
Red Eyes 
 
- gory technical details - 

Introduction 
 
The ‘Red Eyes’ demo / video is part of Remute’s music album ‘Technoptimistic’ which got 
released on a Sega Mega Drive cartridge for ‘authentic’ listening pleasure 
(https://remute.bandcamp.com/album/technoptimistic ) . On a 4 Megabytes cartridge 
(hardware provided by Everdrive producer Krikzz) it features 16 tracks along with the video - 
embedded into a neat GUI. It allows the user to select a track, play it with button A, stop the 
playing track with button C and pause / ‘freeze’ it with button B which often generates an 
interesting ‘hanging note’ effect, inviting the user to toy around with it. It’s a rock-solid 
product, but working on it took months and was a very interesting experience for Kabuto, 
Exocet and Remute. 
 
Releasing the music video as a demo (downloadable here) was an afterthought because it 
felt really demo-like. To support the demo-like feel and acceptance there wasn’t any kinds of 
advertisements added to the demo itself. 

Music 
I, Remute, composed ‘Red Eyes’ with the tracker program Deflemask. Tracker programs like 
Deflemask do not record any music - instead they ‘tell’ the sound chip which notes to play 
and which kind of sound to generate in realtime - that saves a lot of data storage space 
which comes in handy when you only have 4 megabytes to work with. And so the music 
makes very sparse use of pre-recorded samples and instead almost fully focuses on the 
sonic capabilities of the Mega Drive’s YM2612 FM-based soundchip to generate music in 
realtime.  
 
The only pre-recorded PCM sample in ‘Red Eyes’ is the vocoder vocal sample which I 
recorded previously with the help of an old-school hardware vocoder unit by Roland and 
then imported it into the Deflemask project. Everything else gets generated in realtime by the 
YM2612 - even the snappy drum sounds!  
 
The limitation to 6 voices polyphony was quite challenging, but limitations like these can 
trigger great ideas though - I was forced to dive deep into editing of FM instrument 
parameters. 
 
The FM-generated pad sounds make use of a slight vibrato effect to give them a ‘floating’ 
and slightly detuned feel. The pretty analog sounding lead bassline of ‘Red Eyes’ has a quite 

https://remute.bandcamp.com/album/technoptimistic
https://www.youtube.com/watch?v=2wPhqlB9_2w
http://www.pouet.net/prod.php?which=80580


uncommon sound for FM and proves that with some tweaking the YM2612 is even capable 
of classic ‘warm sounding’ synth sounds. 
 
The tempo is 125 bpm as typical for Techno music. 
 

Art 
Exocet created both 2D and 3D graphics - videos and photos were taken by Remute. 

2D graphics 
The creation of those were pretty straightforward, it was mostly a matter of keeping the 
console specs in mind: 320×224 pixel, 16 colors maximum per element, picked from a 
palette of 512 colors (8 levels per each RGB component). I (Exocet) used a paint program 
called Grafx2, which has a history of over 20 years but it still being updated nowadays and 
packs some great features targeted at older computers and consoles. The logo was pixeled 
by hand and uses only 8 colors. The track titles underneath use a free font from 04.jp.org. 
 

 
 
To generate the glow effect behind some of the graphics, like behind the logo on the main 
menu, I used Photoshop and then reduced the color count. Due to the limited palette of the 
Mega Drive, dithering was necessary but I didn't want to use the traditional algorithms 
offered by Photoshop (pattern, noise...) as they look either messy or too artificial. Instead I 
took advantage of one of the many features from the image manipulation software 
Imagemagick that lets you define custom dithering patterns. 
 
 

http://www.04.jp.org/
http://www.imagemagick.org/


3D graphics 
I used Blender to model, animate and render everything with flat shading, no lighting 
(self-illuminated materials only) and no anti-aliasing. The color values for the materials were 
picked in Grafx2 to make sure they matched the Mega Drive palette perfectly. The goal was 
to output a sequence of PNG at 50 FPS that matched exactly the final look it was supposed 
to have on the Mega Drive. Kabuto's renderer was then to decide on the achievable 
framerate depending on the complexity of the scenes. 
 

 
 
Setting a polycount budget was not so simple because of the way the renderer works. I 
decided to aim for scenes using less than 500 polygons in general, which seemed like a 
good compromise - pretty lightweight, but still enough to create relatively interesting 
environments. If the framerate happened to take too much of a hit, I could always have 
simplified them a bit further. We also experimented with both dynamic and static lighting but I 
found that due to the limited palette of the Mega Drive, static was a better option to ensure a 
consistent color scheme. 
 
To validate the workflow we did an initial test with a fairly complex spaceship design. 
Everything looked good so we were all set to start working on the animation proper. I knew 
more or less what I wanted to achieve but many more ideas came up as I worked on the first 
few scenes, which was the part with the pursuit in the desert. 

https://www.blender.org/


 
The good thing about using a fixed camera, as opposed to a game where the player is free 
to look around, is that it was easy to cheat to achieve the desired effect, while saving 
precious polygons or even more precious time. The most obvious cheat is the use of 
billboards in many places, simple 2D shapes aligned with the camera that gives the 
impression of something much more complex: the silhouette in the hangar, the mountains in 
the background when outside, etc. On a few of the scenes where the vehicles appear to be 
moving, it's actually just the environment which is scrolling underneath like a treadmill and it 
makes the whole scene setup a lot easier.  
 
As the animation grew more complex, it dawned on me I'll need some sort of storyboard tool 
to keep track of the different scenes (initially 21 of them, almost each a separate Blender file) 
and the overall flow and duration. I went with a software called Storyboarder which is free 
and did the job perfectly. 
 

 
 
The 3D part had to last exactly 85 seconds. After animating all my scenes I was more than 
10 seconds above, therefore I had to cut or shorten the less interesting scenes. Something 

https://wonderunit.com/storyboarder/


that saved me a lot of time to do that was to realize you could import and export PNG 
sequences in Adobe Premiere Pro, where cutting and re-arranging sequences can be done 
in a very visual way. That made the last few adjustments a breeze. 
 

 
 
 

Code 

Music conversion 
 
To prepare songs for playback on the Mega Drive, Deflemask must be instructed to convert 
the songs to an intermediate format (VGM); this format can then be fed into Kabuto’s 
converter which generates binary files for playback on hardware using his own player. 
 
Songs as composed in Deflemask use a very high-level format that’s optimised to be 
readable by humans. Musicians place notes on a chart, assign instruments to channels, 
define instruments and add predefined effects (such as note slides). 
 
The generated VGM files are however optimised for playback - they contain raw register 
writes necessary to make the YM2612 sound chip output the desired sound so one only 
needs to emulate the sound hardware and not Deflemask’s behaviour - all sound effects are 
already contained in those register writes. This also means that simple Deflemask 
instructions (e.g. 2-byte note slides) are often expanded to a large number of register writes 
(for that note slide e.g. 10 frequency updates of 4 bytes each = 40 bytes total). Deflemask 
also truncates PCM samples to 8 bits of resolution and then (!) applies volume and speed 
adjustments using rather crude algorithms for VGM output. 



 
Kabuto’s converter converts most VGM register writes to the corresponding instructions in 
his player. Since that player can only output samples at a fixed rate of roughly 26 kHz, PCM 
samples from the VGM file (using a bunch of common sample rates such as 16 or 32 kHz) 
are resampled. Samples are - if available - read from the original Deflemask file since 
resampling an 8-bit sample and then truncating it to 8 bits again introduces additional noise 
and this way volume and pitch changes can also be re-done using better quality algorithms 
and before truncating to 8 bits. The 8-bit conversion is only done as the last step. 
 
However, doing pitch changes properly had an unintended side effect. Remute chose to 
speed up a hi-hat sample by a factor of 4 which was turned into a snappy white-noise drum 
by Deflemask’s algorithm whereas Kabuto’s converter shifted it up into ultrasonics, making it 
hardly audible. So in the end a compromise was needed to stay closer to Deflemask‘s 
sound. 

Audio player 
 
The player is nearly the same as the one used in the Overdrive 2 demo with just a few 
additions and bugfixes. I (Kabuto) originally wrote this player because I was unhappy with 
existing players which used low sample rates, had lots of sample jitter and/or distorted 
samples. 
 
The solution was a novel player that solved all these issues at once, (like many other 
players) running solely on the secondary CPU (Z80) so the main CPU doesn’t need to care 
about audio playback. 
 
As mentioned above the player outputs samples at a rate of roughly 26 kHz. Why 26 kHz? 
The sound chip has a fixed clock rate of (roughly) 53 kHz at which it can output new samples 
and its timer can only be made to run at integer fractions of that so it only really makes 
sense to output samples at such an integer fraction, too. Possible sample rates are e.g. 53, 
26, 18, 13, 11, 9, ... kHz. Going for a higher sample rate gives better sound quality but 
implementing a player gets more difficult, samples need more ROM space and loading 
samples from ROM steals more main CPU time - even though it’s a Z80-only player, every 
ROM access will briefly pause the main CPU. I went for 26 kHz because it provides a 
well-noticeable quality gain compared to lower rates and implementation complexity was still 
manageable - and it costs about 4% of main CPU performance which felt alright. 
 
Still, getting 26 kHz sample rate with near-zero sample jitter was very difficult (and that’s 
probably also why to the best of my knowledge no one implemented such a player before). 
There are neither interrupts nor sample hardware acceleration - the sound code needs to 
actively wait for the right moment in time for outputting a fresh sample, typically by 
repeatedly polling a timer. Doing this the usual way (wait for timer, acknowledge timer, write 
sample, loop) leaves hardly any CPU time for other tasks. The solution was to only check 
the timer every now and then but this means having to count CPU cycles. Since that’s very 
cumbersome, especially with code full of branches, I wrote a special assembler that prints 



warnings with a detailed log when there’s a path of execution that could violate timing 
constraints. This simplified the task a lot and made it manageable. 
 
The root cause of sample distortion in most players is DMA - while the video chip is loading 
fresh graphics data into its RAM the Z80 cannot load fresh data from ROM - if it tries to it’s 
forcibly paused until the DMA is over. (Even worse, there’s a very small chance of corrupting 
the main CPU’s RAM when a Z80 ROM access coincides with a DMA.) To address this, the 
player buffers samples and instructions in Z80 RAM (8 KB, shared between buffers and 
player code) - and it requires the main CPU (68k) to use a handshake protocol to tell the 
secondary CPU (Z80) whether or not it’s safe to fetch fresh sample and instrument data from 
ROM. 
 
Unfortunately the sound code can’t be told to “stop all ROM accesses now” - while it’s 
prefetching data from ROM it cannot be interrupted so it needs to be told way in advance 
which in turn is difficult to do on the Mega Drive. In most cases DMAs are only done right 
after the start of vertical blank, for this case there’s a 3rd state of the ROM access flag, 
telling the Z80 to “do ROM accesses as long as they don’t run into the start of the next 
VBlank”. To ensure this the Z80 reads the raster line counter. Unfortunately reading the 
raster line counter also conflicts with DMAs, so soon after vertical blank starts and before 
doing DMAs the 68k must still tell the Z80 to stop ROM accesses, but since the Z80 won’t be 
in the middle of a prefetch it will cease to access ROM and the raster line counter nearly 
instantly - not exactly instantly but faster than the 68k could set up and start a DMA. 
 
When the Z80 reads data from ROM the bus arbiter needs to reserve the 16-bit bus first 
before the ROM access can happen. This imposes a variable delay which on average takes 
3 to 3.3 Z80 cycles depending on the particular Mega Drive model. The music code expects 
those delays to take that many cycles on average - however, many emulators don’t emulate 
that delay at all; this causes the player to play music too fast and distort samples. Other 
emulators have trouble emulating the timer frequency of 26 kHz and play music too slowly 
(and distort samples as well). Both issues are checked for at startup by comparing music 
playback speed with the video signal and a warning screen is shown if a difference is 
detected (I added a huge error margin that’s still small enough to detect all affected 
emulators tested.) 
 
One nasty bug (also present in Overdrive 2) caused music player crashes on some Mega 
Drive 2 models (including Nomads). The root cause was reading a status register and not 
masking out undefined bits which turned out to sometimes not be 0 on those models (though 
still on most affected models eventually settling down to 0 after the chip has warmed up). 
Once caught this was easy to fix, but catching it took a while since of course no emulator 
emulated it. One more reason to always test on real hardware ;-) 

Vector graphics 
 
The vector graphics renderer is based on the renderer from Overdrive 2 which was written 
by Jix which itself was a port of Jix’ renderer from the Wonderswan demo “Finally”. I 



(Kabuto) did a complete rewrite which just shares the same principle - splitting pre-rendered 
frames into row-convex polygons and encoding those - just way more efficiently both 
ROM-space-wise and speed-wise. On top of that a few scenes use additional tricks to meet 
my goal of at least 16.5 frames per second - where render speed allowed for it I went for 25 
FPS. Playback looks smoother on PAL because both frame rates evenly divide 50 FPS and 
thus each frame is shown for the same duration for any given frame rate whereas that’s not 
the case for NTSC and duration each frame is shown jitters between 3 and 4 (16.5 FPS) 
resp. 2 and 3 (25 FPS). There’s no easy way around that without re-rendering the video 
again for 60 FPS and effectively storing it twice, consuming twice as much space. 
 
Have a look at this screen from the video: 
 

 
 
The encoder dissects it into solid-coloured row-convex shapes - row-convex means that no 
horizontal line may intersect the shape more than once. 
 
Also, shapes must have a strict left-to-right order, it must be possible to order them in such a 
way that the left edge of any shape is only adjacent to the right edge of shapes earlier in the 
list. This is important because it could be violated in theory as shapes are allowed to be 
disconnected - e.g. thin polygons tend to generate loose groups of pixels but still technically 
belong to the same shape. Imagine a 2x2 checkerboard - each colour could be encoded as 
a single shape (only a single intersection with any given horizontal line) but if both colours 
are encoded as a single shape each then there wouldn’t be a strict order anymore. 
 
The outcome of splitting the image above into shapes looks like this: 
 



 
 
Shapes that would intersect a horizontal line more than once such as the sky around the sun 
have been split up into multiple shapes to fulfil those conditions - the renderer prefers to split 
along tile boundaries since that allows for faster rendering. 
 
These shapes are then encoded. Since the left border of each shape is equal to the 
combined rightmost border of all shapes that were already encoded earlier, it doesn’t need to 
be encoded and we only encode the right edge - and of course the colour. The encoding 
scheme has a large set of encodings, e.g. for long slopes, and also short common 
sequences. 
 
The decoder doesn’t directly draw those shapes - it’s a deferred renderer that first splits up 
all shapes across bins with a height of 8 pixels each. Each such part of a shape is stored in 
the corresponding bin - all shape segments in all bins look like this: 
 

 
 
When done decoding all shapes, the renderer renders one such bin after another, generating 
tiles. Tiles that are completely contained within a shape are solid and the renderer will use a 
reference to one of 16 predefined solid tiles (one for each possible colour) instead - that’s 
the main reason why the renderer can render so fast. 
 
All tiles that are covered by multiple shapes are allocated in a tile buffer and drawn onto, 
even if all those shapes have the same colour - that’s why it’s beneficial to align boundaries 



between same-colour shapes to tile boundaries to avoid unnecessary allocation of such solid 
multi-shape tiles. 
 
Using an individual tile for each tile slot would take 35 KB and take almost 5 NTSC frames’ 
vertical blanks for transfer and would also need too much VRAM space for double buffering. 
By using solid tiles we can get along with less than 14 KB of tiles per frame. 
 
The final image with solid tiles marked looks like this: 
 

 
 
When done, we have a tile map and a tile buffer, both of which need to be transferred to 
graphics memory. 
 
Since on NTSC such a transfer can take multiple frames, we use 2 buffers both in RAM and 
VRAM (Video RAM). Not using 2 VRAM buffers would lead to glitches while a frame is only 
partially transferred; not using 2 RAM buffers would stall the decoder since it would have to 
wait with rendering the next frame until the current frame is fully transferred. 
 
Having 2 buffers in both RAM and VRAM has the nice side effect that the renderer is 
typically running a bit ahead of what’s currently on screen - and when a few frames need 
more CPU time than available it won’t instantly lag. 
 
A few scenes were still too slow after all (or used more than 14 KB for custom tiles). Most of 
these scenes had some parts that didn’t move at all - e.g. the cockpit pilot view had the 
camera fixed to the ship so only the pilot and the environment moved while the ship was 
static. For those scenes I created an underlay image containing all static elements and 
removed those static elements from the frames to be rendered: 
 



 
 
2 scenes had no static elements but a large number of small rocks. For those scenes I 
created a dictionary of 256 rock tiles which I removed from those images and re-added as 
sprites during playback: 
 



 
 
And some of the hangar scenes were still too complex - I added a special renderer for 
vertical pillars which used a set of static predefined tiles and replaced pillars with solid tiles 
for the vector renderer. Even though my pillar detection algorithm wasn’t very accurate it still 
shaved off enough CPU time for meeting the goal: 
 



 
 
Still, I needed to load those auxiliary graphics dynamically into VRAM. Pillar and rock tiles 
are preloaded since they fit but all the backgrounds need to be loaded dynamically. I split 
each of those into 4 transfers (to avoid exceeding available VBlank time), and to help not 
exceeding NTSC VBlank time I added a register that counts how many tiles can still be 
transferred without exceeding it. Some tests and maths were needed to adjust those 
counters whenever an auxiliary operation is done (transferring background graphics or 
decoding a sprite list). 

FMV 
I (Kabuto) added FMV because there were about 1.2 MB of ROM space left after including 
all music tracks and the vector graphics animation - up to this point the first half of the music 
video only consisted of static images (with distortion effects similar to those in the final 
video). 
 
We had some video footage which Remute originally planned to use for the first half of the 
music video. After deshaking this video it was pretty steady - and the low amount of motion 
left helped a lot with encoding. 
 
I planned to use more advanced compression but to get started I just implemented a very 
simple vector quantisation compression scheme - in the end it was good enough for this task 
and I was running out of time finishing everything so I didn’t bother implementing a better 
scheme.  



 
The compressor first converts the video to use a palette that respects the Mega Drive’s 
colour limitations (16 colours total, only 8 available brightness levels per colour component 
(red, green, blue)): 
 

 
 
Of course it tries to choose the palette so that converted images are as close to the original 
as possible. I chose to rate luma (brightness) much higher than chroma (hue / saturation) for 
a better and distinct overall look. I could have added dithering but time constraints forced me 
to focus on other things. 
 
The palettized video is then sliced into tiles (8x8 pixel squares) and each resulting tile-sized 
video is compressed individually. I marked an example tile for which I’ll explain the next 
steps: 
 

 
 
The marked tile’s content across all frames (contrast enhanced to make differences easier to 
spot): 
 

 



 
My algorithm then chooses a small set of tile instances across those that are similar enough 
to all tiles: 
 

 
 
In this particular case it decided that 8 tile instances are enough to represent all tile 
instances. Depending on the variety of tile instances it can build a set consisting of 1 to 64 
instances. The required similarity is controlled by a global parameter - I adjusted it until 
videos fit well into the remaining 1.2 MB of ROM space. 
 
Once a set is chosen, each original tile instance is replaced with one from that set: 
 

 
 
As you can probably see it’s similar to the original tile instance list but differences do exist. 
 
This procedure is done for each tile. When done, the encoder encodes the reduced sets of 
tile instances and for each frame it encodes which tiles changed compared to the previous 
frame. Tiles tend to not change from one frame to the next in the majority of cases, thus 
omitting them saves ROM space (and speeds up updating as well). The image right above 
shows how little changes there are (at least for tiles that end up having a low number of 
instances). 
 
The video is decoded at 30 frames per second. Since only tiles that changed are copied to 
video RAM this frame rate was easy to hold. 

Greyscale picture 
This picture uses a little trick for showing greyscale pictures of high quality. This trick has 
already been used for a hidden part in Overdrive 2 but hardly anyone has seen it so Kabuto 
chose to re-use it. 
 
Normally a Mega Drive greyscale palette would only have 8 luminance levels. However, the 
hardware offers the unique S/H feature which (roughly speaking) adds 2 special sprite 
colours - shadow (50% opacity black) and highlight (50% opacity white). Putting these on top 
of the 8-step greyscale palette gives us 15 luminance levels total (since black with 50% 
opacity white and white with 50% opacity black yield the same level of grey). 
 



 
 
To go even further I chose to deviate from achromatic colours. E.g. by mixing 2 adjacent 
colours by taking one colour’s green component and the other colour’s red and blue 
components we get 2 colours that are about in the middle regarding their brightness, they’re 
just slightly green-ish / purple-ish. To get rid of the unwanted chroma I alternate between 
both hues on both alternate rows and frames. This adds another luminance level between 
each pair of 2, giving us a total of 29 levels. 
 

 
 
Since reducing an image to 29 levels of grey would still result in visible banding I added 
dithering (though in this case you really need to look closely and zoom the image to spot it): 
 

 
 
On my CRT TV set there was no residual chroma left and no flickering either - the image 
looks totally stable. On emulators (and when playing the video on YouTube) you might or 
might not see a small amount of flickering depending on how well the emulator / video player 
blends frames to match the display’s frame rate. 
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