
Mess Detector 
Video 1 = Earth’s channel 
Video 2 = Matthew’s channel 
 
Video 1 Outline: 

1.​ Intro 
●​ Mega long brief showcase(see List of Impressive Things) 
●​ What is the mess detector? 
●​ How did it come to be? 
●​ What are the uses? lol 

2.​ Show reversal formula and highlight which parts of the mess detector 
are what. 

 
Video 2 Outline: 

1.​ Explain LCG 
●​ Animated LCG formula 
●​ Some properties(?) 

2.​ Explain LCG reversal (lattices) 
●​ *steal half the info from original docs* 

3.​ Explain how we applied this to the mess detector 
●​ Step by step walkthrough of all the main components 

 
List of Impressive Things:​
​ Simulation Program 
​ The mod for testing (10000 successes!) 
​ 50 km of Redstone 
​ 22 km of comparators 
​ Tnt blast ikr 
 
Video 1 Script: 

1.​ Hype intro 
a.​ 50km of redstone 
b.​ 22km of comparators 
c.​ Reversing RNG using only redstone 
d.​ 100% success rate, tested 10,000 times 

2.​ Global counting/control device (1, 46, -7) 
a.​ Counts to 7, to launch 7 TNT 



3.​ Item dispensers (32, 48, -4) 
a.​ Advancers, to make calculation a bit easier 

4.​ TNT launcher (0, 40, 0) 
a.​ Follow the TNT to the edge 

5.​ Detectors (ender chests by the edge) 
a.​ TNT on ender chests to stop explosion destroying blocks, snow is 

same height as ender chests 
b.​ De-duplicator step 1: pulse extenders (looks like a checkerboard 

of repeaters) 
c.​ De-duplicator step 2: synchronize with D-flip-flop (sideways rail 

with instant rail line) 
d.​ De-duplicator step 3: merge with comparators 
e.​ Corner special cases (there’s instant wire that’s only in the 

corners) 
6.​ Lookup Table 

a.​ Budded lines, instant (10 parallel budded lines round the whole 
thing) 

b.​ Block event delay in the corners to prevent update suppression 
c.​ Line is re-budded by the slimestone 
d.​ Goes through a D-flip-flop and is encoded to hexadecimal, then 

sent to the calculator for further processing (-132, 19, -153) 
e.​ Result is a lower bound of the seed, divided by 238 

7.​ Signal distributed to 7 identical “cores” 
8.​ Matrix multiplication by mm1 (248M-1) 

a.​ Input value is multiplied by a different value each TNT shot, 
constants also different in each core (constants stored at -110, 
122, -26) 

b.​ Correct sign applied after the multiplier with the conditional 
negator (well, almost, partly factored into bvec) (-89, 115, 31) 

c.​ Cumulative adder at the end (pink bit) 
d.​ Addition of bvec (b with several other things factored in) due to 

cumulative adders not being initialized to 0 
9.​ Right shift by 10 (grey bit after the pink bit) 

a.​ Implements the floor part of the formula 
b.​ Multiplication by 238 cancels with the implicit division in the 

lookup table, division by 248 cancels the implicit multiplication in 
mm1, overall a division by 210 

10.​ Dot product with m6 (7th column of M, M6 with 0-indexing) 



a.​ Cycle through the 7 values, multiply them with constants 
individually (-103, 125, 88), (-115, 122, 129) 

b.​ Uses special 48-bit multiplier, slow but more compact (the big 
purple beast in between them) 

c.​ Cumulative adder at the end (11, 113, 73) 
11.​ Prediction 

a.​ Simulate the LCG with a 48-bit multiplier (105, 129, 8) and adder 
(69, 113, 63) 

b.​ Store output and compare with the next result (58, 105, 64) 
 
Video 2 Script: 

1.​ Intro 
a.​ Mess detector reverses Math.random() ingame using only 

redstone 
b.​ Done with 7 random TNT angles and the lattice technique 

2.​ Explain LCG with the (21, 9, 100) example 
a.​ “Knocking off digits” is modulus 
b.​ Java LCG works the same way but with bigger numbers in 

hexadecimal (0x5deece66d, 0xb, 248) 
c.​ Math.random() uses Random.nextDouble(). nextDouble() uses 

two LCG calls, to produce a 53-bit number, which when divided by 
253 gives a value between 0 and 1. The top 26 bits of the first call 
make the top 26 bits of the 53-bit number, and the top 27 bits of 
the second call make the remaining 27 bits of the 53-bit number. 

d.​ A nice property of LCGs is that you can compose (“combine”) 2 
LCGs to produce a single LCG which is equivalent of advancing 
the seed by both LCGs. Let LCGa = (ma, ba, 248), LCGb = (mb, bb, 248), 
then LCGa.LCGb = LCGb.LCGa = (mamb, mabb + ba, 248), since ma(mbx 
+ bb) + ba = mambx + (mabb + ba). 

3.​ Explain Lattice LCG reversal 
a.​ LCGs have several weaknesses, but the main one the mess 

detector exploits is that plotting 2 calls of an LCG in 2d space 
produces a lattice (“slanted grid”), or, more generally, you can plot 
n calls in n-dimensional space. 

b.​ An n-d lattice with a point on the origin is a linear transformation 
of the set of integer points, Zn. A general lattice has a translation 
from the origin as well, with the addition of an n-d vector. 



c.​ If we have a lower and upper bound for what the seed could have 
been at each of the calls, we can construct an n-d box of 
constraints in this space, and if only one lattice point falls inside 
the box, it must represent the exact seeds. 

d.​ Note: in this video we will use the row-vector convention; if you’re 
used to column vectors, the main differences are that vectors are 
horizontal, and transformation matrices are post-multiplied rather 
than pre-multiplied. 

e.​ From now on we will call the matrix, which transforms Zn to the 
translated lattice, M, and the vector which translates it b. Thus, 
you can think of the overall formula of the lattice L to be y = xM + 
b, x ∈ Zn, y ∈ L. Therefore, to map the lattice back to Zn, x = (y - 
b)M-1. 

f.​ There are many possible M and b which will produce the same 
lattice. The box of constraints tends to be massive, so ideally we 
want to pick an M such that after transforming the lattice and the 
box by M-1, the box ends up as small and even as possible, so that 
we have as few points to search as possible. Ideally, the box 
should end up smaller than the unit n-d cube, so that searching 
becomes a simple case of rounding. More on the choice of b 
later. 

g.​ The algorithm for producing an even box is called LLL lattice 
reduction. It takes an arbitrary M0 and produces successively 
more orthogonal (“better”) Mi until we reach the optimal matrix M. 
Of course, we need to supply it with an initial basis matrix M0 
which can be as simple as the top row being (1, m, m2, m3, ...), and 
the other diagonal entries being 248. 

h.​ It’s sufficient to only know the maximum corner point of the box, t, 
and its size. Were M-1 to contain only positive elements, the point 
we are searching for would be simply ⌊(t - b)M-1⌋, however, for 
every negative element of M-1, you have to subtract the box size 
from elements t during multiplication. This leads to a situation 
where it’s no longer a normal matrix multiplication, but take a 
moment to convince yourself [animation will help] that if you go 
through the multiplication, you are out by a constant error vector e 
afterwards. Thus, the answer is ⌊(t - b)M-1 - e⌋. This can be 
rearranged to ⌊tM-1 - (bM-1 + e)⌋. Let bvec = -(bM-1 + e), thus we 



have ⌊tM-1 + bvec⌋. bvec will incorporate more error terms than 
this in the mess detector. 

i.​ Once you have the correct point in Zn space, you need the correct 
seed in L space. This is as simple as ⌊tM-1 + bvec⌋M + b. However, 
in the mess detector, we only care about the seed after reversal, 
which means we only want the final element of the resulting point 
vector. Therefore, you can simplify to ⌊tM-1 + bvec⌋ . m6 + b, where 
m6 is the rightmost column of M transposed into a row vector, 
and b is the final element of b. This is where the choice of b 
becomes significant. We choose the b such that the last element 
of b is 0. This removes the need for the final addition. So the 
overall formula is ⌊tM-1 + bvec⌋ . m6. 

 
 
 
 


