How to Find a Local Maximum and Local Minimum of a Function

A. Local Maximum and Minimum Values

- 1. Find the critical numbers of f that is the numbers c where f'(c) = 0 or f'(c) does not exist.
- 2. Create a testing table with the first row including critical values c with an ascending order to the right. (see below)
- 3. The second row is for f'(x). At any critical values c, f'(c) should be either 0 or DNE according to how you find the values in #2.
- 4. The third row is for the behavior of f(x). Use the First Derivative Test for a value between those between critical values. If the interval that *f* ' *is* positive, then *f* is increasing, and the interval on which *f* ' *is* negative, then f is decreasing. Use arrows to note the behavior of f.

5. If f 'changes from positive to negative at a critical number c, then f(c) is a local maximum. If f 'changes from negative to positive at c, then f is a local minimum.

	J	71-111-8-1	 5	0 0 0 - 0 - 1	,	 	
X							
f '(x)							
f(x):inc/dec							

B. Concavity and Points of Inflection

Compute f " and use the Concavity Test. The curve is concave upward where f > 0 and concave downward where f < 0.

Inflection points occur where the direction of concavity changes.

X	
f "(x)	
f(x):CU/CD	

Guidelines for Sketching a Curve f(x)

- 1. Find Domain □ Vertical Asymptotes
- 2. The x- and y-intercepts
- 3. Symmetry
- **4.** Horizontal Asymptotes: Find limit of f(x) as $x \square \infty$ and $x \square -\infty$
- 5. Local Max/Min (See part A)
- **6. Concavity and Points of Inflection** (See part B)
- 7. Plot points in #2, #5, #6 and asymptotes
- 8. Then sketch the curve.