An Informal Introduction to CoreSchedule
Jie Ren
14 June 2024
1. Asynchronous Scheduling
As deep learning models get bigger, distributed training is becoming a standard approach.
Communication often lags behind computation speed, leading many libraries to adopt
asynchronous communication. This approach allows overlapping of communication and
computation phases. However, designing an effective asynchronous pipeline can be
challenging. For instance, in Megatron (v0.7.0), a well-known distributed training framework,
the following occurs:

420 if wgrad_compute:

421 if ctx.sequence_parallel:

422 world_size = get_tensor_model_parallel_world_size()

423 dim _size = list(input.size())

424 dim_size[0] = dim_size[0] * world_size

425

426 all_gather_buffer = get_global_memory buffer().get_tensor(

427 dim_size, input.dtype, "mpu"

428)

429 handle = torch.distributed._all_gather_base(

430 all_gather_buffer, input, group=get_tensor_model_parallel_group(), async_op=True
431)

432

433 # Here we rely on CUDA_DEVICE_MAX_CONNECTIONS=1 to ensure that the
434 # gather is scheduled before the input gradient computation
435 total_input = all_gather_buffer

436 else:

437 total_input = input

438 grad_input = grad_output.matmul(weight)

439

440 if ctx.sequence_parallel and wgrad_compute:

441 handle.wait()

442

443 if wgrad_compute:

444 grad_output, total_input = prepare_input_tensors_for_wgrad_compute(
445 grad_output, total_input

446)

447

- Line 429: an all-gather operation returns a handle.

- Line 438: we perform a matrix multiplication (matmul) to mask the communication
delay.

- Line 441: we wait for the communication to complete.

Our library can automatically handle the data dependency. The user only need to submit
tasks.

allreduce_bucket.push_back(scheduler, comm
i state()

DBlock0ut = backward(scheduler, DLNfOut)
(require_backward_grad_sync) {
allreduce_bucket.push_back(scheduler, comm
B state()
allreduce_bucket.push_back(scheduler, comm
& state()

(&block : h) {
DBlockOut block->backward(scheduler, comm, allreduce_hucket DBlockOut
require_backward_grad_sync)

& DEmbOut = DBlockOut
DEmbOutSum@ = cs::compute::Utils::sum(scheduler, DEmbOut
backward(scheduler, DEmbOutSum®)
(require_backward_grad_sync) {
allreduce_bucket.push_back(scheduler, comm
5] state()

backward(scheduler, DEmbOut)
(require_backward_grad_sync) {

allreduce_bucket.push_back(scheduler, comm

After scheduling the communication and computation tasks, we discovered the value in also
scheduling different computation tasks. Below are the profiling results of PyTorch (v2.3)
during the backpropagation of a GPT2 model on an A100 server.

The data shows that all computation tasks are executed sequentially. However, our
scheduler is able to overlap independent tasks—yes, even GPU computations can be
overlapped.

Using this method, we achieved a 1.15x speedup without needing any additional kernel
fusion; we simply optimized the computation scheduling using the existing kernels.

We also implemented a dual GPU DDP GPT2 training example using both PyTorch and our
CoreScheduler. PyTorch's profiling results indicate basic computation-communication
scheduling.

&=351ms +352ms +353ms +354ms +355ms +356ms +357ms +358ms +359ms +36(
i N N N B B N B B P B N N e R

: PyTorch

+647ms +648ms +649ms +650ms +651ms +652ms +653ms

ey

'__-. o e e e
nE@ 1 @@ 0 @ ER @ ONES] 1
@ @ @ @l B 5 o

(redbRaraLARe e AL
L I) R, =)
EH b CoreScheduler

Our results, however, reveal a more complex scheduling behavior with our scheduler. This
complexity allowed us to achieve a 1.3x speedup over PyTorch on a dual A100
NVLink-enabled server.

2. Why did we choose C++?
For now, we use C++ because it offers efficient multi-threading and fine-grained lifecycle
management, plus it easily interacts with hardware-close libraries like HWLOC. We may
consider Rust or Python later, but our team's current expertise lies in C++.

3. What's next?
a) AMP training
b) Develop more sophisticated distributed algorithms (e.g., DeepSpeed Zero).
c¢) Introduce advanced kernel fusion techniques with CUTLASS/cuDNN/NV LTO JIT.
d) Fault tolerance (modify the NCCL library)
e) Create more advanced models (e.g., Llama-3).

f) Investigate static scheduling based on computation graphs.

