
 

GLAB 320.11.1 - Redux State 
Management 
Version 1.0, 04/04/23​
React 18.2.0, Redux Toolkit 1.9.3 

Introduction 
In this guided lab, we will explore the Redux Toolkit (RTK) through building an example 
application that allows us to create, view, edit, and react to content posts in a “social media app” 
scenario. We will optimize our application’s rendering process, create asynchronous thunk 
functions to handle API requests, and normalize our application state. 

This lab is structured in parts; each part is designed so that it can be completed independently 
and in separate sittings. It is recommended to split this lab over the course of multiple days in 
order to allow the content to digest. 

●​ Part 0: Explore the Initial Project 
●​ Part 1: Redux Data Flow 
●​ Part 2: Using Redux Data 
●​ Part 3: Data Fetching 
●​ Part 4: Performance Optimization 

CodeSandbox links have been provided at the end of each part, and can be used to skip ahead 
to parts most relevant to a particular group of learners. 

This activity is adapted from the Redux Essentials tutorial series. 

Objectives 
●​ Integrate Redux into a React application. 

●​ Implement the basic Redux data flow pattern. 

●​ Use the Redux Toolkit APIs to simplify code and reduce boilerplate. 

●​ Implement basic Create, Read, Update, and Delete (CRUD) functionality within a 
React-Redux application using Redux Toolkit. 

●​ Access an external API through the use of asynchronous thunk functions. 

●​ Optimize application performance through the use of memoized selectors (which will be 
explained during the course of this lab activity). 

●​ Optimize application performance through the use of normalized state. 

1 

https://redux.js.org/tutorials/essentials/part-1-overview-concepts


 

Tools and Software 
●​ A CodeSandbox account and a GitHub account 

●​ React DevTools and Redux DevTools Chrome extensions 

Instructions 
To begin, open and fork this CodeSandbox.  

You can also clone the project from this GitHub repository. After cloning the repo, you can install 
the tools necessary for the project with npm install and start it with npm start. 

This pre-configured project already has React and Redux set up, includes some default styling, 
and has a fake REST API that will allow us to write API requests in our application. You will use 
this pre-configured project as the basis for writing your application’s code. 

You can continue the remainder of this lab activity within CodeSandbox, or locally within your 
code editor of choice. 

 

Part 0: Explore the Initial Project 
Take a look at what the initial project contains, and familiarize yourself with both its structure and 
its contents. This app will eventually contain multiple interfaces for posting textual content and 
interacting with those posts. 

If you load the app now, you should see a header and a welcome message. You can also open 
the Redux DevTools extension to see that the initial Redux state is empty. 

Here is a breakdown of the current file tree: 

●​ /public – Contains the HTML host page template and other static files like icons. 
●​ /src 

○​ index.js – The entry point for the application. It renders the React-Redux 
<Provider> component and the main <App> component. 

○​ App.js – The main application component. Renders the top navbar and handles 
client-side routing for the other content. 

○​ index.css – Contains styles for the complete application. 
○​ /api 

■​ client.js – A small AJAX request client that allows us to make GET 
and POST requests. 

■​ server.js – Provides a fake REST API for our data. Our app will fetch 
data from these fake endpoints later. 

○​ /app 

2 

https://codesandbox.io/
https://github.com/
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd
https://codesandbox.io/s/redux-state-management-0-t9vxc3
https://github.com/meckart-ps/redux-essentials-example-app


JavaScript

 
■​ Navbar.js – Renders the top header and nav content. 
■​ store.js – Creates the Redux store instance. 

Once you’ve finished this activity, you’ll likely want to introduce Redux to your own projects. One 
way to create a new React + Redux project is by using the Redux templates for 
Create-React-App. These templates come with Redux Toolkit and React-Redux already 
configured, which allows you to get started writing your application’s code without having to add 
Redux packages and set up the Redux store. If you are using a React framework like Next.js or 
Vite, there are more recommended ways to create a React + Redux project. 

 

Part 1: Redux Data Flow 
The main feature of this application will be a list of posts. As we continue, we will add several 
additional pieces to this feature, but our first goal is to show the list of post entries on screen. 

Creating the Posts Slice 

First, we will create a Redux “slice” that will contain the data for our posts. Once we have that 
data in the Redux store, we can create the React components to show the data on the page. 

●​ Inside of src, create a new features folder. 
●​ Put a posts folder inside of features. 
●​ Add a new file named postsSlice.js inside of the posts folder. 

Inside of this new file, we will use the RTK createSlice function to make a reducer function that 
will handle our posts data. Reducer functions need to have some initial data included so that the 
Redux store has those values loaded when the app starts. 

For now, we’ll create an array with some fake post objects inside so that we can begin adding UI 
elements. 

Import createSlice, define an initial posts array, pass that to createSlice, and export the 
posts reducer function that createSlice has generated, as follows: 

features/posts/postsSlice.js 

import { createSlice } from '@reduxjs/toolkit' 
 
const initialState = [ 
  { id: '1', title: 'First Post!', content: 'Hello!' }, 

3 

https://github.com/reduxjs/cra-template-redux
https://github.com/reduxjs/cra-template-redux
https://redux-toolkit.js.org/introduction/getting-started#create-a-react-redux-app


JavaScript

 

  { id: '2', title: 'Second Post', content: 'More text' } 
] 
 
const postsSlice = createSlice({ 
  name: 'posts', 
  initialState, 
  reducers: {} 
}) 
 
export default postsSlice.reducer 

 
Every time we create a new slice in Redux, we need to add its reducer function to the Redux 
store. While our store is already being created, it does not yet have any data inside of it. 

Open app/store.js and import the postsReducer function that we just created. Update the 
call to configureStore so that the postsReducer is passed as a reducer field named posts: 

app/store.js 

import { configureStore } from '@reduxjs/toolkit' 
 
import postsReducer from '../features/posts/postsSlice' 
 
export default configureStore({ 
  reducer: { 
    posts: postsReducer 
  } 
}) 

 
This tells Redux that we want our top-level state object to have a field named posts inside, and 
all the data for state.posts will be updated by the postsReducer function when actions are 
dispatched. 

Confirm this works by opening the Redux DevTools Extension and looking at the current state: 

4 



JavaScript

 

 

Now that we have some data in our store, we can create a React component that shows the list 
of posts. 

Showing the Posts List 

All of the code related to our posts feature should go in the posts folder, so create a new file 
within that folder called PostsList.js. 

In order to render a list of posts, we’ll need data from the Redux store. React components can 
read data from the store using the useSelector hook from the React-Redux library. The 
selector functions that you write will be called with the entire Redux state object as a 
parameter, and should return specific data that this component needs from the store. 

The initial PostsList component will read the state.posts value from the Redux store, then 
loop over the array of posts and show each of them on screen: 

features/posts/PostsList.js 

import React from 'react' 
import { useSelector } from 'react-redux' 
 
export const PostsList = () => { 
  const posts = useSelector(state => state.posts) 
 
  const renderedPosts = posts.map(post => ( 
    <article className="post-excerpt" key={post.id}> 
      <h3>{post.title}</h3> 
      <p className="post-content"> 
        {post.content.substring(0, 100)} 
      </p> 

5 



JavaScript

 

    </article> 
  )) 
 
  return ( 
    <section className="posts-list"> 
      <h2>Posts</h2> 
      {renderedPosts} 
    </section> 
  ) 
} 

Note that this component only shows the first 100 characters of a post’s content (an excerpt). 
Now that we have a PostsList component, we need to render it within our application. 

Import the PostsList component into App.js, and replace the existing welcome text with 
<PostsList />. Take the time to also wrap in a React Fragment, as we will be adding 
something else to the main page soon: 

App.js 

import React from 'react' 
import { 
  BrowserRouter as Router, 
  Switch, 
  Route, 
  Redirect 
} from 'react-router-dom' 
 
import { Navbar } from './app/Navbar' 
import { PostsList } from './features/posts/PostsList' 
 
function App() { 
  return ( 
    <Router> 
      <Navbar /> 
      <div className="App"> 
        <Switch> 

6 

https://react.dev/reference/react/Fragment


 

          <Route 
            exact 
            path="/" 
            render={() => ( 
              <> 
                <PostsList /> 
              </> 
            )} 
          /> 
          <Redirect to="/" /> 
        </Switch> 
      </div> 
    </Router> 
  ) 
} 
export default App 

With our PostsList now included within the application, we should have content! Check the main 
page of your app, which should look like this: 

 

We’ve successfully added some data to the Redux store, and shown it on screen within a React 
component. Next, we’ll add a form that allows us to create and store new posts. 

7 



JavaScript

 
Adding New Posts 

The posts that are currently visible within the application are hard-coded into our initial state. In 
order to create a more dynamic experience, we need to allow for the addition of new posts by 
our users. 

We will create an “Add Post” form that allows users to write posts and save them. Being the 
creatively descriptive programmers we are, we’ll name the file for this component 
AddPostForm.js and put it in our posts folder. 

First, we will create the empty form and add it to the page. We’ll add a text input for the post 
title, and a text area for the body of the post. 

Note that, in the following code block, we use the useState hook from React. It is very 
important to recognize when to use and when not to use the Redux store to handle state 
information. In this case, the state that we’ll be tracking – title and content – is only relevant to 
the form component that we’re developing, not the global application. We will later send this 
information to our application through the use of a Redux action. 

features/posts/AddPostForm.js 

import React, { useState } from 'react' 
 
export const AddPostForm = () => { 
  const [title, setTitle] = useState('') 
  const [content, setContent] = useState('') 
 
  const onTitleChanged = e => setTitle(e.target.value) 
  const onContentChanged = e => setContent(e.target.value) 
 
  return ( 
    <section> 
      <h2>Add a New Post</h2> 
      <form> 
        <label htmlFor="postTitle">Post Title:</label> 
        <input 
          type="text" 
          id="postTitle" 
          name="postTitle" 
          value={title} 

8 



JavaScript

 

          onChange={onTitleChanged} 
        /> 
        <label htmlFor="postContent">Content:</label> 
        <textarea 
          id="postContent" 
          name="postContent" 
          value={content} 
          onChange={onContentChanged} 
        /> 
        <button type="button">Save Post</button> 
      </form> 
    </section> 
  ) 
} 

 

Import this new component into App.js and add it above the <PostsList /> component. 

App.js 

 

<Route 
  exact 
  path="/" 
  render={() => ( 
    <> 
      <AddPostForm /> 
      <PostsList /> 
    </> 
  )} 
/> 

You should now see the form show up in the page right below the header, but interacting with it 
will not yet update our posts. 

Saving Post Entries 

Now, we need to update our Redux store with new posts entries.  

9 



JavaScript

 
To accomplish this, we need to update the posts slice.The posts slice is responsible for handling 
all updates to the posts data. Inside of the createSlice call, there’s an object called reducers. 
Right now, that object is empty. We need to add a reducer function inside of there to handle the 
case of a post being added. 

Inside of reducers, add a function named postAdded, which will receive two arguments: the 
current state value, and the action object that was dispatched. Since the posts slice only 
knows about the data it's responsible for, the state argument will be the array of posts by itself, 
and not the entire Redux state object. 

The action object will have our new post entry as the action.payload field, and we'll put that 
new post object into the state array. 

When we write the postAdded reducer function, createSlice will automatically generate an 
"action creator" function with the same name. We can export that action creator and use it in our 
UI components to dispatch the action when the user clicks "Save Post". 

features/posts/postsSlice.js 

 

const postsSlice = createSlice({ 
  name: 'posts', 
  initialState, 
  reducers: { 
    postAdded(state, action) { 
      state.push(action.payload) 
    } 
  } 
}) 
 
export const { postAdded } = postsSlice.actions 
 
export default postsSlice.reducer 

 

DANGER – STATE MUTATIONS 

Remember that reducer functions must always create new state values immutably! 

It’s safe to call mutating functions like Array.push() or modify object fields like state.field = 
value inside of createSlice(), because it uses the Immer library to convert those mutations into 

10 



JavaScript

 

safe immutable updates internally. 

Do not try to mutate any state data outside of createSlice! 

 

Dispatching the “Post Added” Action 

Our AddPostForm has text inputs and a "Save Post" button, but the button doesn't do anything 
yet. We need to add a click handler that will dispatch the postAdded action creator and pass in 
a new post object containing the title and content the user wrote. 

Our post objects also need to have an id field. Right now, our initial test posts are using some 
fake numbers for their IDs. We could write some code that would figure out what the next 
incrementing ID number should be, but it would be better if we generated a random unique ID 
instead. Redux Toolkit has a nanoid function we can use for that.  

We'll talk more about generating IDs and dispatching actions in the next part of this process. 

In order to dispatch actions from a component, we need access to the store's dispatch 
function. We get this by calling the useDispatch hook from React-Redux. We also need to 
import the postAdded action creator into this file. 

Once we have the dispatch function available in our component, we can call 
dispatch(postAdded()) in a click handler. We can take the title and content values from our 
React component useState hooks, generate a new ID, and put them together into a new post 
object that we pass to postAdded(). 

features/posts/AddPostForm.js 

import React, { useState } from 'react' 
import { useDispatch } from 'react-redux' 
import { nanoid } from '@reduxjs/toolkit' 
 
import { postAdded } from './postsSlice' 
 
export const AddPostForm = () => { 
  const [title, setTitle] = useState('') 
  const [content, setContent] = useState('') 
 
  const dispatch = useDispatch() 

11 



 

 
  const onTitleChanged = e => setTitle(e.target.value) 
  const onContentChanged = e => setContent(e.target.value) 
 
  const onSavePostClicked = () => { 
    if (title && content) { 
      dispatch( 
        postAdded({ 
          id: nanoid(), 
          title, 
          content 
        }) 
      ) 
      setTitle('') 
      setContent('') 
    } 
  } 
 
  return ( 
    <section> 
      <h2>Add a New Post</h2> 
      <form> 
        {/* omit form inputs */} 
        <button type="button" onClick={onSavePostClicked}> 
          Save Post 
        </button> 
      </form> 
    </section> 
  ) 
} 

 

Now, try building a new post within the application by typing in a title and some content text. 
Click “Save Post,” and you should see a new item for that post show up in the posts list. 

Congratulations! You’ve just built a working React + Redux app! 

The application up to this point demonstrates the complete Redux data flow cycle: 

●​ Our posts list read the initial set of posts from the store with useSelector and rendered 
the initial UI. 

●​ We dispatched the postAdded action containing the data for the new post entry. 

12 



 
●​ The posts reducer saw the postAdded action, and updated the posts array with the new 

entry. 
●​ The Redux store told the UI that some data had changed. 
●​ The posts list read the updated posts array, and re-rendered itself to show the new post. 

All the new features we'll add after this will follow the same basic patterns you've seen here: 
adding slices of state, writing reducer functions, dispatching actions, and rendering the UI based 
on data from the Redux store. Understanding this pattern is the key to mastering Redux. 

We can check the Redux DevTools Extension to see the action we dispatched, and look at how 
the Redux state was updated in response to that action. If we click the "posts/postAdded" 
entry in the actions list, the "Action" tab should look like this: 

 

The "Diff" tab should also show us that state.posts had one item added, which is at index 2. 

Remember that our AddPostForm component has some React useState hooks inside, to keep 
track of the title and content values the user is typing in. As a reminder, the Redux store 
should only contain data that's considered "global" for the application! In this case, only 
the AddPostForm will need to know about the latest values for the input fields, so we want to 
keep that data in React component state instead of trying to keep the temporary data in the 
Redux store. When the user is done with the form, we dispatch a Redux action to update the 
store with the final values based on the user input. 

Part One Recap 

So far, we’ve reinforced the following: 

●​ Redux state is updated by "reducer functions." 
○​ Reducers always calculate a new state immutably, by copying existing state 

values and modifying the copies with the new data. 
○​ The Redux Toolkit createSlice function generates "slice reducer" functions for 

you, and lets you write "mutating" code that is turned into safe immutable 
updates. 

13 



 
○​ Those slice reducer functions are added to the reducer field in 

configureStore, and that defines the data and state field names inside the 
Redux store. 

●​ React components read data from the store with the useSelector hook. 
○​ Selector functions receive the whole state object, and should return a value. 
○​ Selectors will re-run whenever the Redux store is updated, and if the data they 

return has changed, the component will re-render. 
●​ React components dispatch actions to update the store using the useDispatch 

hook. 
○​ createSlice will generate action creator functions for each reducer we add to a 

slice. 
○​ Call dispatch(someActionCreator()) in a component to dispatch an action. 
○​ Reducers will run, check to see if this action is relevant, and return a new state if 

appropriate. 
○​ Temporary data like form input values should be kept as React component state. 

Dispatch a Redux action to update the store when the user is done with the form. 

Here’s what your application should look like so far: Part One Completed CodeSandbox. 

Part Two Preview 

In the next section, we’ll add some additional functionality to the application and handle some 
examples of how to work with data that is already inside of the Redux store. 

 

Part 2: Using Redux Data 
Now that you have gone through and familiarized yourself with the core steps to write Redux 
logic, we're going to use those same steps to add some new features to our social media feed 
that will make it more useful.  

We will add the ability to view a single post, edit existing posts, show post author details and 
post timestamps, and use reaction buttons to add reactions to posts. 

Showing Single Posts 

Since we have the ability to add new posts to the Redux store, we can add some more features 
that use the post data in different ways. 

Currently, our post entries are being shown in the main feed page, but if the text is too long, we 
only show an excerpt of the content. It would be helpful to have the ability to view a single post 
entry on its own page. 

14 

https://codesandbox.io/s/redux-state-management-1-k7w57b


JavaScript

 
First, we need to add a new SinglePostPage component to our posts feature folder. We'll use 
React Router to show this component when the page URL looks like /posts/123, where the 
123 part should be the ID of the post we want to show. 

React Router will pass in a match object as a prop that contains the URL information we're 
looking for. When we set up the route to render this component, we're going to tell it to parse the 
second part of the URL as a variable named postId, and we can read that value from 
match.params. 

Once we have that postId value, we can use it inside a selector function to find the right post 
object from the Redux store. We know that state.posts should be an array of all post objects, 
so we can use the Array.find() function to loop through the array and return the post entry 
with the ID we're looking for. 

It's important to note that the component will re-render any time the value returned from 
useSelector changes to a new reference. Components should always try to select the smallest 
possible amount of data they need from the store, which will help ensure that it only renders 
when it actually needs to. 

It's possible that we might not have a matching post entry in the store - maybe the user tried to 
type in the URL directly, or we don't have the right data loaded. If that happens, the find() 
function will return undefined instead of an actual post object. Our component needs to check 
for that and handle it by showing a "Post not found!" message on the page. 

Assuming we do have the right post object in the store, useSelector will return that, and we 
can use it to render the title and content of the post in the page. 

features/posts/SinglePostPage.js 

import React from 'react' 
import { useSelector } from 'react-redux' 
 
export const SinglePostPage = ({ match }) => { 
  const { postId } = match.params 
 
  const post = useSelector(state => 
    state.posts.find(post => post.id === postId) 
  ) 
 
  if (!post) { 

15 



JavaScript

 

    return ( 
      <section> 
        <h2>Post not found!</h2> 
      </section> 
    ) 
  } 
 
  return ( 
    <section> 
      <article className="post"> 
        <h2>{post.title}</h2> 
        <p className="post-content">{post.content}</p> 
      </article> 
    </section> 
  ) 
} 

 
You might notice that this looks fairly similar to the logic we have in the body of our 
<PostsList> component, where we loop over the whole posts array to show post excerpts on 
the main feed. We could try to extract a Post component that could be used in both places, but 
there are already some differences in how we're showing a post excerpt and the whole post. It's 
usually better to keep writing things separately for a while even if there's some duplication, and 
then we can decide later if the different sections of code are similar enough that we can really 
extract a reusable component. 

Adding the Single Post Route 

Now that we have a <SinglePostPage> component, we can define a route to show it, and add 
links to each post in the front page feed. 

We'll import SinglePostPage in App.js, and add the route: 

App.js 

import { PostsList } from './features/posts/PostsList' 
import { AddPostForm } from './features/posts/AddPostForm' 
import { SinglePostPage } from './features/posts/SinglePostPage' 

16 



JavaScript

 

 
function App() { 
  return ( 
    <Router> 
      <Navbar /> 
      <div className="App"> 
        <Switch> 
          <Route 
            exact 
            path="/" 
            render={() => ( 
              <React.Fragment> 
                <AddPostForm /> 
                <PostsList /> 
              </React.Fragment> 
            )} 
          /> 
          <Route exact path="/posts/:postId" 
component={SinglePostPage} /> 
          <Redirect to="/" /> 
        </Switch> 
      </div> 
    </Router> 
  ) 
} 

 

Then, in <PostsList>, we’ll update the list rendering logic to include a <Link> that routes to 
that specific post. 

features/posts/PostsList.js 

 

import React from 'react' 
import { useSelector } from 'react-redux' 
import { Link } from 'react-router-dom' 
 

17 



JavaScript

 

export const PostsList = () => { 
  const posts = useSelector(state => state.posts) 
 
  const renderedPosts = posts.map(post => ( 
    <article className="post-excerpt" key={post.id}> 
      <h3>{post.title}</h3> 
      <p className="post-content">{post.content.substring(0, 
100)}</p> 
      <Link to={`/posts/${post.id}`} className="button 
muted-button"> 
        View Post 
      </Link> 
    </article> 
  )) 
 
  return ( 
    <section className="posts-list"> 
      <h2>Posts</h2> 
      {renderedPosts} 
    </section> 
  ) 
} 

 

Since we can now navigate to another page, it would also be helpful to include a link back to the 
main posts page inside of the <Navbar> component: 

app/Navbar.js 

 

import React from 'react' 
 
import { Link } from 'react-router-dom' 
 
export const Navbar = () => { 
  return ( 
    <nav> 

18 



 

      <section> 
        <h1>Redux Essentials Example</h1> 
 
        <div className="navContent"> 
          <div className="navLinks"> 
            <Link to="/">Posts</Link> 
          </div> 
        </div> 
      </section> 
    </nav> 
  ) 
} 

 

Now, you should be able to navigate to individual post pages and back to the main posts page 
with a few clicks. You can also link directly to a post by copying its URL, thanks to React Router. 

Updating Post Entries 

Next, we will add functionality for editing pre-existing posts. As a user, it’s quite annoying to 
finish a task, save your progress, and then realize you made a mistake somewhere, so adding 
edit functionality when applicable is very useful for improving the user experience. 

Let's add a new <EditPostForm> component that has the ability to take an existing post ID, 
read that post from the store, let the user edit the title and post content, and then save the 
changes to update the post in the store. 

First, we need to update our postsSlice to create a new reducer function and an action so that 
the store knows how to actually update posts. 

Inside of the createSlice() call, we should add a new function into the reducers object. 
Remember that the name of this reducer should be a good description of what's happening, 
because we're going to see the reducer name show up as part of the action type string in the 
Redux DevTools whenever this action is dispatched. Our first reducer was called postAdded, so 
let's call this one postUpdated. 

In order to update a post object, we need to know: 

●​ The ID of the post being updated, so that we can find the right post object in the state 

●​ The new title and content fields that the user typed in 

19 



JavaScript

 
Redux action objects are required to have a type field, which is normally a descriptive string, 
and may also contain other fields with more information about what happened. By convention, 
we normally put the additional info in a field called action.payload, but it's up to us to decide 
what the payload field contains - it could be a string, a number, an object, an array, or 
something else. In this case, since we have three pieces of information we need, let's plan on 
having the payload field be an object with the three fields inside of it. That means the action 
object will look like {type: 'posts/postUpdated', payload: {id, title, content}}. 

By default, the action creators generated by createSlice expect you to pass in one argument, 
and that value will be put into the action object as action.payload. So, we can pass an object 
containing those fields as the argument to the postUpdated action creator. 

We also know that the reducer is responsible for determining how the state should actually be 
updated when an action is dispatched. Given that, we should have the reducer find the right 
post object based on the ID, and specifically update the title and content fields in that post. 

Finally, we'll need to export the action creator function that createSlice generated for us, so 
that the UI can dispatch the new postUpdated action when the user saves the post. 

Given all those requirements, here's how our postsSlice definition should look after we're 
done: 

features/posts/postsSlice.js 

const postsSlice = createSlice({ 
  name: 'posts', 
  initialState, 
  reducers: { 
    postAdded(state, action) { 
      state.push(action.payload) 
    }, 
    postUpdated(state, action) { 
      const { id, title, content } = action.payload 
      const existingPost = state.find(post => post.id === id) 
      if (existingPost) { 
        existingPost.title = title 
        existingPost.content = content 
      } 
    } 
  } 

20 



JavaScript

 

}) 
 
export const { postAdded, postUpdated } = postsSlice.actions 
 
export default postsSlice.reducer 

 
The new <EditPostForm> component will look similar to the <AddPostForm>, but the logic 
needs to be a bit different. We need to retrieve the right post object from the store, then use 
that to initialize the state fields in the component so the user can make changes. We'll save the 
changed title and content values back to the store after the user is done. We'll also use React 
Router's history API to switch over to the single post page and show that post. 

The code block for this new component spans the next couple of pages. 

features/posts/EditPostForm.js 

import React, { useState } from 'react' 
import { useDispatch, useSelector } from 'react-redux' 
import { useHistory } from 'react-router-dom' 
 
import { postUpdated } from './postsSlice' 
 
export const EditPostForm = ({ match }) => { 
  const { postId } = match.params 
 
  const post = useSelector(state => 
    state.posts.find(post => post.id === postId) 
  ) 
 
  const [title, setTitle] = useState(post.title) 
  const [content, setContent] = useState(post.content) 
 
  const dispatch = useDispatch() 
  const history = useHistory() 
 
  const onTitleChanged = e => setTitle(e.target.value) 
  const onContentChanged = e => setContent(e.target.value) 

21 



 

 
  const onSavePostClicked = () => { 
    if (title && content) { 
      dispatch(postUpdated({ id: postId, title, content })) 
      history.push(`/posts/${postId}`) 
    } 
  } 
 
  return ( 
    <section> 
      <h2>Edit Post</h2> 
      <form> 
        <label htmlFor="postTitle">Post Title:</label> 
        <input 
          type="text" 
          id="postTitle" 
          name="postTitle" 
          placeholder="What's on your mind?" 
          value={title} 
          onChange={onTitleChanged} 
        /> 
        <label htmlFor="postContent">Content:</label> 
        <textarea 
          id="postContent" 
          name="postContent" 
          value={content} 
          onChange={onContentChanged} 
        /> 
      </form> 
      <button type="button" onClick={onSavePostClicked}> 
        Save Post 
      </button> 
    </section> 
  ) 
} 

 
Like with the SinglePostPage, we’ll need to import EditPostForm into App.js and add a route 
that will render the component with the postId as a route parameter. 

22 



JavaScript

 
App.js 

import { PostsList } from './features/posts/PostsList' 
import { AddPostForm } from './features/posts/AddPostForm' 
import { SinglePostPage } from './features/posts/SinglePostPage' 
import { EditPostForm } from './features/posts/EditPostForm' 
 
function App() { 
  return ( 
    <Router> 
      <Navbar /> 
      <div className="App"> 
        <Switch> 
          <Route 
            exact 
            path="/" 
            render={() => ( 
              <React.Fragment> 
                <AddPostForm /> 
                <PostsList /> 
              </React.Fragment> 
            )} 
          /> 
          <Route exact path="/posts/:postId" 
component={SinglePostPage} /> 
          <Route exact path="/editPost/:postId" 
component={EditPostForm} /> 
          <Redirect to="/" /> 
        </Switch> 
      </div> 
    </Router> 
  ) 
} 

 
We should also add a new link to our SinglePostPage that will route to EditPostForm: 

features/post/SinglePostPage.js 

23 



JavaScript

 

import React from 'react' 
import { useSelector } from 'react-redux' 
import { Link } from 'react-router-dom' 
 
export const SinglePostPage = ({ match }) => { 
  const { postId } = match.params 
 
  const post = useSelector(state => 
    state.posts.find(post => post.id === postId) 
  ) 
 
  if (!post) { 
    return ( 
      <section> 
        <h2>Post not found!</h2> 
      </section> 
    ) 
  } 
 
  return ( 
    <section> 
      <article className="post"> 
        <h2>{post.title}</h2> 
        <p className="post-content">{post.content}</p> 
        <Link to={`/editPost/${post.id}`} className="button"> 
         Edit Post 
       </Link> 
      </article> 
    </section> 
  ) 
} 

 
Preparing Action Payloads 

We just saw that the action creators from createSlice normally expect one argument, which 
becomes action.payload. This simplifies the most common usage pattern, but sometimes we 
need to do more work to prepare the contents of an action object. In the case of our postAdded 
action, we need to generate a unique ID for the new post, and we also need to make sure that 
the payload is an object that looks like {id, title, content}. 

24 



JavaScript

 
Right now, we're generating the ID and creating the payload object in our React component, and 
passing the payload object into postAdded. But, what if we needed to dispatch the same action 
from different components, or the logic for preparing the payload is complicated? We'd have to 
duplicate that logic every time we wanted to dispatch the action, and we're forcing the 
component to know exactly what the payload for this action should look like. 

Fortunately, createSlice lets us define a "prepare callback" function when we write a reducer. 
The "prepare callback" function can take multiple arguments, generate random values like 
unique IDs, and run whatever other synchronous logic is needed to decide what values go into 
the action object. It should then return an object with the payload field inside. The return object 
may also contain a meta field, which can be used to add extra descriptive values to the action, 
and an error field, which should be a boolean indicating whether this action represents some 
kind of an error. 

Inside of the reducers field in createSlice, we can define one of the fields as an object that 
looks like {reducer, prepare}: 

features/posts/postsSlice.js 

const postsSlice = createSlice({ 
  name: 'posts', 
  initialState, 
  reducers: { 
    postAdded: { 
      reducer(state, action) { 
        state.push(action.payload) 
      }, 
      prepare(title, content) { 
        return { 
          payload: { 
            id: nanoid(), 
            title, 
            content 
          } 
        } 
      } 
    } 
    // other reducers here 
  } 
}) 

25 



JavaScript

JavaScript

 
 
Now our component doesn't have to worry about what the payload object looks like - the action 
creator will take care of putting it together the right way. So, we can update the component so 
that it passes in title and content as arguments when it dispatches postAdded: 

features/posts/AddPostForm.js 

const onSavePostClicked = () => { 
  if (title && content) { 
    dispatch(postAdded(title, content)) 
    setTitle('') 
    setContent('') 
  } 
} 

 
This leaves our posts feature in a good place for now, but real applications often have many 
different features with many different slices of state. So far, we only have one. 

You can’t have a social media app without getting other people involved, so let’s add the ability 
to keep track of a list of users in our app, and update the post-related functionality to make use 
of that data. 

This new “users” feature will give us both a new feature and a new slice of state to make use of. 

Adding a Users Slice 

Since the concept of "users" is different from the concept of "posts", we want to keep the code 
and data for the users separated from the code and data for posts. We'll add a new 
features/users folder, and put a usersSlice file in there. Like with the posts slice, for now 
we'll add some initial entries so that we have data to work with. 

features/users/usersSlice.js 

import { createSlice } from '@reduxjs/toolkit' 
 
const initialState = [ 
  { id: '0', name: 'Tianna Jenkins' }, 
  { id: '1', name: 'Kevin Grant' }, 

26 



JavaScript

 

  { id: '2', name: 'Madison Price' } 
] 
 
const usersSlice = createSlice({ 
  name: 'users', 
  initialState, 
  reducers: {} 
}) 
 
export default usersSlice.reducer 

 
For now, we don't need to actually update the data, so we'll leave the reducers field as an 
empty object. We'll come back to this in a later section. As before, we'll import the 
usersReducer into our store file and add it to the store setup: 

app/store.js 

import { configureStore } from '@reduxjs/toolkit' 
import postsReducer from '../features/posts/postsSlice' 
import usersReducer from '../features/users/usersSlice' 
 
export default configureStore({ 
  reducer: { 
    posts: postsReducer, 
    users: usersReducer 
  } 
}) 

 
Adding Authors for Posts 

Every post in our app was written by one of our users, and every time we add a new post, we 
should keep track of which user wrote that post. In a real app, we'd have some sort of a 
state.currentUser field that keeps track of the current logged-in user, and use that 
information whenever they add a post. 

To keep things simpler for this example, we'll update our <AddPostForm> component so that we 
can select a user from a dropdown list, and we'll include that user's ID as part of the post. Once 

27 



JavaScript

 
our post objects have a user ID in them, we can use that to look up the user's name and show it 
in each individual post in the UI. 

First, we need to update our postAdded action creator to accept a user ID as an argument, and 
include that in the action. We'll also update the existing post entries in initialState to have a 
post.user field with one of the example user IDs. 

features/posts/postsSlice.js 

const postsSlice = createSlice({ 
  name: 'posts', 
  initialState, 
  reducers: { 
    postAdded: { 
      reducer(state, action) { 
        state.push(action.payload) 
      }, 
      prepare(title, content, userId) { 
        return { 
          payload: { 
            id: nanoid(), 
            title, 
            content, 
            user: userId 
          } 
        } 
      } 
    } 
    // other reducers 
  } 
}) 

 

Now, in our <AddPostForm>, we can read the list of users from the store with useSelector and 
show them as a dropdown. We'll then take the ID of the selected user and pass that to the 
postAdded action creator. While we're at it, we can add a bit of validation logic to our form so 
that the user can only click the "Save Post" button if the title and content inputs have some 
actual text in them: 

features/posts/AddPostForm.js 

28 



JavaScript

 

import React, { useState } from 'react' 
import { useDispatch, useSelector } from 'react-redux' 
 
import { postAdded } from './postsSlice' 
 
export const AddPostForm = () => { 
  const [title, setTitle] = useState('') 
  const [content, setContent] = useState('') 
  const [userId, setUserId] = useState('') 
 
  const dispatch = useDispatch() 
 
  const users = useSelector(state => state.users) 
 
  const onTitleChanged = e => setTitle(e.target.value) 
  const onContentChanged = e => setContent(e.target.value) 
  const onAuthorChanged = e => setUserId(e.target.value) 
 
  const onSavePostClicked = () => { 
    if (title && content) { 
      dispatch(postAdded(title, content, userId)) 
      setTitle('') 
      setContent('') 
    } 
  } 
 
  const canSave = Boolean(title) && Boolean(content) && 
Boolean(userId) 
 
  const usersOptions = users.map(user => ( 
    <option key={user.id} value={user.id}> 
      {user.name} 
    </option> 
  )) 
 
  return ( 
    <section> 
      <h2>Add a New Post</h2> 
      <form> 

29 



 

        <label htmlFor="postTitle">Post Title:</label> 
        <input 
          type="text" 
          id="postTitle" 
          name="postTitle" 
          placeholder="What's on your mind?" 
          value={title} 
          onChange={onTitleChanged} 
        /> 
        <label htmlFor="postAuthor">Author:</label> 
        <select id="postAuthor" value={userId} 
onChange={onAuthorChanged}> 
          <option value=""></option> 
          {usersOptions} 
        </select> 
        <label htmlFor="postContent">Content:</label> 
        <textarea 
          id="postContent" 
          name="postContent" 
          value={content} 
          onChange={onContentChanged} 
        /> 
        <button type="button" onClick={onSavePostClicked} 
disabled={!canSave}> 
          Save Post 
        </button> 
      </form> 
    </section> 
  ) 
} 

 
Now, we need a way to show the name of the post's author inside of our post list items and 
<SinglePostPage>. Since we want to show this same kind of info in more than one place, we 
can make a PostAuthor component that takes a user ID as a prop, looks up the right user 
object, and formats the user's name: 

features/posts/PostAuthor.js 

30 



JavaScript

 

import React from 'react' 
import { useSelector } from 'react-redux' 
 
export const PostAuthor = ({ userId }) => { 
  const author = useSelector(state => 
    state.users.find(user => user.id === userId) 
  ) 
 
  return <span>by {author ? author.name : 'Unknown 
author'}</span> 
} 

 
Notice that we're following the same pattern in each of our components as we go. Any 
component that needs to read data from the Redux store can use the useSelector hook, and 
extract the specific pieces of data that it needs. Also, many components can access the same 
data in the Redux store at the same time. 

We can now import the PostAuthor component into both PostsList.js and 
SinglePostPage.js, and render it as <PostAuthor userId={post.user} />, and every time 
we add a post entry, the selected user's name should show up inside of the rendered post. 

Take a moment to accomplish those tasks before moving forward. 

Storing Dates for Posts 

Social media feeds are typically sorted by when the post was created, and show us the post 
creation time as a relative description like "5 hours ago". In order to do that, we need to start 
tracking a date field for our post entries. 

Like with the post.user field, we'll update our postAdded prepare callback to make sure that 
post.date is always included when the action is dispatched. However, it's not another 
parameter that will be passed in. We want to always use the exact timestamp from when the 
action is dispatched, so we'll let the prepare callback handle that itself. 

Since we can't just put a Date class instance into the Redux store, we'll track the post.date 
value as a timestamp string: 

features/posts/postsSlice.js 

31 



JavaScript

JavaScript

 

    postAdded: { 
      reducer(state, action) { 
        state.push(action.payload) 
      }, 
      prepare(title, content, userId) { 
        return { 
          payload: { 
            id: nanoid(), 
            date: new Date().toISOString(), 
            title, 
            content, 
            user: userId, 
          }, 
        } 
      }, 
    }, 

 
Like with post authors, we need to show the relative timestamp description in both our 
<PostsList> and <SinglePostPage> components. We'll add a <TimeAgo> component to 
handle formatting a timestamp string as a relative description. Libraries like date-fns have 
some useful utility functions for parsing and formatting dates, which we can use here: 

features/posts/TimeAgo.js 

import React from 'react' 
import { parseISO, formatDistanceToNow } from 'date-fns' 
 
export const TimeAgo = ({ timestamp }) => { 
  let timeAgo = '' 
  if (timestamp) { 
    const date = parseISO(timestamp) 
    const timePeriod = formatDistanceToNow(date) 
    timeAgo = `${timePeriod} ago` 
  } 
 
  return ( 

32 



JavaScript

 

    <span title={timestamp}> 
      &nbsp; <i>{timeAgo}</i> 
    </span> 
  ) 
} 

 
Sorting the Posts List 

Our <PostsList> is currently showing all the posts in the same order the posts are kept in the 
Redux store. Our example has the oldest post first, and any time we add a new post, it gets 
added to the end of the posts array. That means the newest post is always at the bottom of the 
page. 

Typically, social media feeds show the newest posts first, and you scroll down to see older 
posts. Even though the data is being kept oldest-first in the store, we can reorder the data in our 
<PostsList> component so that the newest post is first. In theory, since we know that the 
state.posts array is already sorted, we could just reverse the list. But, it's better to go ahead 
and sort it ourselves just to be sure. 

Since array.sort() mutates the existing array, we need to make a copy of state.posts and 
sort that copy. We know that our post.date fields are being kept as date timestamp strings, 
and we can directly compare those to sort the posts in the right order. 

features/posts/PostsList.js 

// Sort posts in reverse chronological order by datetime string 
const orderedPosts = posts.slice().sort((a, b) => 
b.date.localeCompare(a.date)) 
 
const renderedPosts = orderedPosts.map(post => { 
  return ( 
    <article className="post-excerpt" key={post.id}> 
      <h3>{post.title}</h3> 
      <div> 
        <PostAuthor userId={post.user} /> 
        <TimeAgo timestamp={post.date} /> 
      </div> 

33 



JavaScript

 

      <p className="post-content">{post.content.substring(0, 
100)}</p> 
      <Link to={`/posts/${post.id}`} className="button 
muted-button"> 
        View Post 
      </Link> 
    </article> 
  ) 
}) 

 
We also need to add the date field to initialState in postsSlice.js. We'll use date-fns 
here again to subtract minutes from the current date/time so they differ from each other. 

features/posts/postsSlice.js 

import { createSlice, nanoid } from '@reduxjs/toolkit' 
import { sub } from 'date-fns' 
 
const initialState = [ 
  { 
    // omitted fields 
    content: 'Hello!', 
    date: sub(new Date(), { minutes: 10 }).toISOString() 
  }, 
  { 
    // omitted fields 
    content: 'More text', 
    date: sub(new Date(), { minutes: 5 }).toISOString() 
  } 
] 

 
Post Reaction Buttons 

We have one more new feature to add for this section. 

We'll add a row of emoji reaction buttons at the bottom of each post in <PostsList> and 
<SinglePostPage>. Every time a user clicks one of the reaction buttons, we'll need to update a 

34 



JavaScript

 
matching counter field for that post in the Redux store. Since the reaction counter data is in the 
Redux store, switching between different parts of the app should consistently show the same 
values in any component that uses that data. 

Like with post authors and timestamps, we want to use this everywhere we show posts, so we'll 
create a <ReactionButtons> component that takes a post as a prop. We'll start by just 
showing the buttons inside, with the current reaction counts for each button: 

features/posts/ReactionButtons.js 

import React from 'react' 
 
const reactionEmoji = { 
  thumbsUp: '👍', 
  hooray: '🎉', 
  heart: '❤️', 
  rocket: '🚀', 
  eyes: '👀' 
} 
 
export const ReactionButtons = ({ post }) => { 
  const reactionButtons = Object.entries(reactionEmoji).map(([name, 
emoji]) => { 
    return ( 
      <button key={name} type="button" className="muted-button 
reaction-button"> 
        {emoji} {post.reactions[name]} 
      </button> 
    ) 
  }) 
 
  return <div>{reactionButtons}</div> 
} 

 
We don't yet have a post.reactions field in our data, so we'll need to update the 
initialState post objects and our postAdded prepare callback function to make sure that 
every post has that data inside, like reactions: {thumbsUp: 0, hooray: 0, heart: 0, 
rocket: 0, eyes: 0}. Take a moment to do so before continuing. 

Now, we can define a new reducer that will handle updating the reaction count for a post when a 
user clicks the reaction button. 

35 



JavaScript

 
Like with editing posts, we need to know the ID of the post, and which reaction button the user 
clicked on. We'll have our action.payload be an object that looks like {id, reaction}. The 
reducer can then find the right post object, and update the correct reactions field. 

features/posts/postsSlice.js 

const postsSlice = createSlice({ 
  name: 'posts', 
  initialState, 
  reducers: { 
    reactionAdded(state, action) { 
      const { postId, reaction } = action.payload 
      const existingPost = state.find(post => post.id === postId) 
      if (existingPost) { 
        existingPost.reactions[reaction]++ 
      } 
    } 
    // other reducers 
  } 
}) 
 
export const { postAdded, postUpdated, reactionAdded } = 
postsSlice.actions 

 
As we've seen already, createSlice lets us write "mutating" logic in our reducers. If we weren't 
using createSlice and the Immer library, the line existingPost.reactions[reaction]++ 
would indeed mutate the existing post.reactions object, and this would probably cause bugs 
elsewhere in our app because we didn't follow the rules of reducers. Since we are using 
createSlice, we can write this more complex update logic in a simpler way, and let Immer do 
the work of turning this code into a safe immutable update. 

Notice that our action object just contains the minimum amount of information needed to 
describe what happened. We know which post we need to update, and which reaction name 
was clicked on. We could have calculated the new reaction counter value and put that in the 
action, but it's always better to keep the action objects as small as possible, and do the 
state update calculations in the reducer. This also means that reducers can contain as much 
logic as necessary to calculate the new state. 

Our last step is to update the <ReactionButtons> component to dispatch the reactionAdded 
action when the user clicks a button: 

features/posts/ReactionButtons.js 

36 



JavaScript

 

import React from 'react' 
import { useDispatch } from 'react-redux' 
 
import { reactionAdded } from './postsSlice' 
 
const reactionEmoji = { 
  thumbsUp: '👍', 
  hooray: '🎉', 
  heart: '❤️', 
  rocket: '🚀', 
  eyes: '👀' 
} 
 
export const ReactionButtons = ({ post }) => { 
  const dispatch = useDispatch() 
 
  const reactionButtons = Object.entries(reactionEmoji).map(([name, 
emoji]) => { 
    return ( 
      <button 
        key={name} 
        type="button" 
        className="muted-button reaction-button" 
        onClick={() => 
          dispatch(reactionAdded({ postId: post.id, reaction: name })) 
        } 
      > 
        {emoji} {post.reactions[name]} 
      </button> 
    ) 
  }) 
 
  return <div>{reactionButtons}</div> 
} 

 
If you haven’t already done so, add your new <ReactionButtons> component to your 
<PostsList> and make sure the buttons are working properly. You can explore your actions 
and how the components respond to them via the Redux DevTools, and take a moment to 
address any errors that may have occurred during this part of the process. 

37 



 
Part Two Recap 

There are some important things to remember from this section: 

●​ Any React component can use data from the Redux store as needed. 
○​ Any component can read any data that is in the Redux store. 
○​ Multiple components can read the same data, even at the same time. 
○​ Components should extract the smallest amount of data they need to render 

themselves. 
○​ Components can combine values from props, state, and the Redux store to 

determine what UI they need to render. They can read multiple pieces of data 
from the store, and reshape the data as needed for display. 

○​ Any component can dispatch actions to cause state updates. 
●​ Redux action creators can prepare action objects with the right contents. 

○​ createSlice and createAction can accept a "prepare callback" that returns 
the action payload. 

○​ Unique IDs and other random values should be put in the action, not calculated in 
the reducer. 

●​ Reducers should contain the actual state update logic. 
○​ Reducers can contain whatever logic is needed to calculate the next state. 
○​ Action objects should contain just enough info to describe what happened. 

Here’s what your application should look like so far: Part Two Completed CodeSandbox. 

Part Three Preview 

So far, we’ve only been using data that has existed in our initial state or that was added by the 
user. In the next section, we’ll explore adding external data to the application through use of a 
server API.  

 

Part 3: Data Fetching 
Our application currently uses a local state that only updates with interaction from the user. In 
the case of almost every web application, the application’s front-end will need to work with some 
server back-end through the use of an API. 

In this part of this lab, we’ll convert our application to fetch the posts and users data from an 
API, and add new posts by saving them to the API. 

To keep this project isolated but realistic, the initial setup already includes a fake in-memory 
REST API for our data. The API uses /fakeApi as the base URL for the endpoints, and 

38 

https://codesandbox.io/s/redux-state-management-2-vb9m3q


JavaScript

 
supports the typical GET/POST/PUT/DELETE HTTP methods for /fakeApi/posts, 
/fakeApi/users, and fakeApi/notifications. It's defined in src/api/server.js. 

The project also includes a small HTTP API client object that exposes client.get() and 
client.post() methods, similar to popular HTTP libraries like axios. It's defined in 
src/api/client.js. 

We'll use the client object to make HTTP calls to our fake REST API for this section. 

Thunks and Async Logic 

In this section, we’ll be using the createAsyncThunk API from RTK. If you are unfamiliar with 
thunks or their usage in Redux, take some time to review the Redux: Writing Logic with Thunks 
usage guide page. 

Loading Posts 

So far, our postsSlice has used some hard-coded sample data as its initial state. We're going 
to switch that to start with an empty array of posts instead, and then fetch a list of posts from the 
server. In order to do that, we're going to have to change the structure of the state in our 
postsSlice, so that we can keep track of the current state of the API request. 

Right now, the postsSlice state is a single array of posts. We need to change that to be an 
object that has the posts array, plus the loading state fields. 

Meanwhile, the UI components like <PostsList> are trying to read posts from state.posts in 
their useSelector hooks, assuming that field is an array. We need to change those locations 
also to match the new data. 

It would be nice if we didn't have to keep rewriting our components every time we made a 
change to the data format in our reducers. One way to avoid this is to define reusable selector 
functions in the slice files, and have the components use those selectors to extract the data they 
need instead of repeating the selector logic in each component. That way, if we do change our 
state structure again, we only need to update the code in the slice file. 

The <PostsList> component needs to read a list of all the posts, and the <SinglePostPage> 
and <EditPostForm> components need to look up a single post by its ID. Let's export two small 
selector functions from postsSlice.js to cover those cases: 

features/posts/postsSlice.js 

const postsSlice = createSlice(/* omitted slice code */) 

39 

https://redux.js.org/usage/writing-logic-thunks


JavaScript

JavaScript

 

 
export const { postAdded, postUpdated, reactionAdded } = 
postsSlice.actions 
 
export default postsSlice.reducer 
 
export const selectAllPosts = state => state.posts 
 
export const selectPostById = (state, postId) => 
  state.posts.find(post => post.id === postId) 

 
Note that the state parameter for these selector functions is the root Redux state object, as it 
was for the inlined anonymous selectors we wrote directly inside of useSelector. 

We can then use them in the components: 

features/posts/PostsList.js 

// omitted imports 
import { selectAllPosts } from './postsSlice' 
 
export const PostsList = () => { 
  const posts = useSelector(selectAllPosts) 
  // omitted component contents 
} 

 
features/posts/SinglePostPage.js 

// omitted imports 
import { selectPostById } from './postsSlice' 
 
export const SinglePostPage = ({ match }) => { 
  const { postId } = match.params 
 
  const post = useSelector(state => selectPostById(state, postId)) 

40 



JavaScript

 

  // omitted component logic 
} 

 
features/posts/EditPostForm.js 

// omitted imports 
import { postUpdated, selectPostById } from './postsSlice' 
 
export const EditPostForm = ({ match }) => { 
  const { postId } = match.params 
 
  const post = useSelector(state => selectPostById(state, postId)) 
  // omitted component logic 
} 

 
It's often a good idea to encapsulate data lookups by writing reusable selectors, as 
above. You can also create "memoized" selectors that can help improve performance, which 
we'll look at in the next part of this project. 

However, like any abstraction, this is not something you should do all the time, everywhere. 
Writing selectors means more code to understand and maintain. Don't feel like you need to 
write selectors for every single field of your state. Try starting without any selectors, and 
add some later when you find yourself looking up the same values in many parts of your 
application code. 

Loading State for Requests 

When we make an API call, we can view its progress as a small state machine that can be in 
one of four possible states: 

●​ The request hasn't started yet 
●​ The request is in progress 
●​ The request succeeded, and we now have the data we need 
●​ The request failed, and there's probably an error message 

We could track that information using some booleans, like isLoading: true, but it's better to 
track these states as a single enum value. A good pattern for this is to have a state section that 
looks like this: 

41 



JavaScript

JavaScript

 

{ 
  // Multiple possible status enum values 
  status: 'idle' | 'loading' | 'succeeded' | 'failed', 
  error: string | null 
} 

 
These fields would exist alongside whatever actual data is being stored. 

We can use this information to decide what to show in our UI as the request progresses, and 
also add logic in our reducers to prevent cases like loading data twice. 

Let's update our postsSlice to use this pattern to track loading state for a "fetch posts" 
request. We'll switch our state from being an array of posts by itself, to look like {posts, 
status, error}. We'll also remove the old sample post entries from our initial state. As part of 
this change, we also need to change any uses of state as an array to be state.posts instead, 
because the array is now one level deeper: 

features/posts/postsSlice.js 

import { createSlice, nanoid } from '@reduxjs/toolkit' 
 
const initialState = { 
  posts: [], 
  status: 'idle', 
  error: null 
} 
 
const postsSlice = createSlice({ 
  name: 'posts', 
  initialState, 
  reducers: { 
    postAdded: { 
      reducer(state, action) { 
        state.posts.push(action.payload) 
      }, 
      prepare(title, content, userId) { 
        // omit prepare logic 
      } 
    }, 

42 



 

    reactionAdded(state, action) { 
      const { postId, reaction } = action.payload 
      const existingPost = state.posts.find(post => post.id === postId) 
      if (existingPost) { 
        existingPost.reactions[reaction]++ 
      } 
    }, 
    postUpdated(state, action) { 
      const { id, title, content } = action.payload 
      const existingPost = state.posts.find(post => post.id === id) 
      if (existingPost) { 
        existingPost.title = title 
        existingPost.content = content 
      } 
    } 
  } 
}) 
 
export const { postAdded, postUpdated, reactionAdded } = 
postsSlice.actions 
 
export default postsSlice.reducer 
 
export const selectAllPosts = state => state.posts.posts 
 
export const selectPostById = (state, postId) => 
  state.posts.posts.find(post => post.id === postId) 

 
Fetching Data with createAsyncThunk 

Redux Toolkit's createAsyncThunk API generates thunks that automatically dispatch those 
"start/success/failure" actions for you. 

Let's start by adding a thunk that will make an AJAX call to retrieve a list of posts. We'll import 
the client utility from the src/api folder, and use that to make a request to our API at 
'/fakeApi/posts'. 

features/posts/postsSlice.js 

43 



JavaScript

 

import { createSlice, nanoid, createAsyncThunk } from '@reduxjs/toolkit' 
import { client } from '../../api/client' 
 
const initialState = { 
  posts: [], 
  status: 'idle', 
  error: null 
} 
 
export const fetchPosts = createAsyncThunk('posts/fetchPosts', async () 
=> { 
  const response = await client.get('/fakeApi/posts') 
  return response.data 
}) 

 
createAsyncThunk accepts two arguments: 

●​ A string that will be used as the prefix for the generated action types. 
●​ A "payload creator" callback function that should return a Promise containing some 

data, or a rejected Promise with an error. 

The payload creator will usually make an AJAX call of some kind, and can either return the 
Promise from the AJAX call directly, or extract some data from the API response and return 
that. We typically write this using the JS async/await syntax, which lets us write functions that 
use Promises while using standard try/catch logic instead of somePromise.then() chains. 

In this case, we pass in 'posts/fetchPosts' as the action type prefix. Our payload creation 
callback waits for the API call to return a response. The response object looks like {data: []}, 
and we want our dispatched Redux action to have a payload that is just the array of posts. So, 
we extract response.data, and return that from the callback. 

If we try calling dispatch(fetchPosts()), the fetchPosts thunk will first dispatch an action 
type of 'posts/fetchPosts/pending': 

 

44 



JavaScript

 
We can listen for this action in our reducer and mark the request status as 'loading'. 

Once the Promise resolves, the fetchPosts thunk takes the response.data array we returned 
from the callback, and dispatches a 'posts/fetchPosts/fulfilled' action containing the 
posts array as action.payload: 

 

Dispatching Thunks from Components 

Now, we can update our <PostsList> component to actually fetch this data automatically. 

We’ll import the fetchPosts thunk into the component. Like all of our other action creators, we 
have to dispatch it, so we'll also need to add the useDispatch hook. Since we want to fetch this 
data when <PostsList> mounts, we need to import the React useEffect hook: 

features/posts/PostsList.js 

import React, { useEffect } from 'react' 
import { useSelector, useDispatch } from 'react-redux' 
// omitted other imports 
import { selectAllPosts, fetchPosts } from './postsSlice' 
 
export const PostsList = () => { 
  const dispatch = useDispatch() 
  const posts = useSelector(selectAllPosts) 
 
  const postStatus = useSelector(state => state.posts.status) 
 

45 



 

  useEffect(() => { 
    if (postStatus === 'idle') { 
      dispatch(fetchPosts()) 
    } 
  }, [postStatus, dispatch]) 
 
  // omitted rendering logic 
} 

 
It's important that we only try to fetch the list of posts once. If we do it every time the 
<PostsList> component renders, or is re-created because we've switched between views, we 
might end up fetching the posts several times. We can use the posts.status enum to help 
decide if we need to actually start fetching, by selecting that into the component and only 
starting the fetch if the status is 'idle'. 

Reducers and Loading Actions 

We need to handle both these actions in our reducers. This requires a bit deeper look at the 
createSlice API we've been using. 

We've already seen that createSlice will generate an action creator for every reducer function 
we define in the reducers field, and that the generated action types include the name of the 
slice. However, there are times when a slice reducer needs to respond to other actions that 
weren't defined as part of this slice's reducers field. We can do that using the slice 
extraReducers field instead. 

The extraReducers option should be a function that receives a parameter called builder. The 
builder object provides methods that let us define additional case reducers that will run in 
response to actions defined outside of the slice. We'll use builder.addCase(actionCreator, 
reducer) to handle each of the actions dispatched by our async thunks. 

In this case, we need to listen for the "pending" and "fulfilled" action types dispatched by our 
fetchPosts thunk. Those action creators are attached to our actual fetchPost function, and 
we can pass those to extraReducers to listen for those actions: 

features/posts/postsSlice.js 

46 



JavaScript

 

const postsSlice = createSlice({ 
  name: 'posts', 
  initialState, 
  reducers: { /* omitted existing reducers here */ }, 
  extraReducers(builder) { 
    builder 
      .addCase(fetchPosts.pending, (state, action) => { 
        state.status = 'loading' 
      }) 
      .addCase(fetchPosts.fulfilled, (state, action) => { 
        state.status = 'succeeded' 
        state.posts = state.posts.concat(action.payload) 
      }) 
      .addCase(fetchPosts.rejected, (state, action) => { 
        state.status = 'failed' 
        state.error = action.error.message 
      }) 
  } 
}) 

 

This handles all three action types that could be dispatched by the thunk, based on the Promise 
we returned: 

●​ When the request starts, we'll set the status enum to 'loading'. 
●​ If the request succeeds, we mark the status as 'succeeded', and add the fetched 

posts to state.posts. 
●​ If the request fails, we'll mark the status as 'failed', and save any error message into 

the state so we can display it. 

Displaying Loading State 

Our <PostsList> component is already checking for any updates to the posts that are stored in 
Redux, and re-rendering itself any time that list changes. So, if we refresh the page, we should 
see a random set of posts from our fake API show up on screen. 

The fake API we're using returns data immediately. However, a real API call will probably take 
some time to return a response. It's usually a good idea to show some kind of "loading..." 
indicator in the UI so the user knows we're waiting for data. 

We can update our <PostsList> to show a different bit of UI based on the 
state.posts.status enum: a spinner if we're loading, an error message if it failed, or the 

47 



JavaScript

 
actual posts list if we have the data. While we're at it, this is probably a good time to extract a 
<PostExcerpt> component to encapsulate the rendering for one item in the list as well. 

The result might look like this: 

features/posts/PostsList.js 

import { Spinner } from '../../components/Spinner' 
import { PostAuthor } from './PostAuthor' 
import { TimeAgo } from './TimeAgo' 
import { ReactionButtons } from './ReactionButtons' 
import { selectAllPosts, fetchPosts } from './postsSlice' 
 
const PostExcerpt = ({ post }) => { 
  return ( 
    <article className="post-excerpt"> 
      <h3>{post.title}</h3> 
      <div> 
        <PostAuthor userId={post.user} /> 
        <TimeAgo timestamp={post.date} /> 
      </div> 
      <p className="post-content">{post.content.substring(0, 100)}</p> 
 
      <ReactionButtons post={post} /> 
      <Link to={`/posts/${post.id}`} className="button muted-button"> 
        View Post 
      </Link> 
    </article> 
  ) 
} 
 
export const PostsList = () => { 
  const dispatch = useDispatch() 
  const posts = useSelector(selectAllPosts) 
 
  const postStatus = useSelector(state => state.posts.status) 
  const error = useSelector(state => state.posts.error) 
 
  useEffect(() => { 
    if (postStatus === 'idle') { 
      dispatch(fetchPosts()) 
    } 
  }, [postStatus, dispatch]) 

48 



JavaScript

 

 
  let content 
 
  if (postStatus === 'loading') { 
    content = <Spinner text="Loading..." /> 
  } else if (postStatus === 'succeeded') { 
    // Sort posts in reverse chronological order by datetime string 
    const orderedPosts = posts 
      .slice() 
      .sort((a, b) => b.date.localeCompare(a.date)) 
 
    content = orderedPosts.map(post => ( 
      <PostExcerpt key={post.id} post={post} /> 
    )) 
  } else if (postStatus === 'failed') { 
    content = <div>{error}</div> 
  } 
 
  // omitted return 

 
Loading Users 

We're now fetching and displaying our list of posts. But, if we look at the posts, there's a 
problem: they all now say "Unknown author" as the authors. This is because the post entries are 
being randomly generated by the fake API server, which also randomly generates a set of fake 
users every time we reload the page. We need to update our users slice to fetch those users 
when the application starts. 

Like last time, we'll create another async thunk to get the users from the API and return them, 
then handle the fulfilled action in the extraReducers slice field. We'll skip worrying about 
loading state for now: 

features/users/usersSlice.js 

import { createSlice, createAsyncThunk } from '@reduxjs/toolkit' 
import { client } from '../../api/client' 
 
const initialState = [] 
 

49 



JavaScript

 

export const fetchUsers = createAsyncThunk('users/fetchUsers', 
async () => { 
  const response = await client.get('/fakeApi/users') 
  return response.data 
}) 
 
const usersSlice = createSlice({ 
  name: 'users', 
  initialState, 
  reducers: {}, 
  extraReducers(builder) { 
    builder.addCase(fetchUsers.fulfilled, (state, action) => { 
      return action.payload 
    }) 
  } 
}) 
 
export default usersSlice.reducer 

 
You may have noticed that this time the case reducer isn't using the state variable at all. 
Instead, we're returning the action.payload directly. Immer lets us update state in two ways: 
either mutating the existing state value, or returning a new result. If we return a new value, that 
will replace the existing state completely with whatever we return. 

In this case, the initial state was an empty array, and we probably could have done 
state.push(...action.payload) to mutate it. In our case, we really want to replace the list of 
users with whatever the server returned, and this avoids any chance of accidentally duplicating 
the list of users in state. 

We only need to fetch the list of users once, and we want to do it right when the application 
starts. We can do that in our index.js file, and directly dispatch the fetchUsers thunk 
because we have the store right there: 

index.js 

// omitted other imports 
 

50 



 

import store from './app/store' 
import { fetchUsers } from './features/users/usersSlice' 
 
import { worker } from './api/server' 
 
async function main() { 
  // Start our mock API server 
  await worker.start({ onUnhandledRequest: 'bypass' }) 
 
  store.dispatch(fetchUsers()) 
 
  ReactDOM.render( 
    <React.StrictMode> 
      <Provider store={store}> 
        <App /> 
      </Provider> 
    </React.StrictMode>, 
    document.getElementById('root') 
  ) 
} 
main() 

 
Adding New Posts 

We have one more step for this section. When we add a new post from the <AddPostForm>, 
that post is only getting added to the Redux store inside our app. We need to actually make an 
API call that will create the new post entry in our fake API server instead, so that it's "saved." 
Since this is a fake API, the new post won't persist if we reload the page, but if we had a real 
backend server it would be available next time we reload. 

We can use createAsyncThunk to help with sending data, not just fetching it. We'll create a 
thunk that accepts the values from our <AddPostForm> as an argument, and makes an HTTP 
POST call to the fake API to save the data. 

In the process, we're going to change how we work with the new post object in our reducers. 
Currently, our postsSlice is creating a new post object in the prepare callback for postAdded, 
and generating a new unique ID for that post. In most apps that save data to a server, the server 
will take care of generating unique IDs and filling out any extra fields, and will usually return the 
completed data in its response. So, we can send a request body like { title, content, 

51 



JavaScript

 
user: userId } to the server, and then take the complete post object it sends back and add it 
to our postsSlice state. 

features/posts/postsSlice.js 

export const addNewPost = createAsyncThunk( 
  'posts/addNewPost', 
  // Payload creator receives partial `{title, content, user}` object 
  async initialPost => { 
    // We send the initial data to the fake API server 
    const response = await client.post('/fakeApi/posts', initialPost) 
    // The response includes the complete post, including unique ID 
    return response.data 
  } 
) 
 
const postsSlice = createSlice({ 
  name: 'posts', 
  initialState, 
  reducers: { 
    // The existing `postAdded` reducer & prepare callback were deleted 
    reactionAdded(state, action) {}, // omitted logic 
    postUpdated(state, action) {} // omitted logic 
  }, 
  extraReducers(builder) { 
    // omitted posts loading reducers 
    builder.addCase(addNewPost.fulfilled, (state, action) => { 
      // We can directly add the new post object to our posts array 
      state.posts.push(action.payload) 
    }) 
  } 
}) 

 
Checking Thunk Results in Components 

Finally, we'll update <AddPostForm> to dispatch the addNewPost thunk instead of the old 
postAdded action. Since this is another API call to the server, it will take some time and could 
fail. The addNewPost() thunk will automatically dispatch its pending/fulfilled/rejected 
actions to the Redux store, which we're already handling. We could track the request status in 
postsSlice using a second loading enum if we wanted to, but for this example let's keep the 
loading state tracking limited to the component. 

52 



JavaScript

 
It would be good if we can at least disable the "Save Post" button while we're waiting for the 
request, so the user can't accidentally try to save a post twice. If the request fails, we might also 
want to show an error message here in the form, or perhaps just log it to the console. 

We can have our component logic wait for the async thunk to finish, and check the result when 
it's done: 

features/posts/AddPostForm.js 

import React, { useState } from 'react' 
import { useDispatch, useSelector } from 'react-redux' 
 
import { addNewPost } from './postsSlice' 
 
export const AddPostForm = () => { 
  const [title, setTitle] = useState('') 
  const [content, setContent] = useState('') 
  const [userId, setUserId] = useState('') 
  const [addRequestStatus, setAddRequestStatus] = useState('idle') 
 
  // omitted useSelectors and change handlers 
 
  const canSave = 
    [title, content, userId].every(Boolean) && addRequestStatus === 
'idle' 
 
  const onSavePostClicked = async () => { 
    if (canSave) { 
      try { 
        setAddRequestStatus('pending') 
        await dispatch(addNewPost({ title, content, user: userId 
})).unwrap() 
        setTitle('') 
        setContent('') 
        setUserId('') 
      } catch (err) { 
        console.error('Failed to save the post: ', err) 
      } finally { 
        setAddRequestStatus('idle') 
      } 
    } 
  } 
 

53 



 

  // omitted rendering logic 
} 

 
We can add a loading status enum field as a React useState hook, similar to how we're 
tracking loading state in postsSlice for fetching posts. In this case, we just want to know if the 
request is in progress or not. 

When we call dispatch(addNewPost()), the async thunk returns a Promise from dispatch. 
We can await that promise here to know when the thunk has finished its request. However, we 
don't yet know if that request succeeded or failed. 

createAsyncThunk handles any errors internally, so that we don't see any messages about 
"rejected Promises" in our logs. It then returns the final action it dispatched: either the 
fulfilled action if it succeeded, or the rejected action if it failed. 

However, it's common to want to write logic that looks at the success or failure of the actual 
request that was made. Redux Toolkit adds a .unwrap() function to the returned Promise, 
which will return a new Promise that either has the actual action.payload value from a 
fulfilled action, or throws an error if it's the rejected action. This lets us handle success 
and failure in the component using normal try/catch logic. We'll clear out the input fields to 
reset the form if the post was successfully created, and log the error to the console if it failed. 

If you want to see what happens when the addNewPost API call fails, try creating a new post 
where the "Content" field only has the word "error" (without quotes). The server will see that and 
send back a failed response, so you should see a message logged to the console. 

Part Three Recap 

Here’s what we discovered in this section: 

●​ You can write reusable "selector" functions to encapsulate reading values from 
the Redux state. 

○​ Selectors are functions that get the Redux state as an argument, and return 
some data. 

●​ Redux uses plugins called "middleware" to enable async logic. 
○​ The standard async middleware is called redux-thunk, which is included in 

Redux Toolkit. 
○​ Thunk functions receive dispatch and getState as arguments, and can use 

those as part of async logic. 
●​ You can dispatch additional actions to help track the loading status of an API call. 

54 



 
○​ The typical pattern is dispatching a "pending" action before the call, then either a 

"success" containing the data or a "failure" action containing the error. 
○​ Loading state should usually be stored as an enum, like 'idle' | 'loading' | 

'succeeded' | 'failed'. 
●​ Redux Toolkit has a createAsyncThunk API that dispatches these actions for you. 

○​ createAsyncThunk accepts a "payload creator" callback that should return a 
Promise, and generates pending/fulfilled/rejected action types 
automatically. 

○​ Generated action creators like fetchPosts dispatch those actions based on the 
Promise you return. 

○​ You can listen for these action types in createSlice using the extraReducers 
field, and update the state in reducers based on those actions. 

○​ Action creators can be used to automatically fill in the keys of the 
extraReducers object so the slice knows what actions to listen for. 

○​ Thunks can return promises. For createAsyncThunk specifically, you can await 
dispatch(someThunk()).unwrap() to handle the request success or failure at 
the component level. 

Here’s what your application should look like so far: Part Three Completed CodeSandbox. 

 

Part 4: Performance Optimizations and Normalizing Data 
In this section, we'll look at optimized patterns for ensuring good performance in our application, 
and techniques for automatically handling common updates of data in the store. 

So far, most of our functionality has been centered around the posts feature. We're going to 
add a couple new sections of the app. After those are added, we'll look at some specific details 
of how we've built things, and talk about some weaknesses with what we've built so far and how 
we can improve the implementation. 

Adding User Pages 

We're fetching a list of users from our fake API, and we can choose a user as the author when 
we add a new post. But, a social media app needs the ability to look at the page for a specific 
user and see all the posts they've made. Let's add a page to show the list of all users, and 
another to show all posts by a specific user. 

We'll start by adding a new <UsersList> component. It follows the usual pattern of reading 
some data from the store with useSelector, and mapping over the array to show a list of users 
with links to their individual pages: 

55 

https://codesandbox.io/s/redux-state-management-3-emxohk


JavaScript

JavaScript

 
features/users/UsersList.js 

import React from 'react' 
import { useSelector } from 'react-redux' 
import { Link } from 'react-router-dom' 
import { selectAllUsers } from './usersSlice' 
 
export const UsersList = () => { 
  const users = useSelector(selectAllUsers) 
 
  const renderedUsers = users.map(user => ( 
    <li key={user.id}> 
      <Link to={`/users/${user.id}`}>{user.name}</Link> 
    </li> 
  )) 
 
  return ( 
    <section> 
      <h2>Users</h2> 
 
      <ul>{renderedUsers}</ul> 
    </section> 
  ) 
} 

 
We don't yet have a selectAllUsers selector, so we'll need to add that to usersSlice.js 
along with a selectUserById selector: 

features/users/usersSlice.js 

export default usersSlice.reducer 
 
export const selectAllUsers = state => state.users 
 
export const selectUserById = (state, userId) => 
  state.users.find(user => user.id === userId) 

 

56 



JavaScript

 
And we'll add a <UserPage>, which is similar to our <SinglePostPage> in taking a userId 
parameter from the router: 

features/users/UserPage.js 

import React from 'react' 
import { useSelector } from 'react-redux' 
import { Link } from 'react-router-dom' 
 
import { selectUserById } from '../users/usersSlice' 
import { selectAllPosts } from '../posts/postsSlice' 
 
export const UserPage = ({ match }) => { 
  const { userId } = match.params 
 
  const user = useSelector(state => selectUserById(state, 
userId)) 
 
  const postsForUser = useSelector(state => { 
    const allPosts = selectAllPosts(state) 
    return allPosts.filter(post => post.user === userId) 
  }) 
 
  const postTitles = postsForUser.map(post => ( 
    <li key={post.id}> 
      <Link to={`/posts/${post.id}`}>{post.title}</Link> 
    </li> 
  )) 
 
  return ( 
    <section> 
      <h2>{user.name}</h2> 
 
      <ul>{postTitles}</ul> 
    </section> 
  ) 
} 

 

57 



JavaScript

JavaScript

 
As we've seen before, we can take data from one useSelector call, or from props, and use that 
to help decide what to read from the store in another useSelector call. 

As usual, we will add routes for these components in <App>: 

App.js 

<Route exact path="/posts/:postId" component={SinglePostPage} /> 
<Route exact path="/editPost/:postId" component={EditPostForm} /> 
<Route exact path="/users" component={UsersList} /> 
<Route exact path="/users/:userId" component={UserPage} /> 
<Redirect to="/" /> 

 
We'll also add another tab in <Navbar> that links to /users so that we can click and go to 
<UsersList>: 

app/Navbar.js 

export const Navbar = () => { 
  return ( 
    <nav> 
      <section> 
        <h1>Redux Essentials Example</h1> 
 
        <div className="navContent"> 
          <div className="navLinks"> 
            <Link to="/">Posts</Link> 
            <Link to="/users">Users</Link> 
          </div> 
        </div> 
      </section> 
    </nav> 
  ) 
} 

 

58 



JavaScript

 
Adding Notifications 

No social media app would be complete without some notifications popping up to tell us that 
someone has sent a message, left a comment, or reacted to one of our posts. 

In a real application, our app client would be in constant communication with the backend 
server, and the server would push an update to the client every time something happens. Since 
this is a small example app, we're going to mimic that process by adding a button to actually 
fetch some notification entries from our fake API. We also don't have any other real users 
sending messages or reacting to posts, so the fake API will just create some random notification 
entries every time we make a request. (Remember, the goal here is to see how to use Redux 
itself.) 

Notifications Slice 

Since this is a new part of our app, the first step is to create a new slice for our notifications, and 
an async thunk to fetch some notification entries from the API. In order to create some realistic 
notifications, we'll include the timestamp of the latest notification we have in state. That will let 
our mock server generate notifications newer than that timestamp. 

features/notifications/notificationsSlice.js 

import { createSlice, createAsyncThunk } from '@reduxjs/toolkit' 
import { client } from '../../api/client' 
 
export const fetchNotifications = createAsyncThunk( 
  'notifications/fetchNotifications', 
  async (_, { getState }) => { 
    const allNotifications = selectAllNotifications(getState()) 
    const [latestNotification] = allNotifications 
    const latestTimestamp = latestNotification ? 
latestNotification.date : '' 
    const response = await client.get( 
      `/fakeApi/notifications?since=${latestTimestamp}` 
    ) 
    return response.data 
  } 
) 
 
const notificationsSlice = createSlice({ 
  name: 'notifications', 

59 



 

  initialState: [], 
  reducers: {}, 
  extraReducers(builder) { 
    builder.addCase(fetchNotifications.fulfilled, (state, action) 
=> { 
      state.push(...action.payload) 
      // Sort with newest first 
      state.sort((a, b) => b.date.localeCompare(a.date)) 
    }) 
  } 
}) 
 
export default notificationsSlice.reducer 
export const selectAllNotifications = state => 
state.notifications 

 
As with the other slices, import notificationsReducer into store.js and add it to the 
configureStore() call. 

We've written an async thunk called fetchNotifications, which will retrieve a list of new 
notifications from the server. As part of that, we want to use the creation timestamp of the most 
recent notification as part of our request, so that the server knows it should only send back 
notifications that are actually new. 

We know that we will be getting back an array of notifications, so we can pass them as separate 
arguments to state.push(), and the array will add each item. We also want to make sure that 
they're sorted so that the most recent notification is first in the array, just in case the server were 
to send them out of order. (As a reminder, array.sort() always mutates the existing array - 
this is only safe because we're using createSlice and Immer inside.) 

Thunk Arguments 

If you look at our fetchNotifications thunk, it has something new that we haven't seen 
before. Let's talk about thunk arguments for a minute. 

We've already seen that we can pass an argument into a thunk action creator when we dispatch 
it, like dispatch(addPost(newPost)). For createAsyncThunk specifically, you can only pass 
in one argument, and whatever we pass in becomes the first argument of the payload creation 
callback. 

60 



JavaScript

 
The second argument to our payload creator is a thunkAPI object containing several useful 
functions and pieces of information: 

●​ dispatch and getState: the actual dispatch and getState methods from our Redux 
store. You can use these inside the thunk to dispatch more actions, or get the latest 
Redux store state (such as reading an updated value after another action is dispatched). 

●​ extra: the "extra argument" that can be passed into the thunk middleware when 
creating the store. This is typically some kind of API wrapper, such as a set of functions 
that know how to make API calls to your application's server and return data, so that 
your thunks don't have to have all the URLs and query logic directly inside. 

●​ requestId: a unique random ID value for this thunk call. Useful for tracking status of an 
individual request. 

●​ signal: An AbortController.signal function that can be used to cancel an 
in-progress request. 

●​ rejectWithValue: a utility that helps customize the contents of a rejected action if the 
thunk receives an error. 

If you're writing a thunk by hand instead of using createAsyncThunk, the thunk function will get 
(dispatch, getState) as separate arguments, instead of putting them together in one object. 

In this case, we know that the list of notifications is in our Redux store state, and that the latest 
notification should be first in the array. We can destructure the getState function out of the 
thunkAPI object, call it to read the state value, and use the selectAllNotifications selector 
to give us just the array of notifications. Since the array of notifications is sorted newest first, we 
can grab the latest one using array destructuring. 

Adding the Notifications List 

With that slice created, we can add a <NotificationsList> component: 

features/notifications/NotificationsList.js 

import React from 'react' 
import { useSelector } from 'react-redux' 
import { formatDistanceToNow, parseISO } from 'date-fns' 
 
import { selectAllUsers } from '../users/usersSlice' 
 
import { selectAllNotifications } from './notificationsSlice' 
 

61 



 

export const NotificationsList = () => { 
  const notifications = useSelector(selectAllNotifications) 
  const users = useSelector(selectAllUsers) 
 
  const renderedNotifications = notifications.map(notification => 
{ 
    const date = parseISO(notification.date) 
    const timeAgo = formatDistanceToNow(date) 
    const user = users.find(user => user.id === 
notification.user) || { 
      name: 'Unknown User' 
    } 
 
    return ( 
      <div key={notification.id} className="notification"> 
        <div> 
          <b>{user.name}</b> {notification.message} 
        </div> 
        <div title={notification.date}> 
          <i>{timeAgo} ago</i> 
        </div> 
      </div> 
    ) 
  }) 
 
  return ( 
    <section className="notificationsList"> 
      <h2>Notifications</h2> 
      {renderedNotifications} 
    </section> 
  ) 
} 

 
Once again, we're reading a list of items from the Redux state, mapping over them, and 
rendering content for each item. 

We also need to update the <Navbar> to add a "Notifications" tab, and a new button to fetch 
some notifications: 

62 



JavaScript

 
app/Navbar.js 

import React from 'react' 
import { useDispatch } from 'react-redux' 
import { Link } from 'react-router-dom' 
 
import { fetchNotifications } from 
'../features/notifications/notificationsSlice' 
 
export const Navbar = () => { 
  const dispatch = useDispatch() 
 
  const fetchNewNotifications = () => { 
    dispatch(fetchNotifications()) 
  } 
 
  return ( 
    <nav> 
      <section> 
        <h1>Redux Essentials Example</h1> 
 
        <div className="navContent"> 
          <div className="navLinks"> 
            <Link to="/">Posts</Link> 
            <Link to="/users">Users</Link> 
            <Link to="/notifications">Notifications</Link> 
          </div> 
          <button className="button" 
onClick={fetchNewNotifications}> 
            Refresh Notifications 
          </button> 
        </div> 
      </section> 
    </nav> 
  ) 
} 

 
Lastly, we need to update App.js with the "Notifications" route so we can navigate to it: 

63 



JavaScript

 
App.js 

// omitted imports 
import { NotificationsList } from 
'./features/notifications/NotificationsList' 
 
function App() { 
  return ( 
    <Router> 
      <Navbar /> 
      <div className="App"> 
        <Switch> 
          <Route exact path="/notifications" 
component={NotificationsList} /> 
          // omitted existing routes 
          <Redirect to="/" /> 
        </Switch> 
      </div> 
    </Router> 
  ) 
} 

 
Here's what the "Notifications" tab looks like so far: 

64 



 

 
 
Showing New Notifications 

Each time we click "Refresh Notifications", a few more notification entries will be added to our 
list. In a real app, those could be coming from the server while we're looking at other parts of the 
UI. We can do something similar by clicking "Refresh Notifications" while we're looking at the 
<PostsList> or <UserPage>. But, right now we have no idea how many notifications just 
arrived, and if we keep clicking the button, there could be many notifications we haven't read 
yet. Let's add some logic to keep track of which notifications have been read and which of them 
are "new". That will let us show the count of "Unread" notifications as a badge on our 
"Notifications" tab in the navbar, and display new notifications in a different color. 

Our fake API is already sending back the notification entries with isNew and read fields, so we 
can use those in our code. 

First, we'll update notificationsSlice to have a reducer that marks all notifications as read, 
and some logic to handle marking existing notifications as "not new": 

features/notifications/notificationsSlide.js 

65 



JavaScript

 

const notificationsSlice = createSlice({ 
  name: 'notifications', 
  initialState: [], 
  reducers: { 
    allNotificationsRead(state, action) { 
      state.forEach(notification => { 
        notification.read = true 
      }) 
    } 
  }, 
  extraReducers(builder) { 
    builder.addCase(fetchNotifications.fulfilled, (state, action) 
=> { 
      state.push(...action.payload) 
      state.forEach(notification => { 
        // Any notifications we've read are no longer new 
        notification.isNew = !notification.read 
      }) 
      // Sort with newest first 
      state.sort((a, b) => b.date.localeCompare(a.date)) 
    }) 
  } 
}) 
 
export const { allNotificationsRead } = 
notificationsSlice.actions 
 
export default notificationsSlice.reducer 

 
We want to mark these notifications as read whenever our <NotificationsList> component 
renders, either because we clicked on the tab to view the notifications, or because we already 
have it open and we just received some additional notifications. We can do this by dispatching 
allNotificationsRead any time this component re-renders. In order to avoid flashing of old 
data as this updates, we'll dispatch the action in a useLayoutEffect hook. We also want to add 
an additional class name to any notification list entries in the page, to highlight them: 

features/notifications/NotificationsList.js 

66 



JavaScript

 

import React, { useLayoutEffect } from 'react' 
import { useSelector, useDispatch } from 'react-redux' 
import { formatDistanceToNow, parseISO } from 'date-fns' 
import classnames from 'classnames' 
 
import { selectAllUsers } from '../users/usersSlice' 
 
import { 
  selectAllNotifications, 
  allNotificationsRead 
} from './notificationsSlice' 
 
export const NotificationsList = () => { 
  const dispatch = useDispatch() 
  const notifications = useSelector(selectAllNotifications) 
  const users = useSelector(selectAllUsers) 
 
  useLayoutEffect(() => { 
    dispatch(allNotificationsRead()) 
  }) 
 
  const renderedNotifications = notifications.map(notification => 
{ 
    const date = parseISO(notification.date) 
    const timeAgo = formatDistanceToNow(date) 
    const user = users.find(user => user.id === 
notification.user) || { 
      name: 'Unknown User' 
    } 
 
    const notificationClassname = classnames('notification', { 
      new: notification.isNew 
    }) 
 
    return ( 
      <div key={notification.id} 
className={notificationClassname}> 
        <div> 
          <b>{user.name}</b> {notification.message} 

67 



 

        </div> 
        <div title={notification.date}> 
          <i>{timeAgo} ago</i> 
        </div> 
      </div> 
    ) 
  }) 
 
  return ( 
    <section className="notificationsList"> 
      <h2>Notifications</h2> 
      {renderedNotifications} 
    </section> 
  ) 
} 

 
This works, but actually has a slightly surprising bit of behavior. Any time there are new 
notifications (either because we've just switched to this tab, or we've fetched some new 
notifications from the API), you'll actually see two "notifications/allNotificationsRead" 
actions dispatched. Why is that? 

Let's say we have fetched some notifications while looking at the <PostsList>, and then click 
the "Notifications" tab. The <NotificationsList> component will mount, and the 
useLayoutEffect callback will run after that first render and dispatch allNotificationsRead. 
Our notificationsSlice will handle that by updating the notification entries in the store. This 
creates a new state.notifications array containing the immutably-updated entries, which 
forces our component to render again because it sees a new array returned from the 
useSelector, and the useLayoutEffect hook runs again and dispatches 
allNotificationsRead a second time. The reducer runs again, but this time no data changes, 
so the component doesn't re-render. 

There is a couple ways we could potentially avoid that second dispatch, like splitting the logic to 
dispatch once when the component mounts, and only dispatch again if the size of the 
notifications array changes. But, this isn't actually hurting anything, so we can leave it alone. 

This does actually show that it's possible to dispatch an action and not have any state 
changes happen at all. Remember, it's always up to your reducers to decide if any state 
actually needs to be updated, and "nothing needs to happen" is a valid decision for a 
reducer to make. 

68 



JavaScript

 
Here's how the notifications tab looks now that we've got the "new/read" behavior working: 

 

The last thing we need to do before we move on is to add the badge on our "Notifications" tab in 
the navbar. This will show us the count of "Unread" notifications when we are in other tabs: 

app/Navbar.js 

// omitted imports 
import { useDispatch, useSelector } from 'react-redux' 
 
import { 
  fetchNotifications, 
  selectAllNotifications 
} from '../features/notifications/notificationsSlice' 

69 



 

 
export const Navbar = () => { 
  const dispatch = useDispatch() 
  const notifications = useSelector(selectAllNotifications) 
  const numUnreadNotifications = notifications.filter(n => 
!n.read).length 
  // omitted component contents 
  let unreadNotificationsBadge 
 
  if (numUnreadNotifications > 0) { 
    unreadNotificationsBadge = ( 
      <span className="badge">{numUnreadNotifications}</span> 
    ) 
  } 
  return ( 
    <nav> 
      // omitted component contents 
      <div className="navLinks"> 
        <Link to="/">Posts</Link> 
        <Link to="/users">Users</Link> 
        <Link to="/notifications"> 
          Notifications {unreadNotificationsBadge} 
        </Link> 
      </div> 
      // omitted component contents 
    </nav> 
  ) 
} 

 
Improving Render Performance 

Our application is looking useful, but we've actually got a couple flaws in when and how our 
components re-render. Let's look at those problems, and talk about some ways to improve the 
performance. 

Investigating Render Behavior 

We can use the React DevTools Profiler to view some graphs of what components re-render 
when state is updated. Try clicking over to the <UserPage> for a single user. Open up your 
browser's DevTools, and in the React "Profiler" tab, click the circle "Record" button in the 

70 



JavaScript

 
upper-left. Then, click the "Refresh Notifications" button in our app, and stop the recording in the 
React DevTools Profiler. You should see a chart that looks like this: 

 

We can see that the <Navbar> re-rendered, which makes sense because it had to show the 
updated "unread notifications" badge in the tab. But, why did our <UserPage> re-render? 

If we inspect the last couple dispatched actions in the Redux DevTools, we can see that only the 
notifications state updated. Since the <UserPage> doesn't read any notifications, it shouldn't 
have re-rendered. Something must be wrong with the component. 

If we look at <UserPage> carefully, there's a specific problem: 

features/UserPage.js 

export const UserPage = ({ match }) => { 
  const { userId } = match.params 
 
  const user = useSelector(state => selectUserById(state, 
userId)) 
 
  const postsForUser = useSelector(state => { 
    const allPosts = selectAllPosts(state) 
    return allPosts.filter(post => post.user === userId) 
  }) 
 
  // omitted rendering logic 
} 

 

71 



JavaScript

 
We know that useSelector will re-run every time an action is dispatched, and that it forces the 
component to re-render if we return a new reference value. 

We're calling filter() inside of our useSelector hook, so that we only return the list of posts 
that belong to this user. Unfortunately, this means that useSelector always returns a new 
array reference, and so our component will re-render after every action even if the posts 
data hasn't changed! 

Memoizing Selector Functions 

What we really need is a way to only calculate the new filtered array if either state.posts or 
userId have changed. If they haven't changed, we want to return the same filtered array 
reference as the last time. 

This idea is called "memoization". We want to save a previous set of inputs and the calculated 
result, and if the inputs are the same, return the previous result instead of recalculating it again. 

So far, we've been writing selector functions by ourselves, and just so that we don't have to copy 
and paste the code for reading data from the store. It would be great if there was a way to make 
our selector functions memoized. 

Reselect is a library for creating memoized selector functions, and was specifically designed to 
be used with Redux. It has a createSelector function that generates memoized selectors that 
will only recalculate results when the inputs change. Redux Toolkit exports the createSelector 
function, so we already have it available. 

Let's make a new selectPostsByUser selector function, using Reselect, and use it here. 

features/posts/postsSlice.js 

import { createSlice, createAsyncThunk, createSelector } from 
'@reduxjs/toolkit' 
 
// omitted slice logic 
 
export const selectAllPosts = state => state.posts.posts 
 
export const selectPostById = (state, postId) => 
  state.posts.posts.find(post => post.id === postId) 
 
export const selectPostsByUser = createSelector( 

72 

https://github.com/reduxjs/reselect
https://redux-toolkit.js.org/api/createSelector
https://redux-toolkit.js.org/api/createSelector


JavaScript

 

  [selectAllPosts, (state, userId) => userId], 
  (posts, userId) => posts.filter(post => post.user === userId) 
) 

 
createSelector takes one or more "input selector" functions as arguments, plus an "output 
selector" function. When we call selectPostsByUser(state, userId), createSelector will 
pass all of the arguments into each of our input selectors. Whatever those input selectors return 
becomes the arguments for the output selector. 

In this case, we know that we need the array of all posts and the user ID as the two arguments 
for our output selector. We can reuse our existing selectAllPosts selector to extract the posts 
array. Since the user ID is the second argument we're passing into selectPostsByUser, we 
can write a small selector that just returns userId. 

Our output selector then takes posts and userId, and returns the filtered array of posts for just 
that user. 

If we try calling selectPostsByUser multiple times, it will only re-run the output selector if either 
posts or userId has changed. For example: 

const state1 = getState() 
// Output selector runs, because it's the first call 
selectPostsByUser(state1, 'user1') 
// Output selector does _not_ run, because the arguments haven't 
changed 
selectPostsByUser(state1, 'user1') 
// Output selector runs, because `userId` changed 
selectPostsByUser(state1, 'user2') 
 
dispatch(reactionAdded()) 
const state2 = getState() 
// Output selector does not run, because `posts` and `userId` are 
the same 
selectPostsByUser(state2, 'user2') 
 
// Add some more posts 
dispatch(addNewPost()) 

73 



JavaScript

 

const state3 = getState() 
// Output selector runs, because `posts` has changed 
selectPostsByUser(state3, 'user2') 

 
If we call this selector in <UserPage> and re-run the React profiler while fetching notifications, 
we should see that <UserPage> doesn't re-render this time: 

features/users/UserPage.js 

export const UserPage = ({ match }) => { 
  const { userId } = match.params 
 
  const user = useSelector(state => selectUserById(state, 
userId)) 
 
  const postsForUser = useSelector(state => 
selectPostsByUser(state, userId)) 
 
  // omitted rendering logic 
} 

 
Memoized selectors are a valuable tool for improving performance in a React-Redux 
application, because they can help us avoid unnecessary re-renders, and also avoid doing 
potentially complex or expensive calculations if the input data hasn't changed. 

Investigating the Posts List 

If we go back to our <PostsList> and try clicking a reaction button on one of the posts while 
capturing a React profiler trace, we'll see that not only did the <PostsList> and the updated 
<PostExcerpt> instance render, all of the <PostExcerpt> components rendered: 

74 



JavaScript

 

 

Why is that? None of the other posts changed, so why would they need to re-render? 

React's default behavior is that when a parent component renders, React will recursively 
render all child components inside of it! The immutable update of one post object also 
created a new posts array. Our <PostsList> had to re-render because the posts array was a 
new reference, so after it rendered, React continued downwards and re-rendered all of the 
<PostExcerpt> components too. 

This isn't a serious problem for our small example app, but in a larger real-world app, we might 
have some very long lists or very large component trees, and having all those extra components 
re-render might slow things down. 

There are a few different ways we could optimize this behavior in <PostsList>. 

First, we could wrap the <PostExcerpt> component in React.memo(), which will ensure that 
the component inside of it only re-renders if the props have actually changed. This will actually 
work quite well - try it out and see what happens: 

features/posts/PostsList.js 

let PostExcerpt = ({ post }) => { 
  // omitted logic 
} 
 
PostExcerpt = React.memo(PostExcerpt) 

 

75 

https://reactjs.org/docs/react-api.html#reactmemo


 
Another option is to rewrite <PostsList> so that it only selects a list of post IDs from the store 
instead of the entire posts array, and rewrite <PostExcerpt> so that it receives a postId prop 
and calls useSelector to read the post object it needs. If <PostsList> gets the same list of 
IDs as before, it won't need to re-render, and so only our one changed <PostExcerpt> 
component should have to render. 

Unfortunately, this gets tricky because we also need to have all our posts sorted by date and 
rendered in the right order. We could update our postsSlice to keep the array sorted at all 
times, so we don't have to sort it in the component, and use a memoized selector to extract just 
the list of post IDs. We could also customize the comparison function that useSelector runs to 
check the results, like useSelector(selectPostIds, shallowEqual), so that it will skip 
re-rendering if the contents of the IDs array haven't changed. 

The last option is to find some way to have our reducer keep a separate array of IDs for all the 
posts, and only modify that array when posts are added or removed, and do the same rewrite of 
<PostsList> and <PostExcerpt>. This way, <PostsList> only needs to re-render when that 
IDs array changes. 

Conveniently, Redux Toolkit has a createEntityAdapter function that will help us do just that. 

Normalizing Data 

You've seen that a lot of our logic has been looking up items by their ID field. Since we've been 
storing our data in arrays, that means we have to loop over all the items in the array using 
array.find() until we find the item with the ID we're looking for. 

Realistically, this doesn't take very long, but if we had arrays with hundreds or thousands of 
items inside, looking through the entire array to find one item becomes wasted effort. What we 
need is a way to look up a single item based on its ID, directly, without having to check all the 
other items. This process is known as "normalization". 

Normalized State Structure 

"Normalized state" means that: 

●​ We only have one copy of each particular piece of data in our state, so there's no 
duplication. 

●​ Data that has been normalized is kept in a lookup table, where the item IDs are the keys, 
and the items themselves are the values. 

●​ There may also be an array of all of the IDs for a particular item type. 

JavaScript objects can be used as lookup tables, similar to "maps" or "dictionaries" in other 
languages. Here's what the normalized state for a group of user objects might look like: 

76 



JavaScript

JavaScript

 

{ 
  users: { 
    ids: ["user1", "user2", "user3"], 
    entities: { 
      "user1": {id: "user1", firstName, lastName}, 
      "user2": {id: "user2", firstName, lastName}, 
      "user3": {id: "user3", firstName, lastName}, 
    } 
  } 
} 

 
This makes it easy to find a particular user object by its ID, without having to loop through all 
the other user objects in an array: 

const userId = 'user2' 
const userObject = state.users.entities[userId] 

 
Managing Normalized State with createEntityAdapter 

Redux Toolkit's createEntityAdapter API provides a standardized way to store your data in a 
slice by taking a collection of items and putting them into the shape of { ids: [], entities: 
{} }. Along with this predefined state shape, it generates a set of reducer functions and 
selectors that know how to work with that data. 

This has several benefits: 

●​ We don't have to write the code to manage the normalization ourselves 
●​ createEntityAdapter's pre-built reducer functions handle common cases like "add all 

these items", "update one item", or "remove multiple items" 
●​ createEntityAdapter can keep the ID array in a sorted order based on the contents of 

the items, and will only update that array if items are added / removed or the sorting 
order changes. 

createEntityAdapter accepts an options object that may include a sortComparer function, 
which will be used to keep the item IDs array in sorted order by comparing two items (and works 
the same way as Array.sort()). 

77 



JavaScript

 
It returns an object that contains a set of generated reducer functions for adding, updating, and 
removing items from an entity state object. These reducer functions can either be used as a 
case reducer for a specific action type, or as a "mutating" utility function within another reducer 
in createSlice. 

The adapter object also has a getSelectors function. You can pass in a selector that returns 
this particular slice of state from the Redux root state, and it will generate selectors like 
selectAll and selectById. 

Finally, the adapter object has a getInitialState function that generates an empty {ids: 
[], entities: {}} object. You can pass in more fields to getInitialState, and those will 
be merged in. 

Updating the Posts Slice 

With that in mind, let's update our postsSlice to use createEntityAdapter: 

features/posts/postsSlice.js 

import { 
  createEntityAdapter 
  // omitted other imports 
} from '@reduxjs/toolkit' 
 
const postsAdapter = createEntityAdapter({ 
  sortComparer: (a, b) => b.date.localeCompare(a.date) 
}) 
 
const initialState = postsAdapter.getInitialState({ 
  status: 'idle', 
  error: null 
}) 
 
// omitted thunks 
 
const postsSlice = createSlice({ 
  name: 'posts', 
  initialState, 
  reducers: { 
    reactionAdded(state, action) { 

78 



 

      const { postId, reaction } = action.payload 
      const existingPost = state.entities[postId] 
      if (existingPost) { 
        existingPost.reactions[reaction]++ 
      } 
    }, 
    postUpdated(state, action) { 
      const { id, title, content } = action.payload 
      const existingPost = state.entities[id] 
      if (existingPost) { 
        existingPost.title = title 
        existingPost.content = content 
      } 
    } 
  }, 
  extraReducers(builder) { 
    // omitted other reducers 
 
    builder 
      .addCase(fetchPosts.fulfilled, (state, action) => { 
        state.status = 'succeeded' 
        // Add any fetched posts to the array 
        // Use the `upsertMany` reducer as a mutating update 
utility 
        postsAdapter.upsertMany(state, action.payload) 
      }) 
      // Use the `addOne` reducer for the fulfilled case 
      .addCase(addNewPost.fulfilled, postsAdapter.addOne) 
  } 
}) 
 
export const { postAdded, postUpdated, reactionAdded } = 
postsSlice.actions 
 
export default postsSlice.reducer 
 
// Export the customized selectors for this adapter using 
`getSelectors` 
export const { 

79 



 

  selectAll: selectAllPosts, 
  selectById: selectPostById, 
  selectIds: selectPostIds 
  // Pass in a selector that returns the posts slice of state 
} = postsAdapter.getSelectors(state => state.posts) 
 
export const selectPostsByUser = createSelector( 
  [selectAllPosts, (state, userId) => userId], 
  (posts, userId) => posts.filter(post => post.user === userId) 
) 

 
There's a lot going on there! Let's break it down. 

First, we import createEntityAdapter, and call it to create our postsAdapter object. We 
know that we want to keep an array of all post IDs sorted with the newest post first, so we pass 
in a sortComparer function that will sort newer items to the front based on the post.date field. 

getInitialState() returns an empty {ids: [], entities: {}} normalized state object. 
Our postsSlice needs to keep the status and error fields for loading state too, so we pass 
those in to getInitialState(). 

Now that our posts are being kept as a lookup table in state.entities, we can change our 
reactionAdded and postUpdated reducers to directly look up the right posts by their IDs, 
instead of having to loop over the old posts array. 

When we receive the fetchPosts.fulfilled action, we can use the 
postsAdapter.upsertMany function to add all of the incoming posts to the state, by passing in 
the draft state and the array of posts in action.payload. If there's any items in 
action.payload that already existing in our state, the upsertMany function will merge them 
together based on matching IDs. 

When we receive the addNewPost.fulfilled action, we know we need to add that one new 
post object to our state. We can use the adapter functions as reducers directly, so we'll pass 
postsAdapter.addOne as the reducer function to handle that action. 

Finally, we can replace the old hand-written selectAllPosts and selectPostById selector 
functions with the ones generated by postsAdapter.getSelectors. Since the selectors are 
called with the root Redux state object, they need to know where to find our posts data in the 
Redux state, so we pass in a small selector that returns state.posts. The generated selector 
functions are always called selectAll and selectById, so we can use ES6 destructuring 

80 



JavaScript

 
syntax to rename them as we export them and match the old selector names. We'll also export 
selectPostIds the same way, since we want to read the list of sorted post IDs in our 
<PostsList> component. 

Optimizing the Posts List 

Now that our posts slice is using createEntityAdapter, we can update <PostsList> to 
optimize its rendering behavior. 

We'll update <PostsList> to read just the sorted array of post IDs, and pass postId to each 
<PostExcerpt>: 

features/posts/PostsList.js 

// omitted other imports 
 
import { 
  selectAllPosts, 
  fetchPosts, 
  selectPostIds, 
  selectPostById 
} from './postsSlice' 
 
let PostExcerpt = ({ postId }) => { 
  const post = useSelector(state => selectPostById(state, 
postId)) 
  // omitted rendering logic 
} 
 
export const PostsList = () => { 
  const dispatch = useDispatch() 
  const orderedPostIds = useSelector(selectPostIds) 
 
  // omitted other selections and effects 
 
  if (postStatus === 'loading') { 
    content = <Spinner text="Loading..." /> 

81 



 

  } else if (postStatus === 'succeeded') { 
    content = orderedPostIds.map(postId => ( 
      <PostExcerpt key={postId} postId={postId} /> 
    )) 
  } else if (postStatus === 'error') { 
    content = <div>{error}</div> 
  } 
 
  // omitted other rendering 
} 

 
Now, if we try clicking a reaction button on one of the posts while capturing a React component 
performance profile, we should see that only that one component re-rendered: 

 

Converting Other Slices 

We're almost done. As a final cleanup step, we'll update our other two slices to use 
createEntityAdapter as well. 

Converting the Users Slice 

The usersSlice is fairly small, so we've only got a few things to change: 

features/users/usersSlice.js 

82 



JavaScript

 

import { 
  createSlice, 
  createAsyncThunk, 
  createEntityAdapter 
} from '@reduxjs/toolkit' 
import { client } from '../../api/client' 
 
const usersAdapter = createEntityAdapter() 
 
const initialState = usersAdapter.getInitialState() 
 
export const fetchUsers = createAsyncThunk('users/fetchUsers', 
async () => { 
  const response = await client.get('/fakeApi/users') 
  return response.users 
}) 
 
const usersSlice = createSlice({ 
  name: 'users', 
  initialState, 
  reducers: {}, 
  extraReducers(builder) { 
    builder.addCase(fetchUsers.fulfilled, usersAdapter.setAll) 
  } 
}) 
 
export default usersSlice.reducer 
 
export const { selectAll: selectAllUsers, selectById: 
selectUserById } = 
  usersAdapter.getSelectors(state => state.users) 

 
The only action we're handling here always replaces the entire list of users with the array we 
fetched from the server. We can use usersAdapter.setAll to implement that instead. 

Our <AddPostForm> is still trying to read state.users as an array, as is <PostAuthor>. 
Update them to use selectAllUsers and selectUserById, respectively. 

Converting the Notifications Slice 

83 



JavaScript

 
Last but not least, we'll update notificationsSlice as well: 

features/notifications/notificationsSlice.js 

import { 
  createSlice, 
  createAsyncThunk, 
  createEntityAdapter 
} from '@reduxjs/toolkit' 
 
import { client } from '../../api/client' 
 
const notificationsAdapter = createEntityAdapter({ 
  sortComparer: (a, b) => b.date.localeCompare(a.date) 
}) 
 
// omitted fetchNotifications thunk 
 
const notificationsSlice = createSlice({ 
  name: 'notifications', 
  initialState: notificationsAdapter.getInitialState(), 
  reducers: { 
    allNotificationsRead(state, action) { 
      Object.values(state.entities).forEach(notification => { 
        notification.read = true 
      }) 
    } 
  }, 
  extraReducers(builder) { 
    builder.addCase(fetchNotifications.fulfilled, (state, action) 
=> { 
      notificationsAdapter.upsertMany(state, action.payload) 
      Object.values(state.entities).forEach(notification => { 
        // Any notifications we've read are no longer new 
        notification.isNew = !notification.read 
      }) 
    }) 
  } 
}) 

84 



 

 
export const { allNotificationsRead } = 
notificationsSlice.actions 
 
export default notificationsSlice.reducer 
 
export const { selectAll: selectAllNotifications } = 
  notificationsAdapter.getSelectors(state => state.notifications) 

 
We again import createEntityAdapter, call it, and call 
notificationsAdapter.getInitialState() to help set up the slice. 

Ironically, we do have a couple places in here where we need to loop over all notification objects 
and update them. Since those are no longer being kept in an array, we have to use 
Object.values(state.entities) to get an array of those notifications and loop over that. On 
the other hand, we can replace the previous fetch update logic with 
notificationsAdapter.upsertMany. 

And with that... we're done learning the core concepts and functionality of Redux Toolkit! 

As we are sure you’ve realized by now, Redux Toolkit is an incredibly powerful package that can 
help you handle many of the common tasks you’ll face as a developer. It has many tools that 
you will need to familiarize yourself with over the course of time to be a true Redux master. 

Part Four Recap 

The final Redux recap! This section included the following key concepts centered around 
performance: 

●​ Memoized selector functions can be used to optimize performance. 
○​ Redux Toolkit re-exports the createSelector function from Reselect, which 

generates memoized selectors. 
○​ Memoized selectors will only recalculate the results if the input selectors return 

new values. 
○​ Memoization can skip expensive calculations, and ensure the same result 

references are returned. 
●​ There are multiple patterns you can use to optimize React component rendering 

with Redux. 
○​ Avoid creating new object/array references inside of useSelector - those will 

cause unnecessary re-renders. 

85 



 
○​ Memoized selector functions can be passed to useSelector to optimize 

rendering. 
○​ useSelector can accept an alternate comparison function like shallowEqual 

instead of reference equality. 
○​ Components can be wrapped in React.memo() to only re-render if their props 

change. 
○​ List rendering can be optimized by having list parent components read just an 

array of item IDs, passing the IDs to list item children, and retrieving items by ID 
in the children. 

●​ Normalized state structure is a recommended approach for storing items. 
○​ "Normalization" means no duplication of data, and keeping items stored in a 

lookup table by item ID. 
○​ Normalized state shape usually looks like {ids: [], entities: {}}. 

●​ Redux Toolkit's createEntityAdapter API helps manage normalized data in a 
slice. 

○​ Item IDs can be kept in sorted order by passing in a sortComparer option. 
○​ The adapter object includes: 

■​ adapter.getInitialState, which can accept additional state fields like 
loading state. 

■​ Prebuilt reducers for common cases, like setAll, addMany, upsertOne, 
and removeMany. 

■​ adapter.getSelectors, which generates selectors like selectAll and 
selectById. 

Here’s what your application should look like: Part Four Completed CodeSandbox. 

86 

https://codesandbox.io/s/redux-state-management-4-3d2eor

	GLAB 320.11.1 - Redux State Management 
	Introduction 
	Objectives 
	Tools and Software 
	Instructions 
	Part 0: Explore the Initial Project 
	Part 1: Redux Data Flow 
	Creating the Posts Slice 
	Showing the Posts List 
	Adding New Posts 
	Saving Post Entries 
	 
	Dispatching the “Post Added” Action 
	Part One Recap 
	Part Two Preview 

	 
	Part 2: Using Redux Data 
	Showing Single Posts 
	Adding the Single Post Route 
	Updating Post Entries 
	Preparing Action Payloads 
	Adding a Users Slice 
	 
	Adding Authors for Posts 
	Storing Dates for Posts 
	Sorting the Posts List 
	 
	Post Reaction Buttons 
	Part Two Recap 
	Part Three Preview 

	 
	Part 3: Data Fetching 
	Thunks and Async Logic 
	Loading Posts 
	Loading State for Requests 
	 
	Fetching Data with createAsyncThunk 
	Dispatching Thunks from Components 
	Reducers and Loading Actions 
	Displaying Loading State 
	Loading Users 
	Adding New Posts 
	Checking Thunk Results in Components 
	Part Three Recap 

	Part 4: Performance Optimizations and Normalizing Data 
	Adding User Pages 
	Adding Notifications 
	Improving Render Performance 
	Normalizing Data 
	Converting Other Slices 
	Part Four Recap 



