

Syllabus

Faculty:	Faculty of Geosciences	
Name of study program:	Materials and Metallurgy	
Department:	Materials and Metallurgy	
Level:	Bachelor	
The code of subject:	110.M Physics II	
Subject:	Physics II	
Subject Status:	Compulsory	
Semester:	Summer	
Total hours:	3+2	
ECTS:	7	
Schedule / Hall		
Academic year:		
Professor:	Prof. Asoc. Dr. Nazmi Hasi	
Assistants:	PHD. Candidate Arber Zeqiraj	
Contacts:	Mësimdhënës/e	Asistent/e
Email:	Nazmi.hasi@umib.net	Arber.zeqiraj@umib.net
Phone:	044170727	044565229

BRIEF CONTEN T OF SUBJECT	Basic knowledge of physics II.	
AIMS	<ul style="list-style-type: none"> • To teach the student physical sizes and their measurements • Enabling students to formulate laws, postulates and path of physical phenomena. • Training activities independent researcher in the field of natural phenomena. • The physics of electricity, and the magnetization. Physics of materials, physics of the atom and the nucleus of an atom 	
EXPECT ED LEARNIN G OUTCOM ES	<ul style="list-style-type: none"> • To understand the basic phenomena and physical laws. • Provides convenience to the subjects that use physical laws. • To solve physical problems 	
PROGR AM	Weeks	Topic and Readings
	Week - I	Electricity: Electrical Charges, Conductors and isolators, Coulon's law, quantization and maintenance of electrical load
	Week - II	Electric fields, Gauss law, electric potential energy and electric potential, electric capacity, electric energy field

Week- III	Electricity: Electrical Resistance, Omm's Law, Electrical Circuits
Week - IV	Magnetization. Magnetic field of power element and electrical's load in motion,
Week - V	The movement of charged particles in the magnetic field, interaction of currents, some practical applications
Week - VI	Electromagnetisms: Faraday's law of induction, Alternative currents, generator, transformator
Week- VII	Electromagnetic waves, Geometrical optics, Physical Optics
Week - VIII	Introduction to the physics of atomic and molecular structure, materials science, chemical bonds, crystal structures, symmetry and defects, amorphous structures, mechanical properties of materials
Week - IX	Electronic structure of materials, The orbital hybridization and spatial structure of biopolymers, The wave functions of the system Bozone- fermions, Paul's principle.
Week - X	Accompanying properties of materials, electrons and holes, influence of crystal structure (phonon's, transportation of electricity of soliton's and polaron's one-dimensional, semiconductors and conductors and their application classification)
Week - XI	Superconducting properties of materials: Londonov's and Ginzburg-Landau's Theory and Josefson's microscopic connections, superconductor and classification, characterization and their application.
Week - XII	Dielectric properties of materials: The relation of Klauzius-Mosotiev, polarizability theory, dielectric strength, dielectric classification, characterization and implementation.
Week- XIII	The magnetic properties of materials Regulation weak and strong magnetic macroscopic structure of the magnets, the magnets (classification, characteristics and implementation)
Week - XIV	The nucleus of the atom: The composition and the electric charge of the nucleus, dimensions and shape of the nucleus, and energy measures of core connectivity, nuclear forces
Week - XV	Decomposition radioactive Time of semi decomposition, breaking conservation laws radioactive types of radioactive decomposition, detection of radiation, nuclear reactions, nuclear reactors

LITERATURE	<p>Basics Literature:</p> <ol style="list-style-type: none"> 1. Fizika , Dr.Shukri Klinaku, Prishtinë, 2014 2. Dr. Skender H. Skenderi & Dr. Rashit Maliqi, Fizika për studentët e fakulteteve teknike, Prishtinë, 2005. 3. Dr. Skender H. Skenderi & Dr. Rashit Maliqi, Përbledhje detyrash nga Fizika, Prishtinë. 4. Dr. Skender H. Skenderi & Dr. Rashit Maliqi, Ushtrime interaktive dhe laboratorike nga Fizika, Prishtinë <p>Literatura plotësuese:</p> <ol style="list-style-type: none"> 1. Joel L. Lebowitz, Boltzmann's entropy and time's arrow, Physics Today 46 (2013) 2. Halliday & Resnick, Fundamentals of Physics 11th edition 2018, https://www.wiley.com/en-us/Fundamentals+of+Physics%3A+Extended%2C+11th+Edition-p-9781119306856 4. Greiner W. Classical Mechanics.. Point Particles and Relativity (Springer, 2003) 5. D. Raković, <i>Fizičke osnove i karakteristike elektrotehničkih materijala</i> (Akademska misao, Beograd, 2000) 6. L. A. Gribov, S. P. Mushtakova, <i>Kvantovaya himiya</i> (Gardariki, Moskva, 1999) 7. L. A. Gribov, <i>Ot teorii spektrov k teorii himicheskikh prevraschenii</i> (URSS, Moskva, 2001) 8. D. Raković, Lj. Turković, S. Krstić, <i>Savremeni materijali i tehnologije</i> (Grosknjiga, Beograd, 1997). 9. D. Raković, P. Osmokrović, N. Arsić, <i>Elektrotehnički materijali. Zbirka zadataka</i> (Akademska misao, Beograd, 2003). 10. Sistemi ndërkombëtar i njësive, SI, Skender Skenderi, Prishtinë, 2005
TEACHING METHODS	<p>Direct teaching (through explanation, practical exercises and numerical examples).</p> <p>Teaching through demonstration and Experiment.</p> <p>The learning through projects, research works on the ground.</p> <p>Self research</p>

**Contribution to student workload (which should correspond to student learning outcomes
1 ECTS credit = 25 hours)**

Activity	Hours	Day/Week	Total
Lectures	3	15	45
Exercise sessions - theoretical	2	15	30
Field exercises			
Practical work			
Consultation with the professor / assistant	1	15	15
Colloquiums / seminars	2	2	4
Independent tasks (work)	1	4	4
Student self study time (in library or at home)	4	15	60
Final exam preparation	7	1	7
Time spent in assessment (tests, quizzes, final exams)	2	3	6
Projects, presentations, etc.	2	2	4
Total			175

EVALUATION

Evaluation methods
[according to the Statute and Regulation of UMIB Studies]
Tests
20%
Practical test during exercises
Seminary work (in word)
20%
Interpretation and presentation of seminary work
Tasks and essays during the semester
Final exam
40%

ACADEMIC MICRO- POLICIES ES	<ul style="list-style-type: none"> • To give students an understanding of the fundamental principles of physics and their application to everyday life and technology • To develop an appreciation of physics as a human endeavour, thereby enriching the students' experience of life • To provide a reasonably broad perspective of physics, thus developing an understanding of the physical environment and of how human beings interact with it • To provide a general education in physics for all students, whether or not they proceed to further studies in physics • To develop the ability to observe, to think logically, and to communicate effectively • To develop an understanding of the scientific method • To develop an appreciation of physics as a creative activity, using informed intuition and imagination to create an understanding of the beauty, simplicity and symmetry in nature.
--	--