calculations

Defining an optimal meta-learner for the case when the distribution of tasks is unknown is
the first step. It is generally accepted that an optimal meta-learner achieves the greatest
average reward across the distribution of functions. We will compare the expected reward for
a learning procedure f to that of the best learning procedure f* , defining the regret of f on a
task distribution p more accurately.



Learning procedure

r Task distribution l_ Returns 1
Regret(f, p) = EtaskNp(T) Z R(’n—ia taSk) = R(ﬂ_:a taSk)

2
Ty = f(Wi—la taSk) <+— Update of a learning procedure.

m; = f*(mw;_;, task)<*— Update of the optimal
learning procedure.

m}n max Regret(f,p).
D

Z(s,z) = H(s) — H(s|2).

An optimal unsupervised meta-learner can be defined as a meta-learner that returns the
minimum worst-case regret among all the task distributions encountered. Datasets are
converted into function approximators using learning procedures. One can tune the learning
procedures by optimizing the learning procedures to solve a distribution of tasks. Designing
the task distribution manually is challenging, so recent research suggests that learning
algorithms can optimize knobs using unlabeled data. It provides bounds on the regret we
might incur in the worst-case scenario from such an unsupervised meta-learner. The optimal
distribution for an unsupervised meta-learner is uniform over all possible tasks under some
restrictions on the family of tasks encountered at test time.

The first marginal entropy term is maximized when all possible tasks have a uniform
distribution. For every conditional entropy term, we ensure consistency by Z, and the
resulting distribution of S is narrow. Using the notion of min-max optimality, we can construct
unsupervised task distributions in an environment by optimizing mutual information. When
the test time task distribution is capable of being chosen adversarially, the algorithm must
make sure it is uniformly good for all the tasks that could be encountered. To illustrate, if
rewards at test time were limited to goal-reaching tasks, regret for reaching a target during
test time is inversely related to training-time sampling of the target. An adversary may
propose a task distribution solely for reaching one of the goals g if it has a lower density than
the others, causing the learning procedure to incur a higher regret. Uniform distribution over
goals can be used to find an optimal unsupervised meta-learner.

Applications of Unsupervised Meta-Learning

In what ways could meta-learning be beneficial, or are embeddings already sufficient for
downstream supervised learning? We investigate this by running MAML and ProtoNets on
tasks generated via CACTUs (CACTUs-MAML, CACTUs-ProtoNets). In this study, we
compare five alternative algorithms, four of which incorporate supervised learning. ii)
Embedding knn-nearest neighbors first infers the embeddings of the downstream task



images. In the embedding space, it predicts the plurality vote of the labels of the KNN
training images closest to the query embedding. It employs a network with a 128-unit hidden
layer and well-tuned dropout instead of an embedded multilayer perceptron (Srivastava et
al., 2014). To isolate the effect of meta-learning on images, we also compare it to embedding
cluster matching, which involves labeling clusters with training data. In cases where a query
data point maps to an unlabeled cluster, the closest labeled cluster is used. v) For each
evaluation task, we use gradient descent to train a model from standard random network
initialization using the MAML architecture.

By using simple embeddings in tasks, meta-learning improves the utility of these
representations in learning downstream, human-specified tasks. For more detailed
information please refer to the research here.


https://arxiv.org/pdf/1810.02334.pdf

