KubeArmor Event Auditor Design

Table of Contents

Problem Statement we ar lving here?

Sample Use Cases
Sample policy for rate-limited events

Design expectation Limitation
Design Expectations
Limitations & Assumptions

Sample reference policy
Module Design

Handling of events

On New Policy
process-spec-table
On New Process
process-filter-table
On Kernel Event
Overall Event Processing Logic
On Process Terminate

On Policy Delete

On delete container

Handling Rate-limit
Problem with handling rate-limi

Approach 1: Fine-grained approach
Approach 2: Coarse-grained approach

Approach Preference

Performance considerations

Tasklist

Problem Statement we are solving here?

Kernel system calls and other event auditing are done by various tools to detect malicious
behavior of a process. For e.g., if a process which is not part of a “set of processes/process
spec” attempts to access a particular path using open() system call then the module will raise an
alert since it doesn’t expect any process outside of a particular process spec to access that file
or file system path.

Event monitoring/auditing systems are also used by various compliance frameworks (such as
PCI-DSS, SOC2), hardening standards (such as STIGs) and attack frameworks (such as
MITRE) that provide guidelines for setting up defense rules.

Falco is one such event monitoring/auditing system which uses eBPF or kernel module to filter
system events at runtime in the kernel space and check for any malicious behavior based on
rules passed from the user space monitor process.

open() 9 :
for event , | eBPF filter ‘
B oo ST

Filtered
Kernel Space syscall(open) Events
User Space 9
\ 4
Process XYZ ‘ Monitor
fopen() Process

Consider an example scenario where as per the policy only processes invoked from /usr/bin/*
folder would be able to access the /etc/ folder. The allowed process spec in this case is any
process from /usr/bin/* path.

Now let's assume at runtime there is a process XYZ which does not match the process spec
and tries to access a file /etc/crontab.

As per the above figure, following steps will happen:

1. Process XYZ does an open() call on /etc/crontab. This results in a syscall(open) getting
invoked in the kernel space.

2. The eBPF instruction set inserted for monitoring purposes will detect the syscall(open)
event.

3. It verifies that the filter does not match, that is it finds that the process XYZ which is
attempting to open the file /etc/crontab does not match the process spec. It forwards the
event to the monitor process in the userspace.

Event monitoring systems can take into account spatial conditions for filtering and then raise an
event that can be further used for analysis purposes. The spatial condition in the above example
is that when a file open is attempted, the process context is additionally checked to verify if it

belongs to a process spec before raising an event. Thus, the process context (hame, pid,
namespace, process path) are the spatial conditions on which the open() event could be further
filtered.

Quality of such monitoring/filtering/auditing systems is dependent on:
1. How well the filters can represent the rules as mentioned in the compliance/hardening
standards?
2. How much performance overhead is added by the filtering system?

Problems with monitoring/filtering/auditing systems:
There are two problems with such systems

1. There is no option to apply conditions based on rate-limit. For e.g., generate an audit
event only when a certain system event is detected more than 10 times per unit time
(say 1 min).

2. No option to apply temporal correlation. Currently the filters operate on the context
available on that event instance. Temporal correlation is not possible. For e.g., setting a
filter which says if network send() syscall is invoked more than 100 times in 1 min and
file read() is invoked more than 100 times per second then raises an audit event.

Problems addressed by this design:
To overcome the problems mentioned above, this idea attempts to make two major changes:

1. The idea allows to specify the rate-limit filters and temporal correlation filters from the
userspace, but the filter is completely handled in-kernel and only the final result is
emitted to user-space. This prevents any unnecessary context-switches.

2. The idea provides an improved schematic/design to implement the
rate-limit/temporal-correlation filters such that the memory overhead and the in-kernel
processing overhead is kept to the minimum.

3. By using policy constructs defined in this idea, a policy engine could avoid a lot of false
positives in the real environment making the security engine robust.

Sample Use Cases

Sample policy for rate-limited events

apiVersion: security.accuknox.com/vl
kind: KubeArmorPolicy
metadata:
name: ksp-wordpress-config-block
namespace: wordpress-mysqgl
spec:
severity: 10
selector:
matchLabels:
app: wordpress
- process: *, -*/bash, -*/sh
msg: "readdir limit exceeded"
severity: 5
- syscall: readdir
paraml: /*, -/home/*, -/var/log/*
rate: 10pls

Sample policy allowing temporal correlation of events

apiVersion: security.accuknox.com/vl
kind: KubeArmorPolicy
metadata:
name: ksp-wordpress-config-block
namespace: wordpress-mysqgl
spec:
severity: 10
selector:
matchLabels:
app: wordpress
- process: *, -*/bash, -*/sh
msg: "readdir limit exceeded"
severity: 5
- syscall: readdir

paraml: /*, -/home/*, -/var/log/*
rate: 10pls

Design expectations & Limitations

Design Expectations

The design should sufficiently explain:
1. How will the process filter work?
a. How to ensure that least amount of overhead is incurred while handling
processes which are not of interest?
b. How to ensure that the events that the policies are not interested, do not induce
additional control overhead?
2. What eBPF bytecodes have to be loaded, both statically and dynamically?
3. How event parameter handling will be done? Event parameter handling must incur the
least overhead.
4. How rate-limiting will work?

Limitations & Assumptions

—_—

Works only for systems supporting eBPF >=4.18

2. Different policies could induce different amounts of overhead. Thus, the use of syscalls
to monitor must be properly reviewed and performance implications understood. In the
future, we could have a system that can identify an approx overhead added by the policy
and inform/alert the user.

This design assumes linux kernel >=4.18

w

Sample reference policy

apiVersion: security.accuknox.com/v1
kind: KubeArmorPolicy
metadata:
name: detect-active-network-scanning
namespace: multiubuntu
spec:
- process: *
msg: "local reconn attempt with TCP scan”
severity: 5
- syscall: connect //FD1

proto: *P

ip4addr: 192.168.10.10/25 exffffff86, 10.*.*.* Oxff0000000,
192.168.*.1 oxffffeoff

rate: 20pls

- syscall: connect //FD2

proto: FILE
path: /tmp/*
rate: 20pls

- process: *, /bin/*sh, -*ssh
msg: "consecutive RAW sends”
severity: 5
- syscall:raw_sendto

param2: 192.168.*.*% 10.* % %
rate: 20pls

- process: *, /bin/*sh, -*ssh
msg: "consecutive RAW sends”
severity: 5
- syscall: raw_send

param2: 192.168.*.*% 10.* % %
rate: 20pls

- process: *
msg: “outbound probes detected”

severity:
- kprobe: tcp_rst
Rate: 10pl1s

- process: *
msg: “inbound probes detected”

severity:
- kprobe: tcp_rst_send
Rate: 10pis

Note: Not every event might be associated with a process spec. There are events that are
generated which may not have any associated task structure.

Module Design

KubeArmor Userspace Daemon KubeArmor Kernelspace Handlers
kernel event
onNewContainer
k8s event watcher Jn%”e’\éfg:f?t":fr’ 57| | process-spec-table process-filter-table
onRemPolicy)
onNewPolicy u
ARt 5 ¥ J Bytecode .
udit Even ecode insert i
Handler ‘ Gg;cwerator delete invoke event-fiCE
N
Audit Event

Handling of events

On New Policy

When a new policy is provided as an input the policy might be either a
1. Container based policy
2. Host based policy

In either case, a new entry would be added in the process_spec_table containing the pid-ns of
the container. In case of host-based policy the pid-ns would be 0.

process-spec-table

Container pid-ns process-spec event-filter-spec
12345 * [event1-fd1, event2-fd2, ...]
53678 /usr/bin/*sh [event3-fd3, ...]
12312 *, =*I*sh [event4-fd4, event5-fd5, ...]
5235 [NA]

0 (host-based)

Points to note:
1. There could be several event-filter-specs for the same [pid-ns, process-spec] tuple.
2. 0 pid-ns indicates host-based rules

3. The event-filter-spec contains eBPF bytecode that is compiled on demand. The
event-filter-spec has the event type/info for which the corresponding

event/kprobe/tracepoint would be loaded.
Every event-filter-spec’s compiled bytecode is pre-loaded in the

BPF_MAP_TYPE_PROG_ARRAY for tail-call processing and file-descriptor noted in the

event-filter-spec column.

onNewPolicy

Kubeamor Userspace Daemon

1) insert entry

KubeAmor Kernel Space Handler

(1
{ KBs event watcher J

Bytecode
Manager

Audit Event
Handler

\‘w., \ / <3>attach

On New Process

"—‘/_'_"_,‘__44-——————5

/ 4\\ update entry with FDs

2 | load

pr

pec-table

process-filter-table

Bytecode

Bytecode

generated

(dynamically (statically
- generated -
entry pnlnt) entry pu)nts)

Bytecode
(statically generated)
OnNewProcess
onProcessTerminate

Bytecode
(statically
generated)

matchProcess

The process-filter-table is a bpf map that stores the mapping of {pid-ns, pid, event-id} to the
corresponding set of { event-filter-fds }.

process-filter-table

Pid-ns, pid, Event-ID

SYSCALL-CONNECT}

{ Oxcafebabe, Oxdeadface,

Event-filter-FD
[FD1, FD2]

Opaque Data

[...event-handler can
keep rate-info and other
event specific data...]

[TODO]: The process wildcard matching has to be done in the kernel space. Write a prototype
code to validate the wildcard matching can be implemented effectively in kernel space.

onNewProcess() pseudo-code
Input: event_info_t (check next section for details)

matches.

a. If there is no match,

e Check the process-spec-table and check if the container-pid-ns

ignore the new process event.

https://docs.cilium.io/en/stable/bpf/#tail-calls

process-filter-table.

e If there is a match, add a new entry into the

e Note the event-filter-fd-map has to be populated.

onlewProcess

KubeAmor Userspace Daemon 9 KubeAmor Kernel Space Handler
(1) read/match
KBs event watcher process-spec-table b process-filter-table
) 4
[2) insert new entry
.. R
1
1) Bytecode Bytecode
: Bytecode Bytecode (statically generated) (statically
g (dynamically (statically onNewProcess generated)
Audit Event ‘ Bytecode R gen:rated rtr)m g:neratgdt—) onProcessTerminate matchProcess
Handler Manager entry poin entry points S
7/

On Kernel Event

< OnKernelEvent)

OnEvent
»

handleEvent(ctx) (<« -

Bytecode which handles kernel event, creates
event-info and passes it on to matchProcess(..)

event-type: syscall/kevent/kprobe

event-id: connect
context: ctx

} event_info;

tail-call(event_info, &matchProcessMap, 1)

y
matchProcess(..)

based on process-
spec-table

Match process spec <<". Bytecode loaded one-time and
common for all events

tail-call(ctx, &eventinfoMap, FD)
y

A

y Bytecode autogen based on the
Event filter bytecode (< - - - |provided event-filter-spec in
the policy YAML.

onKernelEvent

Note:
"""""""""""""""""""""""""""" Statically generated bytecode
KERNEL EVENTS BYTECODE
Bytecode added/deleted based

on policy event-filter spec.

(kprobe: connect) (syscall: mmap)

(kprobe: socket) (kprobe: unlink) Gracepohﬁ:neﬂneﬁﬁj%)

tail-call(event_info, &matchProcess, 1)

process-filter-table

Note:
pid-ns, pid, event-id event-filter-FDs Opague data [64B] .reia’d. matchProcess Stat ically generate‘j bytECOde
0x12345, 0x4434, OXCONNECT| [FD1, FD2] [this is filled by the ByteCode Bytecode NEVER deleted.
0, 0x12121, 0xSYS_BIND [FD3] event-handler-bytecode...]
A

read/update opague data - tail-call(event_info, &event_filter, ID)

I

PoL1icy EVENT FILTER HANDLER BYTECODE !

I

(' FDlhandler) (' FD3handler) (__FDahandler) |
I

tail-call() FD5 handler |

, () |

I

(FD2handler) (" Toshandier D) |
I

___)

back-to-requiar-processing |Note:
Dynamically generated bytecode
based on policy event filter.

Bytecode added/deleted based
on policy event-filter spec.

event-info-structure

Note that this is not a bpf-map. This is an internal data-structure used to pass between tail-calls.

struct event_info {

uint32_t id; // updated by kernel-event bytecode
uint32_t fdset[MAX_FD_PER_EVENT]; // updated by matchProcess bytecode
void *context; // updated by kernel-event bytecode

} event_info_t;

where..
id is the event-id .. such as SYSCALL-CONNECT, KPROBE-TCP_RST
fdset is the set of event handlers for the given kernel event
context is the kernel context available for the kernel event

onKernelEvent pseudo-code

A kernel event of interest (i.e., one which is enabled based on
policy-event-filter) is called. Note that an event handler
bytecode for a kernel event is inserted only if there exists a
corresponding policy that operates on that kernel event.

The primary task of kernel_event_bytecode is to create an
event_info { event_id, context } and then call the matchProcess
bytecode.

The matchProcess matches the process. Once the
process-filter-table entry is identified, the logic gets a list
of tail-call FDs to call. The 1list of FDs are called one after
another in the same sequence in which they appear in the policy
spec.

The tail-call FDs are called one after another based on the FD
set.

The event-handler might want to update the runtime state in the
opaque-data of the process-filter-table.

Notes:

1.

It is possible that we receive a kernel event that does not have an associated process.
For e.g., kprobe:tcp_rcv_reset. Such events could only be added for host-based audit
rules.

Note that New process event from the kernel needs a special handler, because it needs
to fill the process-filter-table and might have to process the event-filters.[TODO].

onKernelEvent

Kubeamor Userspace Daemon Kubeamor Kernel Space Hanadler

KBs event watcher ’ process-spec-table process-filter-table

P

-
Audit Event Bytecode
Handler Manager

(5 /]-(ail call :\j./: tail_call \ 2) read/match

=
[6) audit event

e

1 1

¥ 1] Bytecode Bytecode
Bytecode Bytecode H (statically generated) (statically
(dynamically (statically E onlewProcess generated)
generated - no generated - |} onProcessTerminate

matchProcess

entry point) entry points)

— - —~

- . : ~

ey

P
[4 | audit event
—/

Overall Event Processing Logic

From Userspace

Kernel-Space
onNewPolicy
onNewContainer

onRemContainer

onNgwProcess

Match thg process-spec FD1: ByteCode

y - kevent: syscall, connect
paraml: x, y, z

rate: 10pls

process-spec-table

Container (pid-ns) process-spec event filter_spec
12345, *, -*/bash, -*/sh [eventl-FD1, event2-FD2, .. max] FD2: ByteCode
0 (for host-based rules) */nginx event3-FD3
*/bash event4-FD4 - kevent: kprobe, tcp_send_reset
paraml: x, y, z
rate: 10pls
createNewEntry
y
process-filter-table
pid-ns, pid, event-id event-filter-FDs Opague data [64B]
0x12345, 0x4434, 0xCONNECT| FD1, FD2, .. max_filters_per_ps [this is filled by the " onProcessTerminate
0, 0x12121, 0xSYS_BIND FD3 event-handler-bytecode...]
onKernelEvent

ProcessEvent: ByteCode updateOpaguieData()
event-type: SYSCALL/KPROBE
event-id: CONNECT
context: ctx

} event-info

bpf_tail call(event_info, &matchProcess, 1)

Update rate limit related parameters

tail-call

A 4

MatchProcess: ByteCode FD1: ByteCode

event -id=mapEventID() tail-call

Key={pid_ns, pid, event-id}
1. entry = bpf_lookup_map_elem(key)
2. bpf_tail_call(ctx, &event-filter-map, FD)

» - kevent: syscall, connect
paraml: x, y, z
rate: 10pls

AuditkEvent(msg, severity)

Userspace

On Process Terminate
[TODOQ] cleanup process-filter-table

On Policy Delete

Handle update of process-spec-table. This may lead to removal of loaded event-filter-spec ebpf
bytecode and deletion of corresponding descriptors.

On delete container

Remove entry from the process-spec-table
Handling Rate-limit

Problem with handling rate-limit

Periodl Period2

Adjoining time quantums

Periodl Period2
i — r PP 1
o :O 000000000 o0—+——————————— >0

--------------------- - Time

Overlapping time quantums

Consider the case where an event is to be observed with a rate of 10 per one second. The
Period here is 1 sec. The dotted box shown in the figure above shows 1 second time period.
The circles on the timeline show the occurrence of the events.

Approach 1: Fine-grained approach

This approach allows one to calculate the precise rate-limit but requires more memory to be
maintained since every event observed in the time quantum has to be stored. There is also
more processing time required because of the store and cycle operations.

Approach 2: Coarse-grained approach

This approach reduces the memory requirement by using adjoining time quantums but this may
result in some cases that the rate-limits are not observed.

Approach Preference

Approach 2 results in much less memory and processing overhead. Also consider that in
real-world cases, we do not expect the user to specify the exact rate i.e., user will in general
provide a lower limit for the rate. For example, for the active-scanning policy scenario depicted
in this document, the rate-limit of 10p1s is depicted but in reality the scanning speed will be
much faster i.e., Approach 2 should easily be able to detect the rate.

Performance considerations

1. If an event is not attached by any policy then there should not be any runtime overhead
associated with that event handling.

2. Minimum runtime overhead if an event is attached but the process is not of interest. We
need to matchProcess and discard it. This will currently result in one map lookup and
one tail-call before the event is discarded. It may be possible to remove the tail-call but
will add additional memory requirements since the handleEvent() and matchProcess()
has to be bundled together.

Tasklist

1. Prototype code: eBPF bytecode to match process wildcard pattern [OPTION1]
2. Prototype code: Auto generate event-filter bytecode. Merge multiple event-filter
bytecodes into single code.
3. Prototype code: Handling tail call and corresponding argument call.
For a detailed tasklist check ref.

https://github.com/nyrahul/libbpf-bootstrap/blob/master/examples/c/patmatch.bpf.c
https://docs.google.com/spreadsheets/d/1cM8aiLovzYtawyKbZ0FSKRSIFuxWEgxipAAdMLo_eHM/edit#gid=226946036

	KubeArmor Event Auditor Design
	
	Problem Statement we are solving here?
	
	Sample Use Cases
	Sample policy for rate-limited events

	Design expectations & Limitations
	Design Expectations
	Limitations & Assumptions

	Sample reference policy
	Module Design
	Handling of events
	On New Policy
	process-spec-table

	On New Process
	process-filter-table

	On Kernel Event
	event-info-structure

	
	Overall Event Processing Logic
	On Process Terminate
	On Policy Delete
	On delete container

	Handling Rate-limit
	Problem with handling rate-limit
	Approach 1: Fine-grained approach
	Approach 2: Coarse-grained approach
	Approach Preference

	Performance considerations
	Tasklist

