
CSCD01 LangChain Issue Analysis
Team: Natural Dumbness

Issue
Add support for a variety of languages to LanguageParser #11229
https://github.com/langchain-ai/langchain/issues/11229

In LangChain, LanguageParser is a parser for Document Loaders that, given source code,
splits each top-level function or class into separate documents. As stated in its documentation:

“This approach can potentially improve the accuracy of QA models over source code.
Currently, the supported languages for code parsing are Python and JavaScript.”

We would like to add support for additional languages, such as C, C++, Rust, Ruby, Perl, and so
on. This improvement would allow LangChain users to conveniently load codebases written in
these languages into many small “documents”. As the LanguageParser documentation
suggests, this can improve the efficiency and accuracy of LLM-based code QA.

Our implementation will be based on the tree-sitter parser framework. There are tree-sitter
parsers for a wide variety of languages, but crucially, each presents a common interface,
through the py-tree-sitter API (which wraps the C API). We can thus coordinate the parsing for
each language using a single, common algorithm, which is parameterized for each language
only where necessary.

Community discussions
In our GitHub issue thread, we discussed some high-level topics with interested community
members. In particular, some members have been keen to implement code splitting for the
languages they personally use.

If our generic implementation based on tree-sitter is merged, we anticipate this task will be much
simpler going forward. We have communicated as such, while also stressing that community
members are still free to not use tree-sitter for their parsers, if they so choose.

https://github.com/langchain-ai/langchain/issues/11229
https://tree-sitter.github.io/tree-sitter/
https://github.com/tree-sitter/py-tree-sitter
https://github.com/tree-sitter/tree-sitter
https://github.com/langchain-ai/langchain/issues/11229

Outline of changes

Primer on existing architecture
LanguageParser is an existing class that orchestrates the parsing process. To do so, it takes
as input a case of the Language enum, or infers one from the filename extension. This
Language is then mapped to a segmentation strategy, which is a class that extends
CodeSegmenter (which is abstract). There is one segmentation strategy for each supported
language. The static dict LANGUAGE_SEGMENTERS maps each Language case to a
segmentation strategy.

Sequence diagram

Segmentation strategy class diagram

https://refactoring.guru/design-patterns/strategy

Files to modify
● text_splitter.py

○ Language enum
■ we may add new cases

● language_parser.py
○ LANGUAGE_EXTENSIONS and LANGUAGE_SEGMENTERS static dicts

■ we will register new segmentation strategies here

New files
● tree_sitter_segmenter.py – TreeSitterSegmenter

○ extends CodeSegmenter
○ abstract base class, using the template method pattern

■ segmenters that use the tree-sitter parsing library extend this class,
overriding the “abstract steps” (methods) to complete the algorithm

■ abstract methods:
● get_language() – returns tree-sitter Language object

(example)
● get_chunk_query() – returns tree-sitter AST query for

top-level functions and classes (chunks)
● make_line_comment() – wraps a string in a line comment for

the target language (such as // [comment-text-here] for C)
○ implements abstract methods from CodeSegmenter

■ is_valid() checks validity of source code (to parse)
■ extract_functions_classes() divides code into chunks of

functions and class declarations, returns a list of these segments
■ simplify_code() separates any additional code not included within

the previous chunks

● cpp.py, rust.py, … – CPPSegmenter, RustSegmenter, …
○ extend TreeSitterSegmenter
○ implement abstract methods from TreeSitterSegmenter (list above)

● one test file per language (test_cpp.py, test_rust.py, …)
○ test_extract_functions_classes()

○ test_simplify_code()

https://refactoring.guru/design-patterns/template-method
https://til.simonwillison.net/python/tree-sitter#user-content-parsing-text-using-python
https://tree-sitter.github.io/tree-sitter/using-parsers#pattern-matching-with-queries

New class diagram for segmentation strategies

Pseudocode

Outline of TreeSitterSegmenter

def is_valid(self) -> bool:

parser = make_parser(self.get_language())

try:

parser.parse(source_code)

return True

except:

exception is thrown if parser is unable to parse

return False

def extract_functions_classes(self) -> List[str]:

get the language from subclass, construct parser

parser = make_parser(self.get_language())

parse source code using tree-sitter parser

ast = parser.parse()

keep track of lines already processed to avoid duplication of chunks

processed_lines = set()

chunks = [] # to return parsed chunks

for node in ast.query(self.get_chunk_query()):

chunk ranges from start_line to end_line

start_line = node.start_point

end_line = node.end_point

if any line in [start_line, end_line] is in processed_lines:

continue

processed_lines.update(lines)

append chunk to resulting list

chunks.append(node.text)

return chunks

def simplify_code(self) -> str:

as before: get language and chunk query, initialize parser,

and parse initial source code

as before: initialize the processed_lines set

simplified_lines = source_code[:] # make a copy of source

for node in parsed_code:

start_line = node.start_point

end_line = node.end_point

same as above

if any line in [start_line, end_line] is in processed_lines:

continue

replace first line of chunk with a stub comment

that tells the LLM what is missing

simplified_lines[start_line] = \

make_line_comment("Code for: {source_code[start_line]}")

remove all lines below the comment for current chunk

for line_num in range(start_line + 1, end_line + 1):

simplified_lines[line_num] = None

update processed lines

processed_lines.update(lines)

return all non-empty chunks in simplified_lines

Sample concrete segmentation strategies

C++

Query string for tree-sitter C++ AST

(https://github.com/tree-sitter/tree-sitter-cpp)

CHUNK_QUERY = """

[

(class_specifier

body: (field_declaration_list)) @class

(function_definition) @function

]

""".strip()

class CPPSegmenter(TreeSitterSegmenter):

"""Code segmenter for C++."""

def get_language(self):

from tree_sitter import Language

return Language("tree-sitter-cpp.so", "cpp")

def get_chunk_query(self) -> str:

return CHUNK_QUERY

def make_line_comment(self, text: str) -> str:

return f"// {text}"

Ruby

Query string for tree-sitter Ruby AST

(https://github.com/tree-sitter/tree-sitter-ruby)

CHUNK_QUERY = ...

class RubySegmenter(TreeSitterSegmenter):

"""Code segmenter for Ruby."""

def get_language(self):

from tree_sitter import Language

return Language("tree-sitter-ruby.so", "ruby")

def get_chunk_query(self) -> str:

return CHUNK_QUERY

def make_line_comment(self, text: str) -> str:

return f"# {text}"

