Introduce Chaos Experiments in Apache Spark

Author: Qian Sun
Shepherd: Hyukjin Kwon

Q1. What are you trying to do? Articulate your objectives using absolutely no jargon.
Introduce chaos experiments in apache spark to make sure spark can withstand the
unpredictability of in-production environment, to help developers more quickly identify and
resolve issues that might not be captured with unit and integration testing.
Q2. What problem is this proposal NOT designed to solve?

e NOT designed to ensure all code logic tested.

e NOT designed to guarantee that spark can work well with other components.

e NOT designed to make sure spark performance.
Q3. How is it done today, and what are the limits of current practice?
No chaos experiments executed in apache spark.

Q4. What is new in your approach and why do you think it will be successful?

There are several distributed systems that execute chaos experiments, such as apache
apisix, apache pulsar, tidb, RabbitMQ, tikv.

Distributed systems face complex and unpredictable production environments, such as disk
failures, machine power loss, network isolation, and that’s just the tip of the iceberg. To make
distributed systems more robust, we need a method to simulate unpredictable failures and
test responses to these failures.

After chaos experiments:
e Increases reliability and resiliency for apache spark.
e Unplanned downtime and outages are far less likely to occur due to proactive and
constant testing.
e Strengthens system integrity.

Q5. Who cares? If you are successful, what difference will it make?

Anyone who deploys apache spark in production environment cares. It will help apache
spark to expose issues about reliability and resiliency faster and earlier, making it easier to
reproduce user-reported production issues.

Q6. What are the risks?

Technically, there are no more risks yet given that there are many distributed systems
already supported.

https://github.com/apache/apisix/blob/61afafdd46fe40c03955b6cb058df3e6fad5db45/.github/workflows/chaos.yml
https://github.com/apache/apisix/blob/61afafdd46fe40c03955b6cb058df3e6fad5db45/.github/workflows/chaos.yml
https://github.com/apache/pulsar/blob/master/tests/integration/src/test/java/org/apache/pulsar/tests/integration/containers/ChaosContainer.java
https://github.com/pingcap/tidb/blob/c7d87bd9c897aafb44dd2ec05a1a0b29f7a66050/dumpling/tests/chaos/run.sh
https://github.com/rabbitmq/tgir/blob/master/s01/e09/README.md
https://github.com/tikv/tikv/blob/master/Makefile#L230-L233

At present, it has been verified by github action CI. During working, the chaos experiment
will be implemented through code, while supporting local chaos experiments and GA.

Q7. How long will it take?
Before Apache Spark v3.4.0, it will take about 3-4 month to complete after SPIP approved
Q8. What are the mid-term and final “exams” to check for success?

e Chaos experiments can be performed locally via script or mvn command in mid-term.
e Chaos experiments are integrated in github action to validate each PR in final.

Appendix A. Proposed APl Changes. Optional section defining APIs changes, if any.
Backward and forward compatibility must be taken into account.

No API changed because new chaos experiment code is in the test folder.
Appendix B. Optional Design Sketch: How are the goals going to be accomplished?

Give sufficient technical detail to allow a contributor to judge whether it’s likely to be
feasible. Note that this is not a full design document.

imali () () () () ()
Timeline ——) Y Y O o
Define :
\ Design Analyse
Action Srztitr(renr;s chaos e?(:gr?rgzﬁfs Epupr;isz’?cr)l:l experiment
behaviour experiments results

.............................. NI N A

Maintenance AL (GIETEE New. sp_ark
code application

. D,
cntomes [escmgan 5 Gitn Actions

1. Define system’s normal behavior
The system’s normal behavior is believed to be acceptable behavior and unexpected
behavior. For apache spark, we could validate normal behavior by spark application

end state.

Example: IT for spark on k8s

https://github.com/dcoliversun/spark/pull/5
https://github.com/apache/spark/tree/master/resource-managers/kubernetes/integration-tests

2. Design chaos experiments

Chaos Mesh could be used as a chaos experiment platform, which offers various
types of fault simulation and has an enormous capability to orchestrate fault
scenarios. Chaos Mesh is built on k8s CRD, primarily contains components:

e Chao Controller Manager: The core logical component of Chaos Mesh.
Chaos Controller Manager is primarily responsible for the scheduling and
management of Chaos experiments. This component contains several CRD
Controllers, such as Workflow Controller, Scheduler Controller, and
Controllers of various fault types.

e Chaos Daemon: The main executive component. Chaos Daemon runs in the
DaemonSet mode and has the Privileged permission by default (which can be
disabled). This component mainly interferes with specific network devices, file
systems, kernels by hacking into the target Pod Namespace.

pod-kill pod-fail container-kill
FORM
network-dalay network-loss network-corrupt ‘ # Chaos Dashboard
network-dup network-partition nebwork-bandwidth l
YAML H
io-delay io-erme kernel-injection H
i Controller manager
cpu-burn memory-burn clock-skew ;
]
T
- ~ \
_ i b
— — o~
_ ’ P \
_ - s
— - <oz = /,," \'l,
— — ~ ¥
Daeman APP APP APP
app-container app-container
chaos-daeman app-container
chaos-sidecar chaos-sidecar

Currently, the fabric8io provide chaosmesh as extension, so apache spark could
schedule chaos experiments through fabric8 kubernetes-client. The benefits of doing
this are as follows:

e No new components are introduced.

e Chaos Mesh version can be upgraded with fabric8io version.

Note that experiments described below are scheduling tasks, which can
automatically create chaos at a fixed time, and we can specify the duration of chaos.

PodChaos — To simulate fault scenarios of the specified Pods or containers,
such as pod failure, pod kill, container Kill.

https://chaos-mesh.org/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://github.com/fabric8io/kubernetes-client/tree/master/extensions/chaosmesh

Component

Function

Expected behavior

spark executor

Running individual tasks by being
in charge of a given spark
application.

Spark application succeeds.

kube-apiserver

Validate and configure data for
the api objects which include
pods, services,
replicationcontrollers, and
others.

Spark application succeeds.

kube-controller-
manager

A daemon that embeds the core
control loops shipped with k8s.

Spark application succeeds.

kube-scheduler

Control plane process which
assigns Pods to Nodes.

Spark application succeeds.

NetworkChaos — To simulate a network fault scenario for a cluster, such as
disconnection, high delays, low bandwidth.

Component Function Expected behavior
spark Driver: Maintaining information Spark application succeeds.
driver/executor about the Spark Application;

responding to a user’s program
or input; and analyzing,
distributing, and scheduling work
across the executors (defined
momentarily).

Executor: Running individual
tasks by being in charge of a
given spark application.

kube-apiserver

Validate and configure data for
the api objects which include
pods, services,
replicationcontrollers, and
others.

Spark application succeeds.

I0Chaos — To simulate a scenario of file system fault, such as latency, fault.

Component Function Expected behavior
spark Driver: Maintaining information Spark application succeeds.
driver/executor about the Spark Application;

responding to a user’s program
or input; and analyzing,

distributing, and scheduling work
across the executors (defined
momentarily).

Executor: Running individual
tasks by being in charge of a
given spark application.

TimeChaos — To simulate a time offset scenario.

Component

Function

Expected behavior

spark driver

Maintaining information about the
Spark Application; responding to
a user’s program or input; and
analyzing, distributing, and
scheduling work across the
executors (defined momentarily).

Spark application succeeds.

spark executor

Running individual tasks by being
in charge of a given spark
application.

Spark application succeeds.

StressChaos - To simulate stress scenarios inside containers, such as cpu
stress, memory stress.

Component

Function

Expected behavior

spark driver

Maintaining information about the
Spark Application; responding to
a user’s program or input; and
analyzing, distributing, and
scheduling work across the
executors (defined momentarily).

Spark application succeeds.

spark executor

Running individual tasks by being
in charge of a given spark
application.

Spark application succeeds.

3. Run chaos experiments

Run chaos experiments with arguments

Type

script arguments

maven properties

Description

PodChaos

podchaos-schedule

spark.chaos.pod.schedul
e

every 5 mins.

The time when a pod chaos experiment occurs.
For example, ‘5 * * * * means experiment occurs

podchaos-duration

spark.chaos.pod.duration

The duration of pod chaos.

podchaos-limit

spark.chaos.pod.limit

The number of reserved pod chaos experiments.
When there are more than historyLimit tasks,
earliest created experiments will be deleted.

podchaos-concurre
ncy

spark.chaos.pod.concurr
ency

Used to specify whether to allow the creation of
multiple concurrent pod chaos experiments.
e Forbid: multiple experiments are not
allowed to be created simultaneously.
e Allow: multiple experiments are allowed
to be created simultaneously.

podchaos-mode

spark.chaos.pod.mode

Specify the mode of pod chaos experiment:

e one: selecting a random pod

e all: selecting all eligible pods

e fixed-percent: selecting a specified
percentage of pods from the eligible pods

e random-max-percent: selecting the
maximum percentage of pods from the
eligible pods

podchaos-range

spark.chaos.pod.range

Provicdes a parameter for the podchaos-mode
configuration. For example, when
podchaos-mode is set to fixed-percent,
podchaos-range specifies the percentage of
pods.

NetworkChaos

netchaos-schedule

spark.chaos.net.schedule

The time when a network chaos experiment
occurs. For example, ‘5 * * * * means
experiment occurs every 5 mins.

netchaos-duration

spark.chaos.net.duration

The duration of network chaos.

netchaos-limit

spark.chaos.net.limit

The number of reserved network chaos
experiments. When there are more than
historyLimit tasks, the earliest created
experiments will be deleted.

netchaos-concurren
cy

spark.chaos.net.concurre
ncy

Used to specify whether to allow the creation of
multiple concurrent network chaos experiments.
e Forbid: multiple experiments are not

allowed to be created simultaneously.
e Allow: multiple experiments are allowed
to be created simultaneously.

netchaos-mode

spark.chaos.net.mode

Specify the mode of network chaos experiment:

e one: selecting a random pod

e all: selecting all eligible pods

e fixed-percent: selecting a specified
percentage of pods from the eligible pods

e random-max-percent: selecting the
maximum percentage of pods from the
eligible pods

netchaos-range

spark.chaos.net.range

Provides a parameter for the netchaos-mode
configuration. For example, when
netchaos-mode is set to fixed-percent,
netchaos-range specifies the percentage of
pods.

I0Chaos

iochaos-schedule

spark.chaos.io.schedule

The time when an io chaos experiment occurs.
For example, ‘5 * * * ¥ means experiment occurs
every 5 mins.

iochaos-duration

spark.chaos.io.duration

The duration of io chaos.

iochaos-limit

spark.chaos.io.limit

The number of reserved io chaos experiments.
When there are more than historyLimit tasks, the
earliest created experiments will be deleted.

iochaos-concurrenc
y

spark.chaos.io.concurren
cy

Used to specify whether to allow the creation of
multiple concurrent io chaos experiments.
e Forbid: multiple experiments are not
allowed to be created simultaneously.
e Allow: multiple experiments are allowed
to be created simultaneously.

iochaos-mode

spark.chaos.io.mode

Specify the mode of io chaos experiment:

e one: selecting a random pod

e all: selecting all eligible pods

e fixed-percent: selecting a specified
percentage of pods from the eligible pods

e random-max-percent: selecting the
maximum percentage of pods from the
eligible pods

iochaos-range

spark.chaos.io.range

Provides a parameter for the iochaos-mode
configuration. For example, when iochaos-mode
is set to fixed-percent, iochaos-range specifies
the percentage of pods.

iochaos-delay

spark.chaos.io.delay

Specify the delay time of io chaos.

TimeChaos

timechaos-schedule

spark.chaos.time.schedul
e

The time when a time chaos experiment occurs.
For example, ‘5 * * * * means experiment occurs
every 5 mins.

timechaos-duration

spark.chaos.time.duratio
n

The duration of time chaos.

timechaos-limit

spark.chaos.time.limit

The number of reserved time chaos
experiments. When there are more than
historyLimit tasks, the earliest created
experiments will be deleted.

timechaos-concurre
ncy

spark.chaos.time.concurr
ency

Used to specify whether to allow the creation of
multiple concurrent io chaos experiments.
e Forbid: multiple experiments are not
allowed to be created simultaneously.

e Allow: multiple experiments are allowed
to be created simultaneously.

timechaos-mode

spark.chaos.time.mode

Specify the mode of time chaos experiment:

e one: selecting a random pod

e all: selecting all eligible pods

e fixed-percent: selecting a specified
percentage of pods from the eligible pods

e random-max-percent: selecting the
maximum percentage of pods from the
eligible pods

timechaos-range

spark.chaos.time.range

Provides a parameter for the timechaos-mode
configuration. For example, when
timechaos-mode is set to fixed-percent,
timechaos-range specifies the percentage of
pods.

timechaos-offset

spark.chaos.time.offset

Specify the length of time offset. For example,
-5m means time offset 5 mins backward.

StressChaos

stresschaos-schedu
le

spark.chaos.stress.sched
ule

The time when a stress chaos experiment
occurs. For example, ‘5 * * * * means
experiment occurs every 5 mins.

stresschaos-duratio
n

spark.chaos.stress.durati
on

The duration of stress chaos.

stresschaos-limit

spark.chaos.stress.limit

The number of reserved stress chaos
experiments. When there are more than
historyLimit tasks, the earliest created
experiments will be deleted.

stresschaos-concurr
ency

spark.chaos.stress.concu
rrency

Used to specify whether to allow the creation of
multiple concurrent io chaos experiments.
e Forbid: multiple experiments are not
allowed to be created simultaneously.
e Allow: multiple experiments are allowed
to be created simultaneously.

stresschaos-mode

spark.chaos.stress.mode

Specify the mode of stress chaos experiment:

e one: selecting a random pod

e all: selecting all eligible pods

e fixed-percent: selecting a specified
percentage of pods from the eligible pods

e random-max-percent: selecting the
maximum percentage of pods from the
eligible pods

stresschaos-range

spark.chaos.stress.range

Provides a parameter for the stresschaos-mode
configuration. For example, when
stresschaos-mode is set to fixed-percent,
stresschaos-range specifies the percentage of
pods.

stresschaos-memor
y

spark.chaos.stress.memo
ry

Specify the memory size to be occupied.

stresschaos-load

spark.chaos.stress.load

Specify the percentage of CPU occupied.
e 0 means that no additional CPU is added
e 100 means full load

4. Documentation

Update chaos experiment info on Spark website and developer doc.

5. Some script

To help to execute chaos experiments in apache spark.

Appendix C. Optional Rejected Designs: What alternatives were considered? Why
were they rejected? If no alternatives have been considered, the problem needs more

thought.

Optional design is to use chaos-mesh-action in GA, like this PR. I finally reject this design
because chaos experiment execution in the local environment could help developers to
explore more production environmental issues more swiftly.

https://github.com/chaos-mesh/chaos-mesh-action
https://github.com/dcoliversun/spark/pull/5

	Introduce Chaos Experiments in Apache Spark
	Q1. What are you trying to do? Articulate your objectives using absolutely no jargon.
	Q2. What problem is this proposal NOT designed to solve?
	Q3. How is it done today, and what are the limits of current practice?
	Q4. What is new in your approach and why do you think it will be successful?
	Q5. Who cares? If you are successful, what difference will it make?
	Q6. What are the risks?
	Q7. How long will it take?
	Q8. What are the mid-term and final “exams” to check for success?
	Appendix A. Proposed API Changes. Optional section defining APIs changes, if any. Backward and forward compatibility must be taken into account.
	Appendix B. Optional Design Sketch: How are the goals going to be accomplished? Give sufficient technical detail to allow a contributor to judge whether it’s likely to be feasible. Note that this is not a full design document.
	Appendix C. Optional Rejected Designs: What alternatives were considered? Why were they rejected? If no alternatives have been considered, the problem needs more thought.

