
An Informal Introduction to CoreSchedule 
Jie Ren 

14 June 2024 
1.​ Asynchronous Scheduling 

As deep learning models get bigger, distributed training is becoming a standard approach. 
Communication often lags behind computation speed, leading many libraries to adopt 
asynchronous communication. This approach allows overlapping of communication and 
computation phases. However, designing an effective asynchronous pipeline can be 
challenging. For instance, in Megatron (v0.7.0), a well-known distributed training framework, 
the following occurs: 

 
-​ Line 429: an all-gather operation returns a handle. 
-​ Line 438: we perform a matrix multiplication (matmul) to mask the communication 

delay. 
-​ Line 441: we wait for the communication to complete. 

 
Our library can automatically handle the data dependency. The user only need to submit 
tasks. 



 
 
After scheduling the communication and computation tasks, we discovered the value in also 
scheduling different computation tasks. Below are the profiling results of PyTorch (v2.3) 
during the backpropagation of a GPT2 model on an A100 server. 
 
The data shows that all computation tasks are executed sequentially. However, our 
scheduler is able to overlap independent tasks—yes, even GPU computations can be 
overlapped. 
 
Using this method, we achieved a 1.15x speedup without needing any additional kernel 
fusion; we simply optimized the computation scheduling using the existing kernels. 
 
We also implemented a dual GPU DDP GPT2 training example using both PyTorch and our 
CoreScheduler. PyTorch's profiling results indicate basic computation-communication 
scheduling. 



 

 
Our results, however, reveal a more complex scheduling behavior with our scheduler. This 
complexity allowed us to achieve a 1.3x speedup over PyTorch on a dual A100 
NVLink-enabled server. 
 

2.​ Why did we choose C++? 
For now, we use C++ because it offers efficient multi-threading and fine-grained lifecycle 
management, plus it easily interacts with hardware-close libraries like HWLOC. We may 
consider Rust or Python later, but our team's current expertise lies in C++. 
 

3.​ What’s next? 
a) AMP training 
b) Develop more sophisticated distributed algorithms (e.g., DeepSpeed Zero). 
c) Introduce advanced kernel fusion techniques with CUTLASS/cuDNN/NV LTO JIT. 
d) Fault tolerance (modify the NCCL library) 
e) Create more advanced models (e.g., Llama-3). 



f) Investigate static scheduling based on computation graphs. 
 


