
CS 60 - HW10

HW10: Spampede!

The learning objectives of this homework are:

●​ Become familiar with the Model-View-Controller pattern of object-oriented

programming for programs with a graphical user interface

●​ Gain practice working with an established codebase

●​ Build a fun game!

The Spampede game is a variation of the familiar Snake game in which you maneuver a growing

snake around a board to eat dots of spam. Press Start to begin the first game, or New Game to

restart. The game is controlled by the ijkl keys to move up, left, down, or right, respectively.

Pressing a enables an AI mode in which the snake hunts spam autonomously.

The game is implemented with three interacting classes and a few helper classes:

●​ SpampedeModel: store the game board and handle game logic

●​ SpampedeView: draw the board and user interface in a window

●​ SpampedeController: main method, respond to user clicks and keypresses

Note: This assignment is two weeks long and counts as two-assignments’ worth of points. It is

substantially longer than previous assignments. Work on it gradually rather than trying to do

it all right before the deadline.

As always, please let us know if you have questions or get stuck -- we are happy to help!

— Your profs & your awesome CS60 Grutoring team!

Part 0: Complete the Module

Part 1: Draw the board

Part 2: Get neighboring cells

Part 3: Move the snake within the board

Part 4: Handle (some) key presses

Part 5: Write code to reverse the snake

Part 6: Search for Spam: Implement AI Mode!

Part 7: Submit!

Rubric

Part 0: Getting Started

Pull hw10 from the CS60 Github repository. Create a new hw10 VSCode project. Add all the

.java files to hw10/src/com/gradescope/spampede. Add the crunch.wav, Spam.au, and spam.gif

to the top level (hw10) directory.

Go to the flask icon, enable Java Testing (JUnit), and run all the tests. BoardCellTest should

pass and all the others should fail, with many problems reported such as methods not returning

results and methods unused.

Run the SpampedeController.java main function. You should see the following window appear.

Remember to close the window after each time you run Spampede, so you don’t have many

copies cluttering up your system.

Part 1: Draw the board

Task: Draw the board (which contains the walls, the snake, the spam, and the empty cells), and

fix the typo in the title of our game.

Code: SpampedeView.java: updateGraphics(), Preferences.java

●​ Fix the title of the game in Preferences.java to be “Spampede.”

●​ Modify updateGraphics() in SpampedeView.java to draw the board based on the

contents of the model (model). Because a lot of useful functionality is already present in

other methods, you should not have to write very much code (10 lines or less)

○​ Hint: Be careful to correctly match row vs column and x vs y. Note that a cell is

larger than one pixel (see Preferences.CELL_SIZE).

○​ Hint: Look at getCellColor in SpampedeModel.java.

○​ After you complete this step, you should see the following board:

●​ Shift the board

○​ Modify the code in updateGraphics()to shift the board 90 pixels down

and to the right. You should see the title and the following board:

○​ Oops, 90 pixels was not quite right – the board is too far down and to the right.

While we could play around with other numbers, add code that computes a

good offset so that the board is centered horizontally and looks nice

vertically. You should use this.width, and you can use constants from the

Preferences class (e.g. Preferences.CONSTANT_NAME).

●​ Once you have completed this part, please take a screenshot to submit later as

Spampede.jpg.

●​ Submit the following files to the Gradescope assignment “HW #10.1 Spampede board”:

○​ Spampede.jpg

○​ SpampedeView.java
○​ Preferences.java

●​ Note about submitting image files:

○​ Sometimes your computer will hide the file extension (e.g. .jpg), which can make

it harder to submit a file with the right name!

○​ View file extensions on Windows 10 or Mac

○​ Convert to jpg: Google can direct you to some useful resources

http://www.google.com/search?q=view+file+extensions+windows+10
http://www.google.com/search?q=view+file+extensions+macOS
http://www.google.com/search?q=convert+a+png+to+a+jpg

Note: For the remaining parts, you can submit your files (SpampedeModel.java and

SpampedeController.java) to the Gradescope assignment “HW #10.2-6 Spampede

functionality”.

Part 2: Get neighboring cells

Task: Write code that can determine the location of a snake’s neighbors on all sides. We will also

write code that can determine to which neighbor the snake will move next (based on its

current location and the direction in which it is heading).

Code: SpampedeModel.java: get...Neighbor(BoardCell) and

getNextCellInDir()

●​ Implement the four get...Neighbor(BoardCell) methods in

SpampedeModel.java so that the tests in SpampedeModelTest_Neighbors.java

pass.

○​ Note: You should never make new BoardCells! Instead, return a reference to

BoardCells that are already within the SpampedeModel object.

●​ Implement getNextCellInDir() in SpampedeModel.java so that the tests in

SpampedeModelTest_CellInDir.java pass.

○​ Hint: Use this.currentMode and provided methods.

○​ Optional: You are welcome to use a switch statement rather if-then-else.

●​ You might find it helpful to look at pictures of the test boards.

Part 3: Move the snake within the board

Task: Write code that causes the snake to move around the board.

Code: SpampedeModel.java: moveSnakeForward(BoardCell), and possibly helper

methods

●​ Implement moveSnakeForward(BoardCell), which moves the snake to the cell

provided as an argument. Keep in mind the following.

○​ Requirements:

■​ You might want to add a method (or two) in SpampedeModel.java to

modify the data for your game (e.g. snakeCells) as desired. Add these

helper methods in the section titled “Snake movement
methods”.

■​ You should not create any new BoardCells or modify the row or column

of any existing BoardCells. Instead, you should use the BoardCell

methods becomeHead(), becomeBody(), and becomeOpen(). That

is, delegate when possible (i.e. rely on methods and hide implementation

details).

○​ Implementation details:

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html
http://tinyurl.com/spampedeTestBoards

■​ snakeCells is of type LinkedList<BoardCell>, which is the

Java-library version of a doubly-linked list (a list in which each node has

references to the previous and next nodes). Check out its documentation.

■​ If nextCell is not spam, the snake should move. That is, nextCell will

be the new head, and the last piece of the tail will no longer be part of the

snake.

■​ If nextCell is spam, the head should be moved forward (and the tail

stays the same spot).

●​ After completing this part, the tests in SpampedeModelTest_UpdateSnake.java should

pass.

Part 4: Handle (some) key presses

Task: Allow the player to move the snake, by pressing keys on the keyboard

Code: SpampedeController.java: keyPressed(KeyEvent)

●​ Add the missing cases to keyPressed(KeyEvent) in

SpampedeController.java so that when you press the relevant key, it updates the

snake direction.

○​ Hint: Use the setDirection...() methods in SpampedeModel.java.

○​ No magic strings (or characters) please! Use the provided constants for key

mappings (e.g. follow the example that uses PLAY_SPAM_NOISE).

●​ While you can write this code using if-then-else statements, you are probably better

off using switch statements.

○​ Note: By default, Java “falls through” switch statements, as in all statements after

the matching case label are executed in sequence. To prevent fall-through, put the

keyword break at the end of each case!​

After completing this part, you should be able to run SpampedeController.java and play

the Spampede game!

Note: At this point we have covered 85% of the grade for this assignment (including style). You

can stop here if you want, or go on to implement reversal and AI for the remaining 15% of the

grade.

http://docs.oracle.com/javase/8/docs/api/index.html?java/util/LinkedList.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html

Part 5: Write code to reverse the snake

Task: Make it possible for the snake to reverse itself.

Code: SpampedeModel.java: reverseSnake()

●​ Implement reverseSnake() in SpampedeModel.java, which reverses the snake.

○​ Hint: Look at pictures of the test boards, and try to manually compute the new

direction of the snake. The new direction does not involve the old direction of the

snake, only the position of the new head and new neck. For example, when the

snake below is reversed, it will be going South.

●​ After completing this part, the tests in SpampedeModelTest_Reverse.java should pass.

In addition, you should be able to press the 'r' key during the game and have the snake

reverse.

○​ Note: These (and all) test cases are not guaranteed to be comprehensive. It is

possible that your code will have errors that are not caught by these test cases,

and we encourage you to test the functionality within the game to help catch

additional errors.

Part 6: Search for Spam: Implement AI Mode!

Task: Implement a search-based AI that can automatically play the game

Code: SpampedeModel.java: getNextCellFromBFS() and helper method

getFirstCellInPath(BoardCell)

●​ Complete getNextCellFromBFS() in SpampedeModel.java, which returns the

BoardCell on the path to the nearest spam.

●​ In writing BFS, you will need to decide the order in which you add the neighbors of each

cell to the Queue.

○​ To satisfy our test cases, you should add the neighbors in the following order:

North, South, East, West. (Hint: This order is already encoded in a provided

method of SpampedeModel.java. Find the method (and use it)!

○​ So, if there are two spams that are equidistant, you should return the path to the

one you found first (i.e. based upon adding the neighbors to the queue in the

above order).

●​ Read the test cases. After completing this part, you should pass the tests in these files:

http://tinyurl.com/spampedeTestBoards

○​ SpampedeModelTest_CheckParentsBFS.java
■​ This test file uses a method of white-box testing, where we look inside

the structures (here, we look at the parent references of BoardCells) to

make sure that the algorithm is behaving as intended.

■​ These tests assume the BFS algorithm stops when a target (spam) is

dequeued.

○​ SpampedeModelTest_GetNextCellFromBFS.java
■​ This test file uses a method of black-box testing, where we just test the

functionality of the methods without needing to know the algorithm or

data structures used.

○​ In addition, you should be able to press the 'a' key during the game and have

the snake find spam automatically!

Part 7: Submit!

●​ As always, please check your code against the CS 60 style guide.

●​ Submit the following files:

○​ To the Gradescope assignment “HW #10.1 Spampede board”

■​ Spampede.jpg

■​ SpampedeView.java
■​ Preferences.java

○​ To the Gradescope assignment “HW #10.2-6 Spampede functionality”

■​ SpampedeModel.java
■​ SpampedeController.java

Rubric

Name Autograder Functionality Style Total

1 Draw the board 0 12

30

12

2 Neighbors 24 0 24

3 Move the snake 22 8 30

4 Key presses 0 6 6

5 Reverse 4 2 6

6 AI 11 1 12

 50.83% 24.17% 25.00% 120

	
	Part 0: Getting Started
	Part 1: Draw the board
	Part 2: Get neighboring cells
	Part 3: Move the snake within the board
	Part 4: Handle (some) key presses
	
	Part 5: Write code to reverse the snake
	Part 6: Search for Spam: Implement AI Mode!
	
	Part 7: Submit!
	Rubric

