
Variable Access Library
by Pixeltale Motion

Description

Variable Access Library will improve your blueprinting workflow by allowing you to
create a widely modular coding structure, reducing your code to a minimum, making it
look cleaner and more organized.
All hard reference calls via "Cast To" can be replaced with this library using soft
references which result in a way more performant code and lower RAM usage.

With an evergrowing library of functions, you can GET/SET variables of the supported
types of any object simply by name (soft reference), but also Get All Variable Names of
a Target, Execute Functions by name, and much more.

To help to debug, the plugin allows you to print error messages to the log and/or screen
(can be toggled in the project settings), with all needed information so you can find
missing references faster.

All functions are widely accessible (in C++ and blueprint)and support also replicated
variables and RPC events.

Why is this better than a cast?

These functions all utilize soft references!
Because of these soft references, actor classes can be easily deleted without needing
to replace the cast nodes or to worry that these cast nodes break, supporting a modular
blueprint structure for complex modular code. This also is very useful to merge multiple
project files together and won’t require you to replace all cast nodes (This plugin is
comparable with Unreals Interface System)
The most important reason is, that with less hard references load times will be
way shorter and your RAM will not fill with references.
Very useful cases are overlap or line trace detection with multiple different actor
classes. Instead of casting, one node of this library can set Variables of any actor, and
as many actors as needed, anywhere. The only requirement is the existence of that



variable of the required type and name in the referenced target. Correctly setting
up and using this plugin will save you a ton of time and keep problems far away.

Plugin Settings (Supported in V1.3) If requested I can also add successful
messages!

To ensure easier debugging for all functions, I added 2 global booleans via Project
Settings.

If set to true each function will print a warning to the log and on the screen if the
searched for variable couldn’t be found





How to connect

Target -> Connect the object (like actor or player character) which contains the required
variable

Var Name -> here you add the variable name exactly as named in the Target.

Return Value -> true if variable exists in Target

Out Value -> returns the variable value



How to set up - General Example

This is a general explanation on how to utilize the functions correctly. If you need a
more specific example, check out the example project!

1. Create any object type

2. Create Variables of supported type

3. Setup other objects which may need to refer from the first object (an actor component in this
example)



4. Build up a reference to the actor holding the variable (in this example we handle that through
ownership)

5. Build Code to receive setted variable by name from referred object (the owner in this case)

6. Place in world and test



How to set up - Component Example

This is an explanation on how to utilize the functions when requesting a variable of a
component.

1. Create an actor component and add a float with the Name “Health”

2. Add Component to Player Character



3. Request Health Variable

“Get Object by Name to receive our component.
Var Name should be set with the exact name as in your player character.

“Get Float by Name” we get the float “Health”


