Preface

Algodoo Scripting Guide

by Doc Desk with help from Lapse and Erikfassett.

This guide attempts to teach scripting in the 2D physics simulator Algodoo. The language
Algodoo uses for scripting is Thyme, a language created specifically for scripting in Algodoo.
Unlike most of the current resources on Thyme, this guide attempts to teach Thyme as a
programming language. It goes through several programming concepts as well as providing
lists of useful built-in properties, functions, operators, and detailing several Algodoo-specific
techniques that will help you make the most of scripting in Algodoo.

Some of the information in italics is extra that you don’t need to know, but may provide
interesting information.

Document tabs

Sections have been split into document tabs: you can navigate them using the left pane, or
scroll down and mouse over the bottom of the page to show a button to the next section.

Jr Environment Guide

On the mobile app: you can tap the bottom menu that pops up; or tap the three buttons from
the top menu, then Document tabs.

¢ [£] preface N

23 tabs

[E) Preface
[E) Environment Guide

E Thyme Guide

Al ipting...
godoo Scripting 5 o
All changes saved

Viewing mode o

Suggest changes

Document tabs

Document outline

Find and replace

Word count >

Expand all headings

Environment Guide

Environment Guide

Before we start learning about the Thyme language itself, it's important to get used to the
environment Algodoo provides us to write our Thyme code.

Console

The console is a panel where you can enter Thyme code, find properties, and view error
messages. To open the console, press F1o, the tilde H key (Mac only), or the backtick key jj on
your keyboard. You should see something like this:

Don’t worry about these error messages - they don’t mean that anything will go wrong for you.

To start with, try entering some basic arithmetic expressions, such as or -

You can also use functions! The function prints a message to the console. Try printing
RACARE TN to the console:
orld!™

insole "print" cnd: Hello Wword!

You can find properties using the console by preceding the search term with . For example, if
you wanted to see all the properties relating to circles, type [{SIgats.

You can see the properties inside a specific object by typing the name of the object followed by
I, then the tab key on your keyboard. For example, if you wanted to see all the console’s

properties, type then tab:

L nurmber of charac

If you press tab while typing an identifier (e.g. a variable name), Algodoo will attempt to
autocomplete it. For example, typing then pressing tab will change [de]g to . If
there are multiple variables beginning with the characters you just typed, the console will show
all the possibilities, e.qg.:

A few more tips:
e Scroll through the console using the Page Up and Page Down keys.
® Use previously entered commands by pressing the up and down arrow keys.

Script menu

The script menu is found in the menu that appears when you right-click on an object. It looks
like this:

nly and is an unsupported feature. Use

,0.0,1.0,0.0,0.0,0.0,1.0]

Object console

At the top of the script menu is a black input box with no official name. This will be called the
object console for the rest of this document, as it functions similarly to the console. If you try
putting in arithmetic operations again, you'll find that they still work:

ipting is for advanced users only and is an unsuppaorted fe

Several features of the console apply in the object console, however:

e You cannot use / to find properties.

e Pressing tab will only autocomplete if one autocompletion is possible. Otherwise, it
inserts a tab character.
You cannot scroll using the Page Up and Page Down keys.
You cannot use previously entered commands by pressing the up and down arrow keys.

Object properties
Below the object console, all the properties of the objects are listed. Some can be changed
(e.g. you can change the radius of a circle by entering a different value for [ELERE):

radius =

Some properties are read-only, e.g. EIg=E):

You cannot enter a value for a read-only variable, nor change it via a script.

The variables listed below the normal variables are what could be considered private variables,
for they are inaccessible to even read through normal means. However, they can be read by
using the function on the object, which generates a read-only copy of the object
where all variables, including these, can be read.

Different types of objects have different properties (e.g. each circle has a property).

All of these properties can be accessed (except the variables listed below the normal variables,
for an unknown reason) through the object console:

ipting is for advanced users only and is an unsupported fea

adhesion

Liquify = intrinsic

adhesion 0.0

&lgo ripting is for advanced users only and is an unsupported fea
at own risk

Liguify = intrinsic

adhesion 0.0

When making changes in a property's text field, Algodoo will save a history of those changes
for that field until the Script menu is closed.

You can then hit Ctrl+Z to undo, and Ctrl+Y to redo changes while the field is selected.
This allows you to recover scripts that Algodoo rejects and go back to fix any mistakes without
having to rewrite the entire thing again.

Thyme Guide

Thyme Guide

Learn the basics of Thyme commonly used in Algodoo scripts from the following sections,
navigate using the left pane or click on a link to a section.
e Basic data types (bool, int, float, string)
Lists
Variables

Functions

Loqic structures

o Sequence
o Selection

O lteration

Objects
Operators

Basic data types

Basic data types

There are four primitive data types in Thyme - [Jele3l, FRISERS, and BRagRye. There are also
three aggregate (formed of several different elements) data types - , and

ClassObject]

bool

A boolean has only two possible values: or . An example of a boolean property is

drawBorderfi is &M, the polygon’s border is drawn; if s

[EIEL, the polygon’s border is not drawn.

drawBorder =

el 1N lelgle <Yy is [MQVIE here, so the circle’s border is drawn.

int

An integer is a whole number (i.e. a number with no decimal part). In Thyme, the int data type

can store any integer between _ and _ An example of an integer

property is (iR a21Y, - each entity needs a unique ID number and the number of entities is an
integer:

entitylD =

Binary literals

A binary literal starts with ., followed by any binary integer with a denary value between

EEEVREEEEYE o o BREBEEEEEE] inclusive. The binary is interpreted as the exact data of a

signed 32-bit integer. Any number larger than what 32 bit allows is truncated to 32 bits by
cutting off the most significant bits, limiting you to 32 binary digits.

For example, - returns I

Due to the nature of how signed integers work, negative numbers are extremely unwieldy to
write. For example, EEERREEEEEEEEEEEE R R R EEEEEEERCH returns BB When the most
significant digit of a 32 digit long binary number is set to fl thena negative number is returned,
counting up from the minimum to . at the highest possible value. If you don't intend to work
with negative binary numbers, then you may treat this method as entering in a basic binary
number, as long as you don’t exceed the positive maximum.

Hexadecimal literals

A hexadecimal literal starts with ., followed by any hexadecimal integer with a denary value
between _ and _ inclusive. The hexadecimal is interpreted as a
representation of a signed 32-bit integer where each digit represents four binary digits. Any
number larger than what 32 bit allows is truncated to 32 bits by cutting off the most significant
bits, limiting you to 8 hexadecimal digits.

For example, BB returns BER.

Due to the nature of how signed integers work, negative numbers are interesting to write. For
example, _ returns - but _ returns _, and
_ returns . Any 8-digit hexadecimal number where the most significant digit is
equal to or greater than I will return a negative number, counting up from the minimum to .
at the highest possible value. If you don't intend to work with negative hexadecimal numbers,
then you may treat this method as entering in a basic hexadecimal number, as long as you
don’t exceed the positive maximum.

A note on literals, Algodoo will automatically resolve binary and hexadecimal literals into the
familiar dernary, or base-10 numbers we use. This does significantly reduce the utility of these
literals, as once they are input into a script, they are turned into regular integers.

float

A floating-point number represents a number with a decimal part. In Thyme, a float can

represent a wide range of real numbers to 6-g significant figures of accuracy (this is known as a
single-precision float). The largest number that can be represented by a float is approximately

EREEEPEEEEEE (anything higher will be treated as infinity). An example of a float property
is - the radius of a circle can be a decimal.

radius =

One important thing to keep in mind is that in any case where a function requires a float, an
integer is also an acceptable type. Whenever this document lists that a function requires a
float, you may also use an integer in place of the float.

In the console, if a float value can be represented as an integer (e.q. EJRg), Algodoo will return the
result as an integer.

Angles

All angles in Algodoo are internally stored as radians (though most GUI displays angle in
degrees). By convention, and for ease of mathematics, the direction o radians points to is right,
in other words the positive X direction. An increase in radians rotates the direction
counterclockwise. In all cases excluding angular motion, the range of angles Algodoo uses goes
from -1t rad (-180°) exclusive to 1 rad (280°) inclusive, where of course the edges of the range
point left, the negative X direction. If an angle outside of this range is entered, Algodoo will
automatically correct it.

Infinity & NaN

Floats can be used to represent both infinity and negative infinity. Infinity is represented as
-whereas negative infinity is represented as - They can also be represented as I and
BB respectively. If the dividend is positive, float division by [f will result in [lERghi, and division by

.WiII resultin - (. can only be achieved using [ER4 T -CR=1¢))). This reverses if the

dividend is negative. Every number will be greater than - and less than -

BN is a special case value that means Not a Number, and is produced in various ways:

e Adding or subtracting infinities that would cancel each other (—,
infl-inf + +inff-inf - -inf)

Multiplying infinity by

Dividing [§ by itself (CHCINAENE)

Dividing infinity by infinity

Getting the root of negative numbers (e.g.) except - which results in
- - imaginary numbers are simply imaginary...

Performing any arithmetic operation with Bl (except for [JEINIEMRE which results in)
Inputting a number in a math function that's outside their domain (e.qg.

math.acos ()

Any equality and comparison operation with - will never match itself and always return

, or WL if using E

strin
A string is a sequence of characters surrounded by quotation marks n, e.g.
MEIREIE. An example of a string property is - it refers to a filename.

"gold.png"

You can also input Unicode characters, either copy them from anywhere that contains it or run
their alt codes.

Alt codes are number sequences inputted while holding and then releasing the Alt key to output a
character (including ones that don't appear in standard keyboards).

When running alt codes in Algodoo, note that it's using the character set in HTML UTF-8 as a
decimal value: e.g. * bullets use 8226 (2022 in hexadecimal) instead of 7 or 0149.
See UTF-8 General Punctuation for the full list.

String escapes & verbatim string literals

Thyme uses the backslash characteras an escape character. The character after the escape
character is treated as a special character (an escape sequence). Here are all the escape
sequences that Thyme supports.

Escape sequence Description

Backslash

Double quote

New line

Tab

For example:

= "Helloynworldnlook at this backslash:ye iy
H —
Ao d!

Look at this backslash:

To treat the backslash character literally, you need to precede the string with , e.g.

@"I can use single backslashes! \ Look at my backslashes! \"

https://www.w3schools.com/charsets/ref_utf_punctuation.asp

Strings preceded with @ are called verbatim string literals.

Verbatim string literals can also be used to store multi-line strings, e.qg.:

@" (e)=>{
print(e.dt);

You can also use double quotes using two double quotes in the string.
When using a verbatim string literal, Algodoo will automatically convert it to a normal string,

adding appropriate backslashes as needed and replacing newline characters with .

Markup language & entity references

Displayed text in Algodoo, such as in text boxes or in the console, can be modified using a
markup language that consists of elements.

An element consists of a start tag and an end tag . The content of
the element is placed in between.

All elements must be placed inside a markup element, e.g.:

<markup>Content here</markup>

If done correctly, and should be hidden in the string when it is
evaluated:

= print"markup™)

Algodoo’s markup language defines special elements for formatting. As with <markup>, each
of these elements has a start tag and an end tag.

bolds the string.
= print{"markup”)
markup

z/markup="}

= printg

= [:l ri rlt|: . marku |:-I ' :|
markup

> print("Markup
markup
0 ms: Consaole "print” crnd: Ma I‘I-::Z L p

big=markup=/hig=</markup=""

makes the text use subscript. Only on v2.2.0 and up.

= print makues)

> printfmatkerty
rmarkup

Using UEIRTRS, you can also write entity references to render certain characters.

alul-H Lot Rquot; < fmarkup '|

Entity reference Description

Ampersanda

Apostrophel

Greater than [§

Less than

Double quotei

Character references are also possible to render a specific Unicode character, this is done by
&#N ; orfor hexadecimal, repIacinngith a number.

The span element

is a special element that doesn’t do anything by itself, but can have attributes added
to it. This can be useful to have different colors and fonts within a single text box, along with a
couple of extra features not present within other elements.

attributes come in the format of I ENNEIRISTIRLCRENIT-RPY, Where ERahislidS

is the name of the attribute, and is the value of the attribute. The value must always
be in quotations, even if it is a number. You can have multiple attributes per span tag, where
each attribute is separated by a space like so:

Each attribute must be unique, you cannot have two of the same attribute in a single span tag.

The following is a list of currently known attributes and their behavior:

or both modify the text color. It can take either an HTML color name
(WELM) or a hexadecimal color code (EaRilcanil). Some hexadecimal colors can be

shortened, where is equivalent to BEEEEIRIN-
This example uses eI e i A R R R L

This text is yellow

PEILERCIITe| sets a background color of the text. It takes the same values as .

This example uses eI EI el e {10 s

This text has a sky blue background

changes the text font. It takes a value with three optional arguments in this order:
"typeface style scale"} is the name of the font you want to use, such as
Verdana, Arial, Georgia. is if the text should be , , or . is
how big the text should be as a percentage, with being 100% scale.

Each argument is optional, so as long as they’re still in the correct order then you can omit
certain arguments. will set the text to be Impact at 75% scale. will
make the text bold at 250% scale without changing the font. will only set the text to
be Arial.

DIy < span font="georgia italic 150">

The following text is Georgia Italic 150

or [RIABEERAY both change the text size. It takes an integer, or either IR,
, or . With an integer, you can set it from @ up to MZEXEREE] exclusive as long
as the text can fit in the box or [Qe TR SRR Te is LI

A value of gel2ll-J2} is normal size, and is in fact actually slightly bigger than normal

size. and both are self-explanatory, being bigger than R LEIN.

This example uses both and
This slightly bigger text is small

This text is actually sma

or IR 4IRY changes the text weight. It takes either an integer, gER{{id,

, or WURRELIN . Any integer less than or equal to 550 is equivalent to Ek¥{ji48 and

any integer 551 and greater is equivalent to IR CI TN B EUSF{ika is normal text, and

despite the name, IRRAELL P is regular bold text.
This example shows each unique value. Values below 550 and above 551 are no different from

550 and 551 respectively.
light
ultrabold
550
551

or eIl EERS2NE changes the text style. It takes either , or
"italic"] is just normal text, and both and are equivalent,

creating italicized text.
This example shows each unique value.

normal

obligue
italic

adds an underline to the text. It takes either m, , ,
, and . m does nothing, creates a single underline,

creates a double underline, creates a single underline that will move downwards to be
below the lowest stroke in the text, and g gIgll creates a zig-zag underline.
This example shows each unique value except m looks like EERyI-:4X]4 because no

character extends downward in that line. If there were, for example, a “y” in the text, the line
would move down to accommodate.

sets the color of the underline in text. It takes the same values as [Seike]s.
To be visible, it requires either the attribute to be set, or for the text to use the
element.

This example uses along with setting an error underline.

Misspellt

Use of the span tag in the console can cause a rendering error that can make the console entirely
blank, so it should only be used in text boxes. Errors in scripts that somehow involve the span tag
can also cause the same rendering error in the console. If the console is blank, you will need to
restart Algodoo.

Summary Table

Type Example Description

Short for boolean. Either true or false.

A (32-bit) floating-point number that stores any real number
up to 6-9 significant figures of accuracy.

An (signed 32-bit) integer (whole number).

B CANEIREN A sequence of characters.

Lists

Alist is a collection of variables surrounded by square brackets ||jf] separated by commas ! An
example of a list property is (the position of a geometry) - the first value represents the
geometry’s horizontal (X) position and the second value represents its vertical (Y) position, so it
makes sense that these two positions are grouped together as a single variable.

pos = [-4.0, 2.0]

Another format that works for creating lists is using parentheses [@] instead of square brackets.
However, doing so isn't recommended as it can reduce clarity regarding mathematical
operations that also use parentheses to specify which operations to run first. Using
parentheses also makes it impossible to create single element lists.

You can read the individual elements of a list by using parentheses, e.qg. would return
the horizontal position (in this case -) and would return the vertical position (in
this case -). You cannot write to individual elements of a list through this method.

You can also get a list of elements by using a list in the parentheses, e.g. |4 (P EFNGID)
returns a list containing the second, third, and fourth elements in order. You may have

duplicates and change the order, e.g. ISE34Q IEFESERAD)] returns a list containing the third,
the first, and again the first elements in that order.
To make it easier to get a list of elements, you may use .to quickly create a range. So,

isequivalentto , 2, 3D

The number you give when trying to access an element inside a list is called the index. Indices
start at I, so if you want to access the first element, you must use the index I If you give an
invalid index, Algodoo will throw an error:

RMIMG - Failed to evaluate: examplelist(4), List index out of bounds

You can get multiple elements from a list by using a list of integers as an index:

ist =" WMol is", "Is", "an", "Example", "List"]
Id, Th

i, "I, "An", "Example”, "List"]

Lists in Thyme are sometimes referred to as arrays - | chose to refer to them as lists as they are
more often called that internally and the thyme.cfq file refers to them as such:

Igodoo will look in the order listed

other simulation step

[*

Thyme is the homebrew scrpting language in Algodoo/Phun.

There are four atom types in thyme: Int, Float, Bool and S ng. These types can then be used to construct aggregate types, such as Listsl, and Functions.
Identifiers are declared using operator:= and changed usin . An identifier is typeless.

In many programming languages (not including Thyme), lists and arrays are two separate
collections - the difference is usually that a list’s size can be changed without redeclaring the entire
collection while arrays must be redeclared.

Vectors

A vector is a quantity with magnitude and direction (as opposed to a scalar, which only has
magnitude), represented in Algodoo by a list of integers or floats. The number of elements in
the list represents the number of dimensions the vector has. The object properties and
are examples of vectors.

In a diagram, the length of a vector represents its magnitude and the arrowhead points in the
vector’s direction. This velocity would be represented in Thyme as [[EFER]-

Box
Freeze velocities

5.0 myfs

angle; 53 @

Angular velocity: 0.00 radfs

B Momentum

The magnitude can be worked out using the built-in function (which uses
Pythagoras’ theorem) and the direction can be worked out using basic trigonometry.

The magnitude of an object’s velocity is its speed. Speed is a scalar, so has no direction and can
never be negative.

Algodoo allows you to visualise an object’s velocity, momentum, and the forces acting on the
object.

Colors

A color is represented in Algodoo by a list of four ints or floats.

Element HSL HSV RGB

Hue Red

Saturation Green

Lightness Value Blue

Alpha (opacity)

Each element in the list ranges from o to 1, except Hue, which ranges from o to 360 exclusive.

For example, the RGB color |f , , , | represents orange.

Variables

Variables

A variable is a name given to a stored data value that can change.

Variables are declared as follows:

variableName := initialValue

You can try declaring a variable in the console:

= 5cene.my.apples ;= 3

You can change the variable’s value as follows:

variableName = newValue

cene.my.apples = 4

E cannot change a variable's value that has already been declared, you may prefer to use this
if you're working with multiple variables of the same name (such as creating objects with
specific properties).

When you declare variables, you should always give them meaningful names. Only ever use a
single letter as a variable name if the variable’s purpose is abundantly clear.

A constant is a name given to a stored data value that cannot change. Examples of constants
include and . There is no way to declare your own constants in Thyme.

Thyme is a dynamically-typed language, meaning that the data type of a variable can change.
Some programming languages, statically-typed languages, do not allow this.

Variable scope

The variables that were shown have scene scope (depicted as variable names starting with
HENEROA), meaning they can only be accessed in the current scene.

Variables cannot be accessed from outside their scopes. Here is a table of all four scopes:

Scope

Block

Object

Scene

Global

textureMatrix

Scene.my.apples

Sim.running

Description

The variable exists inside a block (a group of curly
brackets).

It is deleted when the closing curly bracket J appears and
cannot be accessed afterwards.

The variable exists inside an object and can be seen in the
object’s script menu.

Object-scoped variables that you create are deleted
when the scene is reloaded if they do not start with
underscores.

The variable exists inside the object. Every
variable placed inside the Scene.my object is saved with
the scene.

A scene variable from one scene cannot be accessed from
a different scene.

These variables do not need to start with underscores unlike
object variables which is a common misconception.

There is also the object where instead
variables inside it are not saved with the scene.

The variable exists in the console and can be accessed
from anywhere.

Avoid making custom global variables as it may conflict
with variables in another scope or scripts that utilize
the same variable name.

Global variables that you create will be deleted when
Algodoo is reset.

Variables declared in the console will have global scope (unless they are declared inside an
object or FAEREY, while variables declared in the object console will have object scope

(unless they are declared inside).

This shows several variable declarations with different variable scopes within an event

function:

(e)=>{
localvar := 3;
eval("localvar2 := 4");

e.this.objectVvar :
Scene.my.sceneVar :
geval("globalvar :

Event functions, , and will be explained in later sections. You don't need to learn
about them yet.

Functions

Functions

A function is a block of code used to perform a certain action.

Here is an example of a function:

add := (nl1l, n2)=>{
nl + n2;

};

As you can likely tell, this function adds two numbers together.
Here is an example of this function being called (used):

add(3, 4);

Breaking this into smaller parts:

e [j¥l and [gP) are parameters. Parameters are placed in brackets and are separated by
commas. When you use the function, you give Algodoo values (called arguments) for
each parameter in the function. In this case,] is being passed into [l and | is being
passed into .

e Everything inside the curly brackets i is the body of the function - the action that the
function performs. In this case, is the only operation being performed - the
function takes the two given numbers and adds them together.

° is also the return value. In Thyme (like in Lisp), the last evaluated expression
in the function is returned.

When we enter EEETETIRD), We give the function [as [l and [l as f. The function then adds]
and Itogether and returns the result, I:

A function with N parameters is declared as follows:

functionName := (parameterl, parameter2, ..., parameterN)=>{

};

The function can have as many parameters as you need.
A function with N parameters is called as follows:

functionName(argumentl, argument2, ..., argumentN);

Like any other variable, functions can have any of the four scopes mentioned before. For
example, they can be placed in the Scene.my container:
> ¢ .add = inl, n2)=={ nl +n2; },

Functions can be declared without parameters. You declare a parameter-less function as
follows:

functionName := {};

Parameter-less functions can be called in two ways:

functionName;

functionName();

You can also declare a parameter-less function like a normal function, but leaving the parameter
list empty (i.e. (QE22#s)- This still works, but Algodoo will delete the parameter list and turn the

function into the above format when you input it.
Event functions

You may have noticed by now that each object has several functions by default. Each of these
functions is called when a specific event happens. For example, if one object touches another,
each object will run its own collision function (Jil®elifels) which you can customize with a script.

Here is a list of all the events in Algodoo:

Event Description

onClick Called when the object is clicked.

onCollide Called when the object collides with another object or with water.

onDie Called when the object is destroyed.

onHitBylLaser Called every frame while the object is being hit by a laser.

onKey Called when a key is pressed or released.

onlLaserHit Called every frame for every object the laser is currently hitting.

onSpawn Called when the object is created. Objects are re-created when the scene is
loaded or refreshed (e.g. when undone or redone).

postStep Called after every physics step, a.k.a. tick (by default 60 times per second only
while the scene is running)

update Called every frame (by default 60 times per second).

Event arguments

By default, each event function is simply this:

(e)=>{}

They all have a single parameter called E It's short for event arguments and is a

containing different properties about the event that has just been called. Every
time an event function is called, Algodoo creates an object containing the event properties and
calls the relevant event function, passing in the event arguments as el

e.this

All event arguments contain It refers to the object that the event function belongs to.
For example, the following code in the postStep event would make the object cycle through all
the colors of the rainbow:

(e)=>{
e.this.colorHSVA = e.this.colorHSVA + [1,

isnt actually needed to access the object’s variables unless you're declaring a new
variable within the object (e.g. [FINIETN X -IHEIREYPE) or you're passing Basan
argument to a function outside the current object.

Event properties table

The following is a table of all the properties passed into each event, excluding .
and have no other properties.

Event Property Property Type | Property Description
onClick clickCount [lgis How many clicks have happened in quick
succession.
pos Float List: [x, y] | The position of the cursor when it
position clicked.
handled Bool Unknown. Always is false.
onCollide normal Float List: [x, y] | The normal of the collision (a normalised
vector vector pointing from the current object

to the other object).

ClassObject: The other object that the current object
Entity has collided with. This does not exist if
the collision was with water.

pos Float List: [x, y] | The position where the collision
position happened.
soundGain |IgleEs Scales with the impulse of the collision,
the camera’s zoom, and goes to zero if
offscreen.

Sound was never officially implemented in
Algodoo, but it was planned that the
higher this number was, the louder the
collision sound played would be.

onHitBylLaser geom ClassObject: The object that the laser is hitting.
and Entity
onLaserHit
hsv Float List: [h, s, | The HSV color of the laser when it hits
v] color the object (not necessarily the set color
of the laser pointer). Only on v2.2.0 by
and up.

ClassObject: The laser that is hitting the object.

Entity

Float List: [x, y] | The normal of the laser hit (a normalised

vector vector pointing from the object to the
laser).
pos Float List: [x, y] | The position of the laser hit.
position
keyChar String: The text symbol created by the key. If no
Character symbol exists, (e.g. the arrow keys) this

variable does not exist either.

keyCode String: Key The name of the key being held.
code
Note that onKey is called when a key is

pressed or released. If you only want code
to run while a key is being pressed, use the

keys . isDownjieud)

pressed Bool True if the key is pressed down, false if
the key was released.

handled Bool Unknown. Always is false.

postStep and dt Float Short for ‘delta time’. Equal to [INEIN

update S PR ARG PLElIeY for postStep, amount

of time since last frame for update.

Object properties as functions

Object properties can be turned into parameterless functions, as long as the function returns
the correct data type. This can be used to keep an object property’s value constant or have it
depend on another variable. One caveat though is that you cannot copy the function to
another property. This is due to the fact that they’re parameterless functions and are called by
name, so attempting to copy just calls it and returns the value of the function, effectively
getting the value at that point.

For example, the value of EgeRY is usually a float:

...the value of is kept constant at zero.

angle =

When you change the value of an object’s property to a function, the function is executed every
frame (even when the scene isn't running).

For example, if you wanted a text box to display the value of JAERINALERVENE, you would
make the value of {4344 the following:

Scene.my.bossName;

or = [1.0, 1.0, 1.0, 1.0]

extConstrained = true

As these are functions, you can have code run before the returned value to have more control
over the set value. Here's an example where [eReJglg ¥\ is set to this function:

bg := math.RGB2HSV(App.background.skyColor);

[bg(@), 1.0, 1.0, 1.0];

In this above example, we are ultimately forcing an object to always have the same hue as the
sky, but maintain 100% saturation, value, and alpha. This is written in this way as sky color is
only stored as an RGB color, but in order to preserve hue we need to convert it to HSV. The last
line of this function is what is returned, so that is what is set to.

One more note, using this method to programmatically set properties to values has the least
performance impact compared to any other method. If you think you can convert a [sJefy 8y «=]s)
script into one of these sorts of functions, then do so.

Again, make sure that the function returns the correct data type. For the value returned
must be a string. If you want to display the boss” health (an integer), for example, you would need

to convert it to a string (either by using [l r Y TaNal?| -
o R Aol NS T L5 eI d44D) or concatenating it with an empty string - ks
cene.my.bossHeal thi}

Logic structures

Logic structures

Using everything covered so far, it's important to learn what you can do with the data types
using the three basic logic structures in programming: sequence, selection, and recursion.
e Sequence - Learn the order of how Thyme scripts are run.
e Selection - Learn how to run scripts under certain conditions.
e |[teration - Efficiently run scripts multiple times!

Seqguence

Sequence

Sequence is one of the three basic logic structures in programming. In a sequence structure,
each action happens one after another. In Thyme, a semicolon f{ is used to separate actions.
For example:

Scene.my.apples :=

Scene.my.apples = Scene.my.apples * 2;
print(Scene.my.apples);

The above script declares a scene variable, JERIVRETJIES, with an initial value ofl. It
then sets the value of JIENNAETJaBK=H to twice its original value, and finally prints its value
to the console.

Almost all programming languages that use semicolons in this way require you to end each
statement with a semicolon. In Thyme, putting a semicolon on the last line is not needed (and
Algodoo will delete it when you enter the script), but is a good practice to get into nevertheless as
it lowers your chances of forgetting to include one.

Some terminology:

An expression is a combination of values and/or functions to create a new value. Expressions

include:

App.background.skyColor;

A statement is a standalone instruction. Statements include:

Scene.my.apples := 3;

postStep(e);

print("Hi!");

Update order

Following in line with sequence, it is possible to expand that notion to beyond a simple script.
When Algodoo is processing each tick, it runs all scripts in a specific order that can be
controlled. Every object in the scene will run its code at the same time relative to every other
object. To put it simply, object B will always run its code after object A, and in some cases this
can be reversed if desired.

Update order is a useful thing to keep track of as it can make communication between two
otherwise separate objects more seamless. A simple example is if you have two objects A and
B. Object B must always be positioned 5 meters to the left of object A, so you could create a
script so that Object A updates a scene variable with its current position that Object B then
reads. However, in order for this to work properly, Object B must read that variable after it's
written to, else it will lag behind its intended position. This is because if Object B is running its
code first, the variable won't have updated to Object A's new position yet, so it instead reads
the position Object A had in the previous tick.

In Algodoo, update order for the postStep, update, and onSpawn functions is determined by
the object’s zDepth. Objects that have a lower zDepth, in other words are visibly behind other
objects, will have their code run first, and objects with a higher zDepth, in other words are
visibly in front, will have their code run last.

Along with zDepth, what layer an object is on also controls update order. Every object on the
top layer will run its script first, then on the first layer down, then the second layer, and so on.
In essence, this is backwards from how zDepth is as in this case the objects on the higher
layers, which appear in front, are first instead of being last.

Additionally, update order for onCollide functions is partially determined by the objects’ body.
When two objects collide, the onCollide code that runs first is the code for the object with the
lower body value. Objects glued to the background always have a body of o, and objects with
infinite density are treated as having a body of o as well regardless of their actual body.
However, it is currently unknown how the order of multiple collisions in a scene are processed.

To put it simply, in a single layer the objects that run their code first are the ones furthest
behind other objects, and for objects of different layers it's the objects on the top layers that

run first.

At the moment, it is unknown how the call order of other functions is determined.

One last note: When calling functions, Algodoo batches all alike functions to be called
together. This means that all postStep functions run together, all onCollide functions run
together, all update functions run together, and so on. So, even if an object is set to update
first, its update function will only be called after every other postStep function in the scene is
called.

Selection

Selection

Selection is one of the three basic logic structures in programming. In a selection structure, a
question is asked. Depending on the answer, the program takes a specific course of action.

If statements

The if statement is the most popular selection structure. There are several ways to form an if
statement in Thyme.

Boolean expressions

A boolean expression is an expression (a combination of values and/or functions) that always
returns a boolean value (or). The question (or condition) that is asked in an if
statement must be a boolean expression.

if function

The if function is used as follows:

if(condition, {

1

For example, if you wanted to change the background color if we had more than 100 apples,
you could use this code:

if(Scene.my.apples > > 1
App.background.skyColor

3

While the if function is the simplest to understand, it is also the least useful method of creating
an if statement. It lacks the ability to run code for when the condition is false (an else
statement). Additionally, due to its implementation, the if function is significantly worse for
performance than the following two methods. Due to these performance concerns, it is highly
recommended you use the following methods at all times.

if then_else function

The if_then_else function is called as follows:

if_then_else(condition, {

¥ o

Given the performance concerns of the regular if statement, you may choose to use this
method instead. Unlike the simple if, this is considered an intrinsic function which means that
its code utilizes the much faster C++ Algodoo is built on instead of the much slower Thyme
script.

If you do not wish to have an else statement, you can leave the function empty. As long as
there is a set of braces, like so: iSRS EIAIRN =Y ele]gle b o Kol RNE IR EON, then it
will work properly.

Ternary operator

The ternary operator , sometimes referred to as the conditional operator, returns a different
value based on the given condition. It is used as follows:

condition ? returnThisIfTrue : returnThisIfFalse;

For example, if you want to reset the number of apples to [§ every time it went over [lgfg, you
could use the following script in postStep:

(e)=>{

Scene.my.apples = Scene.my.apples > ? : Scene.my.apples;

You can use the ternary operator with parameter-less functions to form a ternary
operator-based if statement:

condition ? {

Like with jRSREMEIIEIETE, you may leave code blocks empty if you don’t wish to use them. The
ternary operator at the moment is the most popular method for creating if statements.
Whether you use the ternary or iEERIIEIIMIELE is up to personal preference.

All if statements can return values as they are all functions. Specifically, the accepted code blocks
in the if functions are in fact parameterless functions, which leads to them returning values.

If you're curious, the reason the simple if function is so slow is because it piggybacks off of the
ternary operator. The underlying script in the if function simply takes the condition and function
passed into it and applies them to a ternary, essentially making the if function a middleman.
Doing this is slow as it forces an extra step into the whole process. Now, the ternary technically
itself piggybacks off of if _then_else, but the ternary is considered an infix operation, which means
it functions as shorthand rather than passing from one place to another. There is an extremely
negligible performance difference between infix operators and their underlying functions, as infix
is a far more direct connection than simply a function calling another function. This means for
practical purposes, there is no difference between using the ternary and if_then_else.

lteration

lteration

Iteration is one of the three basic logic structures in programming. In an iteration structure, a
block of code is repeated a specified number of times or until a condition is met.

Built-in for function

A for loop repeats a block of code a specified number of times. The built-in for function is used
as follows:

for(numberOfLoops, (i)=>{

The for loop works as follows:
1. Itfirst makes a check whether [aOsaReIe e is [§ or below. If false, continue.
2. ltthenrunsthe function again where is decremented byl,
this repeats until is .
3. ltthen executes the function you've passed in (i.e.) for

ATleLIgos g MeTeleS starting with the function where gl is declared as I

You can name whatever you want. Giving ﬂ, like any other parameter, a meaningful name will
improve your code’s readability.

For example, if you wanted to print the numbers o to 4, you could use this code:

for(5, (i)=>{
print(i);

= fors, (== print(i); ¥3;

7 ms: Console "print” crnd: O

1051 7 ms: Console "print” crd;

10512727 ms: Console "print” crnd: 2

1051 2 ms: Console "print” crod: 3
4
I1I:I51 ms: Console "print" crmd;

The function does have some limitations:
® You can't change how the value of the iterator variable is first declared.
® You can't control how the value of the iterator variable is declared through iterations.
e You can only accurately run at most 66 iterations.
e You have to specify how many loops you want to run.

Kilinich’s xFor function

Kilinich created the Jgela function which lets you set how the iterator variable is first declared.
http://www.algodoo.com/forum/viewtopic.php?f=13&t=5146&p=54364&hilit=xfor# 6

(Make sure HTTPS-Only mode is disabled on your browser when visiting this site.)

This function also serves to solve an issue known as the recursion limit, which is a limit imposed
by Algodoo on how many times you can nest functions.

A regular for loop in Algodoo can only achieve around 65 iterations, it loses accuracy beyond
this limit or fails entirely in some cases, whereas this function can achieve many more (which
does so by utilizing a binary recursion tree).

Scene.my.xFor = (nl, n2, code) => {
n2 > nl ? {
= (n1 + n2) / 2;
Scene.my.xFor(nl, m, code);
Scene.my.xFor(m + 1, n2, code)
{code(nl1)}

If you want to use the function in your own code, copy and paste the above code into the
console. You do not need to understand how this function works.

Using xFor to print the numbers from 11 to 2o0:

Scene.my.xFor(11, , (1)=>{ print(i); });

http://www.algodoo.com/forum/viewtopic.php?f=13&t=5146&p=54364&hilit=xfor#p54364

\==1 print{i); +);
2066 ms: Console "print” crnd:
18066 ms: Console "print” crnd;
e "print" crnd:

s: Console "print” crnd;

2218066 ms: Console "print” crnd:

2218066 ms: Console "print” crnd;
56 ms: Console "print” crmd:
18066 ms: Console "print” crnd;
18066 ms: Console "print” crnd:

18066 ms: Console "print" crnd: 2

One important thing to understand, the behavior of the upper limit of the for loop is different

from the built-in for loop. [IHEMEEDEERED) is equivalent to NIV CIER
(EDE2289) The upper bound of is exclusive, whereas the upper bound of is inclusive.
If you're used to , be wary of the difference to avoid running into bugs involving this

difference in behavior.

The Real Thing’s xXWhile function

A while loop repeats a block of code while a given condition is true.

The Real Thing created the JUBBES function, which functions as a while loop.
http://www.algodoo.com/forum/viewtopic.php?f=13&t=12135&p=86262&hilit=while&sid=qf5o

118cbrg32b2ebffiae87d3794fbcz#
(Make sure HTTPS-Only mode is disabled on your browser when visiting this site.)

It is declared like this:

Scene.my.xWhile (conditionFunc, mainFunc)=>{
unfinished := math.toBool(conditionFunc);
iteration := {

unfinished ? {

mainFunc;
unfinished = math.toBool(conditionFunc)

s A}

http://www.algodoo.com/forum/viewtopic.php?f=13&t=12135&p=86262&hilit=while&sid=9f50118cb532b2ebff1ae87d3794fbc7#
http://www.algodoo.com/forum/viewtopic.php?f=13&t=12135&p=86262&hilit=while&sid=9f50118cb532b2ebff1ae87d3794fbc7#

:= "iteration; iteration; iteration; iteration; iteration; iteration;
iteration; iteration";

exec := {
unfinished ? {
eval(str);
str = str + "; " + str;
exec
Yoo A}
s

exec;

iteration = 5

exec = "";

gLk ReJglAVsle must be a function that returns a boolean expression.

As with Kilinich’s loop, copy the contents of the above code block into the console if you
want to use this in a scene. You do not have to understand how it works.

Using to increase an integer to the value 10:

Scene.my.xWhile({
integer < 5

integer = integer +

= Integer

10

Recursion

As you can't get while, repeat...until and proper for loops without importing others’ code or
coding them yourself, it may be better to drop iteration entirely in favour of recursion.

A recursive function is a function that calls itself.

An example of a recursive function is one that checks if a given string is a palindrome:

Scene.my.isPalindrome = (word)=>{
wordLength := string.length(word);
if_then_else(wordLength <= 1, {
true;
b A
wordArray := string.str2list(word);
if_then_else(wordArray(©) == wordArray(wordLength - 1), {

Scene.my.isPalindrome(string.list2str(wordArray(1l .. wordLength -

b A
false;
})s
})s
}s

This code may look complicated at first glance. Let’s think about how to solve the problem:

A string is a palindrome if:
- The first character and the last character are the same.
- Therest of the string is a palindrome.

The rest of the string is a palindrome if:
- The first character and the last character are the same.
- Therest of the string is a palindrome.

...and so on, until the rest of the string consists of one character (in which case the first
character and the last character are obviously the same) or no characters at all.

Let’s apply this thinking to the string AN

R is a palindrome if:

- The first character and the last character are the same.
The first character is and the last character is also . So far so good.

- Therest of the string is a palindrome.
The rest of the string, [lEBM, is a palindrome if:

- The first character and the last character are the same.

The first character is and the last character is also . Let's keep going.
- Therest of the string is a palindrome.
The rest of the string, m, is only one character long. Therefore, the string [ABANM must be a

palindrome.

Here is the same code with comments:

Scene.my.isPalindrome = (word)=>{
wordLength := string.length(word);
if_then_else(wordLength <= 1, {
true;
b A
wordArray := string.str2list(word);
if then_else(wordArray(9) == wordArray(wordLength - 1), {

Scene.my.isPalindrome(string.list2str(wordArray(1 .. wordLength -

b A

s
1)
it

Kilinich’s xFor loop was written using recursion.

Higher order functions

A higher-order function is a function that takes a function as an argument and/or returns a
function. For example:
doTwice = (function, operand)=>{
function(function(operand));

}s

addThree = (number)=>{
number + 3;

}s

print(doTwice(addThree, 3));

The above code outputs [f] (f added to [twice).

> addThree = (num ber)=:={
number + 3;

print{doTwicel{addThree, 31);

7766 ms: Console "print" crmd: 9

Filter

An example of a higher order function is filter. Filter takes a list and a condition, and returns a
list of the elements that meet the condition. The condition itself is a function that takes a value
and returns a boolean (also known as a predicate).

Filter can be implemented as follows:

Scene.my.filter := (list, predicate) => {
newList := [];
for(string.length(list), (i)=>{

if then_else(predicate(list(i)), {
newList = newList ++ list[i];
oA
1)

newlList;

};

The above function creates a new list. It then goes through each element of the list, checking
whether it meets the condition. If the element meets the condition, it's added to the new list.
Finally, the new list is returned.

You can use filter to return numbers in a certain range. For example, all the numbers greater
than 3:

[4, 7]

An illustration of what the above function call does:

list = |

(n)=>{n > 3}

newList = [4, 7]

Map

Another higher order function is map. Map takes a list and a function, applies the function to
all the elements of the list, and returns the new list.

The function must take one parameter and return a value.

Map can be implemented as follows:

Scene.my.map := (list, func)
newList := [];
for(string.length(list), (i) => {
newList = newList ++ [func(list(i))];
})s

newlList;

}s

The above function creates a new list. It then goes through each element of the list, applies the
function to it, and adds it to the list. Finally, the new list is returned.

You can use map to add 10 to every number in a list, for example:

~ Scane.my.map([-2, 2, 4, 7], (n)=={n + 1031

An illustration of what the above function call does:

list = |

Fold

Another common higher order function is fold. Fold takes an initial total, a list and a function.
It runs the function over each element on the list, adding the result to the total. The total is
then returned.

The function must take two parameters (the total and the element) and return the new total.

Fold can be implemented as follows:

Scene.my.fold := (initialValue, 1list, func) => {
accumulator := initialValue;
for(string.length(list), (i)=>{

accumulator = func(accumulator, 1list(i))

1

accumulator

};

Fold can be used to add numbers in a list together, for example:
ey fold(d, [1, 2, 3, 4], (total, ni=={total + n})

An illustration of what the above function call does:

Custom functions

The following document contains several helpful functions (including xFor, xWhile, filter, map
and fold, mentioned earlier).
B Thyme Additional Functions

https://docs.google.com/document/d/1-c_89ZUqFE_dXHDx_HwIk2VE9Vjo9w12AO_MsEiMrY4/edit?usp=sharing

Objects

Objects

A [@EEEelop[=Iq (or just object) is a variable with labelled properties (in contrast with a list,
where each element isn't named and is instead referred to by index). For example, a circle has
named properties such as its radius and its area.

An empty [SIEEE Blaeae is declared by setting a variable’s value to ERRRels:

object := alloc;

You can then give a @ERsh[Iqd properties in two ways:

object.exampleProperty := "example";

object -> {
owner.exampleProperty := "example";

}s

The above code creates a [@EEF])opfqd named with a single property,

examplePropertyMIGEAE|IRqdexamplePropertyfH .

The connection between a [QEEF s[4 and any one of its properties is indicated by a dot (I)
written between them:

@ EEF{elay[qus can store any data type as a property, including functions. A function inside a
@EEIolop[Iq is often called a method. To access the parent object’s properties within a
method, you use the keyword:

object := alloc;

object -> {
owner.exampleProperty :

owner.addOne =

owner.exampleProperty = owner.exampleProperty + 1;

}s
};

The keyword is equivalent to the keyword or the parameter in other languages.

In the above example, adds one to the value of EEEIU PGl I-IanY .

@RSl p[Iqus are volatile, meaning that they disappear whenever the scene is undone or
reloaded. To counteract that, you will need to declare the object with its initial values in an

script.

onSpawn =

In a traditional object-oriented language, classes and objects are different. A class is effectively a
blueprint for a related group of objects - it defines what properties and methods each object of the
group should have. An object is a specific instance of a class. For example, all circles have a radius
property, so we would have a circle class with a radius property. A big marble and a small marble
would both be instances of the circle class - both marbles have a radius property, but the values of
their radii may be different.

NOTE: As [@EEsh[ess can themselves store [MERF]elsgfYeus, and due to how

@EEelay[qus are referential in nature, it is possible for a (MEEF{elsgfes to store itself. This is
known as a self-reference or cyclic reference, and this is extremely unstable. Attempting to

perform most actions while a self-referential object exists will crash Algodoo. As references
can be chained, you can end up with a situation such as A -> B -> C-> A or a circular reference.
Ultimately, through that chain A references itself, which does cause this unstable state even if
the self-reference isn't within A itself.

NOTE: Setting an object variable to be a list of empty [@ERSYshfIeqds (e.g. |[ERRIPRR-1 N oIeH

) will crash Algodoo if the object console with the list is open.

ipting is for advanced users only a

_listofobjects = [alloc, allac, alloc]

Liquify = intrinsic

Since Algodoo doesn’t know how to display an empty in the script menu, it
instead outputs . The crash may be due to Algodoo not knowing how to display a list of
values and how it shares its nature with lists, thus Algodoo gets confused that is
in a list and crashes. When creating [SIERII0 BI3aes in object variables, there should at least be
a property assigned to them.

NOTE: Object variables as ClassObjects are saved as functions, they are set to the return value
when you exit out the input box of the object variable, make sure you have an script
dedicated for this.

This is not the case with scene variables as ClassObjects, as their properties are improperly
saved as global variables, this may cause Algodoo to call these variables over other
properties such as from objects.

You should remove these declarations or use , then reset Algodoo in Options if
necessary.

A workaround would be to create a function that returns a list of ClassObjects.

objectl := alloc;
object2 := alloc;
objectl -> {

¥
object2 -> {

¥
[objectl, object2]

Then, assign the function’s return value into an object variable.

_object = _createCbject]

[unnarmed, unnamed]

=)
r.property =1
I

[objectl, objectZ]

If you want to assign an object variable to only one ClassObject, just make the return value of
the function return one.

r.property =0
I
object
iy

_ohject = property = 0

One final note about syntax, some care is required when a function returns a [@IEEF{8]shfIqs. If
the function has no parameters, then you can access the variables within the returned

@EEIolop[Iqu as if the function were the [QIEEYsg[qu. So, is valid to
access from the [@EEsh[-Iqu that returns. However, the same does not

hold true for functions with parameters. Instead, you need to surround the whole function in a

set of parentheses, so [RRISEIO I IIN LI is the proper method of getting JERRIE from
the returned [MEEFOo[qE. A common example of this is SIS Y NIl Y, where

getting the radius of a circle that has the of { requires doing this:

(Scene.entityByGeomID(5)).radius]

Owner and Entity

There are two important variables when dealing with objects: and [Ii{%2RaY. You should
have already seen in the above section, but let’s dive deeper into what it does.

gets the object that owns the current function. In something like TR aqe, this is of
course the parent entity of the function. However, it only looks one level up. If you use any sort
of if-statement, then using inside the statement won’'t work as now it’s inside a function
within a function. Since you're now in a function whose parent is a function, will instead
return something other than the parent entity. Instead, will return the hidden object
that contains the parameters of the parent function. In the case of a single if-statement in
, you can do something like . However, you cannot chain to
keep going up layers, as it appears it only works within functions. There's also some other
weird behavior regarding custom functions in objects, where the owner of the custom function
is an object separate from the entity that only contains the function.

Ultimately, isn't that useful outside of the redirection operator B when creating class
objects. Most of the time, you may actually want to use instead.

works similarly to [Sgtas, but with a significant difference: always gets the
parent entity of a function. There’s no ambiguity on what it'll get. While generally its behavior

is replicated with in built-in functions, is useful in custom functions to get the
object itself in case it is needed.

Encapsulation

In object-oriented programming, encapsulation is the bundling of data with methods that
operate on the data.

The general rule is that a property cannot be accessed directly, and must instead be accessed
through getter and setter methods.

e Getter (or accessor) methods return the property’s value.

e Setter (or mutator) methods allow you to change the property’s value.

For example:
object := alloc;
object -> {
owner._exampleProperty := "example";

owner.getExampleProperty = {
owner._exampleProperty;

}s

owner.setExampleProperty = (value)=>{
owner._exampleProperty = value;

}s
};

In the above example, [FE PTGl returns the value of RENT B olIgsY and
S D ([P e IIaRY changes the value of REII PRIl IIgwY to the parameter .

By convention, getter methods start with ‘get’, followed by the property’s name. Similarly,

setter methods start with ‘set’, followed by the property’s name.

Most object-oriented languages have some way to make the data itself private (hidden from
anything outside the object), forcing programmers to use the methods. Thyme does not
provide any way of doing this. In some languages it is convention to begin private fields with an
underscore. You can use this convention in Thyme to indicate that you do not want the data to
be modified.

Creating a getter method for a property but no setter method implies that the property is
read-only.

Setter methods can also be used as input validation - to make sure that the data never goes
outside a certain range. For example, a health property should not go below zero and should
not go above maximum:

Scene.my.enemy := alloc;
Scene.my.enemy -> {
owner._maxHealth :=
owner.getMaxHealth :=
owner._maxHealth;

};

owner. health :=
owner.getHealth :=
owner._health;
}s
owner.setHealth := (value)=>{
owner._health = clamp(value, ©, owner._maxHealth);

};

CENE.MY.2enem

The benefit of encapsulation is that programmers do not have to worry about how the data is
stored internally, how the getter and setter methods are coded, what data type is being used
internally, etc.

References

ClassObject variables store a reference to the contents of the object, rather than storing
everything directly. This makes ClassObject a reference type.

This becomes clear if you attempt to assign an object to another variable:

= objectl = alloc;

C2.propertyl = “dorld"

jectl.property 1
Warld

Here, the [oJshfele#1 variable is storing a reference to its data. The line [oJo s PRIl T !

declares a new variable, [oJesg[Iq#4, which stores another reference to the same data.

References (also known as pointers) are memory addresses. For example, the [o]ols[Jegsk
variable could be storing the memory address 2000:

[1992]
object1 q [2000] property1 = "World"
[2008]

[2000]
[2016]

When you tell Algodoo to set a variable equal to [JsfIq#l, the new variable simply takes the
memory address rather than copying the contents of everything at that address.

Strings, lists and functions are also reference types, however, since they are immutable (you
cannot change one without redeclaring it) and you cannot modify parameter values in functions,
this does not make a difference.

Null

When a variable is storing [fliBl, it is a reference type that is not actually storing a reference to
anything. Setting [oJssfJe#! from the above example to would break the link between

elsp[{q#! and its properties:

[1992]
object1 [2000] property1 = "World"
null [2008]

[2016]

Operators

Operators

An operator is a symbol used to do certain operations on operands to get a result. There are
three types of operators:

Operator | Example Description

Prefix returns . The operator is placed before the operand.

Infix returns | | The operator is placed between the operands.

Postfix N/A The operator is placed after the operand.

The vast majority of Thyme's operators are infix. There are no postfix operators in Thyme.

Assignment operators :=, =

The W)YUEF: file in Algodoo's installation directory (possibly the closest thing we have to
official documentation) states that i is supposed to be used for declaring a variable and B for
changing a variable. Both operators, however, can be used interchangeably in some situations.

Using E to change a variable will cause a warning to be displayed, but still change the variable
as intended.

> apples 1= 3

Fa¥ams: -

Incorrect use ofE is likely to cause bugs. If you try to access a variable with it, you may end up
creating a new variable without changing the existing variable if the existing variable isn't part
of the current scope. Bugs with incorrect use ofH are less common, though can still occur and
most often occur with object creation functions (, , etc.). It
is recommended to always use the correct assignment operator. [creates variables, B
changes them.

Here's a common example of one of the bugs caused by using the wrong operator.
The following code will change the position of the original object (along with setting the new
object’s position):

Scene.addCircle({

pos = [16, 16];

});

The following code will only set the position of the newly created object (which is likely the
intention):

Scene.addCircle({

The assignment operators also return a value. For example, both sets to
I and returns the value I You can use this to set the values of multiple variables at the same

time:

apples = pears = oranges = 3;

Arithmetic operators +, -, *, /, %, A

The arithmetic operators only work when the data types of the operands are [lgge, [RleERY, OF
(more information on lists below the list of operators)

The addition operator adds j{ and together, returning the result.

The subtraction operator subtracts |} from ﬂ, returning the result.

The multiplication operator JgialY multiplies § and] together, returning the result.

The division operator divides by , returning the result. Note that if the data types of
and)Y are both , the data type of the result will also be (so returns I). This is
known as integer division and is useful for certain applications.

The modulo operator divides 4 by , returning the remainder. The result will be
negative when }{is negative, |} being positive or negative has no effect. Be careful when doing
math with this as some programming languages and calculators reverse this, where it’s
instead of [§ that determines if the result is negative.

The exponentiation operator raises)4 to the power of, returning the result.
Regarding lists, there are two modes of operation:

Both operands are lists. In this case, the lists must be of equal length. Each element of the first
list is operated on with the corresponding element in the second list. For example:

returns. In other words, | EFG R EF isequivalentto
118

One operand is a list and the other is a number. In this case, the single number will operate on

every element of the list. For example: returns . In other words,
is equivalent to This doesn’t work for every operation, however. You

cannot do this for addition and subtraction at all, you may only add or subtract two lists. And,
you can only use a list as the first operand for division, modulo, and exponentiation. Only
multiplication allows this case in any order.

One final thing, you may perform math on nested lists. The best way to explain how this works
is with examples:

NP P P N Y returns [P P PR |- You can imagine it like this:
[[1, 2], [3, 4]] * 2JOCGIEIERGN[[1, 2] * 2, [3, 4] * 2]

A P N P Pl | returns |RIEPRCEPEEN]- You can imagine it like this:
[[1, 2], 3] + [[3, 4], 5]JEXGUVEIL R [1, 2] + [3, 4], 3 + 5]

Basically, when the operations involve lists, Algodoo simply performs the operation across all
elements of the list. Of course, since it's the same operation, this can happen again if Algodoo
encounters further lists. As long as it doesn’t run into an invalid operation going through these
steps (such as mismatched list lengths, incorrect variable type, or an operation between a list
and a number not supported by the specific operation), then it will function properly.

Prefix plus and minus operators +, -

The prefix §j operator returns the value of its operand (e.qg. g8 returns I). The prefix I operator
returns the numeric negation of its operand (i.e. multiplies its operand by [l and returns it, e.g.

returns [J8). The data types of the operands must be ARER, or [ERY. In the

case of lists, all values within must ultimately be or .

String concatenation operator +

The g operator can also be used between two strings as the string concatenation operator.
String concatenation is the process of joining two strings end-to-end. The data type of one of
the operands must be Elaglard. The data type of the other operand cannot be or

ClassObject]

I IClgloll "Hello" + " World!"[EGH " "Hello World! "

= "Hello" + " Waorld!™
Hello \Wworld!

Like the arithmetic operators, this operator can work on two lists, but only when the data type
of one of the operandsiis and the other is not or . When used
on two lists, each corresponding element of the lists is operated on and a new list of the results
is returned. For example: | IEEN e Ry ¥ -0 I o] o X R P e Lo [eJelll| Would return
["Hello World!", "Algodoo"]}

One interesting quirk with string concatenation is that because it shares the same operator as
addition, you can add together lists of both strings and numbers like so:

["Hello", 5] + [" World!", NEWGH | "Hello World!", Il

This is due to the fact that these operations are indeed identical. All operators (except
assignment operators) are simply shortcuts to functions, and the [(Eydsl¥Elefe| function that
uses works on both strings and numbers.

List concatenation operator ++

Lists can also be concatenated using the list concatenation operator . The data type of the
operands must be .

Boolean logical operators !, &&, ||

The prefix logical NOT operatorn returns the logical negation of its operand (i.e. it returns

if the operand is and returns if the operand is [EIRTS).

The logical AND operator returns if both operands are iz, otherwise.
In some languages, the logical AND operator 'short-circuits’. When evaluating if E is
is returned immediately - it does not bother with ﬂ at all. Thyme does not

'short-circuit’ - the second operand is always evaluated.

The logical OR operator [[f] returns if either of its operands are (g, otherwise.

Similarly to the logical AND operator, the logical OR operator also short-circuits in some

languages. When evaluating ifxis is returned immediately - it does not
bother with [} at all. Thyme does not do this - the second operand is always evaluated.

Reference table of logic gates

Gate Example Description

AND X && 'y Outputs true if both inputs are true.

OR x ||y Outputs true if either input is true.

NOT I'x Outputs true if input is false.

NAND BECETED) Outputs true if either input is false.

NOR I(x || y) Outputs true if both inputs are false.

XOR (x |] y) & !(x && y) Outputs true if both inputs are different (one is
true and the other is false).

XNOR EICCHEIBRIEIBICE I BMAPDM Outputs true if both inputs are the same (both
are true or both are false).

Due to a quirk in Thyme that prevents variables from being compared with equality
operators, logic gates are the only way to compare variables directly. For reference,

is equivalent to NI, and is equivalent to NIREER. However, a simpler
M I R e nath . toIntRmath. toInt (bool) == math.toInt(bool) RIS
function converts values to I and I for and respectively, allowing them to
be compared.

Equality operators ==, I=

The equality operator= returns if the operands are equal, otherwise. If the data
types of the two operands are different, an error is thrown unless the data types are and
(order does not matter).

evaluate

An error is thrown if either data type is , or (MERSelop[Iqe (unless the two

variables reference the same [@ER/sh{e):

it

The inequality operatorE returns if its operands are not equal, otherwise.
is equivalent to [[ESEaalg), so will throw the same errors as the equality operator described
above.

Comparison operators <, >, <=, >=

The comparison operators only work if the data types of the operands are , , or are

Wlstring

The less than operator returns if the first operand is less than the second operand (e.qg.

returns).

The greater than operator [returns if the first operand is greater than the second

operand (e.g. returns).

The less than or equal to operator f&g returns if the first operand is less than or equal to

the second operand. IR is the same as RSN el

The greater than or equal to operator pg&g returns if the first operand is greater than or

equal to the second operand. Rl is the same as NNl

Comparing strings seems to compare the left-most character of both strings by ASCII code,
and iterate to the right until the end of the string.

Range operator ..

The range operator. returns a list of numbers between the two operands. It only works when
the data types of the operands are 4 float]

For example, 3..6 returns a list with the integers between 3 and 6 inclusive:

When using floats, the list will include the float from the first operand and start counting up by
one until the floats are larger than the second operand.

The range operator can also be used with list indices, returning a list containing the elements
between the element specified by the first operand and the element specified by the second
operand inclusive.

Ternary operator ?:

The ternary operator , sometimes referred to as the conditional operator, is the only
operator that takes three operands. It is used as follows:

condition ? returnThisIfTrue : returnThisIfFalse;

[e]glebR®Xe]gl Must be a boolean value or boolean expression.

Member access ogerator .

The member access operatorltakes the name of a [MER k[as its left operand and the
name of one of the ClassObject’s properties as its right operand. It returns the value of the
ClassObject’s property, if it exists.

For example, Sim.timeFactor would return the simulation speed:

= Sim.timeFactor
value = 1

default = 1

Indirection operator ->

The indirection operatortakes the name of a [@EFEF]e]op[Ieq as its left operand and a
function as its right operand. It sets the given [@EE]8]sg[qu's properties using the given
function. It returns the return value of the function.

The following script would move the camera to position , turn it upside down and
change its zoom to . (0.2x).

Scene.Camera -> {
pan = [0, 8];
rotation = math.pi;
zoom = 30;

};

Summary table

Operator Type Example expression Example returns

Infix
Infix
Infix
Infix
Infix

Infix

Infix

Infix

Prefix

Prefix

Infix "Algodoo " + "Thyme" "Algodoo Thyme"

Infix [,]++[:] [J y O]

Prefix (4 < 5)
Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix true ?
Infix math.pi

Infix Scene.camera -> { zoom =

HE

Custom operators

Most operators seem to have been created using the keyword.

The syntax resembles a function where parameters take any number of! underscores
separated by any set of characters as operators.

Then it accepts a function with the same number of parameters, which the operator will run
using its given arguments.

Here is an example of the range operator (found in the thyme.cfg file of the default Algodoo
directory):

The two arguments after pig@®% are unknown but are optional, a ! colon must separate p{g§ @By
and the parameters.

infix 5 left: _ .. _ => inclusive_range

It is recommended not to make custom operators as they get removed after Algodoo reloads,
and lacks clarity in what it does.

Despite the name, you can also set prefix and postfix operators.

This increments the given value by 1 like in other programming languages.

my.increment = (valuel=={ output = value + 1}

Bne.my.increment

ene.my.increment

Readability Guide

Readability Guide

When writing code, especially code you want to show others, you should aim to make it
readable. This is a good practice to get into because:
e It helps other people understand your code, which is important if you want them to help

you.
It helps you understand your own code in case you need to come back to it later.
It's easier to change and add to your code.

Meaningful identifiers

The name of a variable or parameter should always describe what the variable or parameter is
doing. For example:

(e)=>{
:= math.vec.len(vel);
e.other. HP = e.other. HP - d;
print(d + " damage dealt");

(e)=>{
damageDealt := math.vec.len(vel);
e.other. HP = e.other. HP - damageDealt;
print(damageDealt + " damage dealt");

In the good example, it is clear what [SEIIEF{BERRE represents - you only have to look at the
name to work out what it’s for. In the bad example, it takes more time to work out what the
variable m is being used for - the line where ﬂ is declared does not make it clear.

The impact of bad variable names worsens as your code gets longer. Ifﬂ were referenced
towards the end of a long block of code, you would have to scroll up to the beginning to work
out what ﬂ actually represents. This wastes unnecessary time and would easily be prevented if
ﬂwere given a meaningful name to begin with.

Avoid single-letter identifiers where possible. There are two exceptions to this:

(which stands for index or iterator) in a for loop:

for(5, (i)=>{

print(i);

E (which stands for event arguments) in an event function:

onCollide = (e)=>{
e.other.color =

};

Both of these are acceptable as they are common programming conventions. Of course, if you
want to use a more descriptive name, you are perfectly welcome to.

Avoiding ‘'magic numbers’

A‘magic number’ is an unnamed value with an unexplained meaning in code. For example,
take the following simplified anti-gravity script:

postStep = (e)=>{

vel = vel + [0,

It is not immediately clear what the value _ is supposed to be used for. Someone
looking at the code may be able to work out that the script gives the object acceleration
upwards, but the significance of the value EJEPRIaaa is not obvious at first glance. They may
think: "Why 0.32666668? Why not 0.33 or 0.3? What does this value actually represent?”.

Compare the above code to the following:

postStep = (e)=>{

vel = vel + [0, Sim.gravityStrength * * e.dt];

In this example, it is clear that the script’s acceleration is used to counter the object’s
acceleration due to gravity. Instead of using an unclear value, this script uses named values to
clarify the purpose of the script.

Using indentation correctly

Correct usage of indentation makes the intent of your code clear especially when that code
contains many functions, indentations can also make it easier to spot errors in your code
involving missing curly brackets.

While Algodoo does automatically correct the indentation of your code, it’s still important to
practice indentation when writing scripts in a text editor.

The general rule of thumb is to add indentation on all lines inside a block (curly brackets)
and increase per block.

Indents in Algodoo contain four spaces which can also be done using the Tab key, note that this
would insert a Tab character in some text editors.

The first example shows the script without indentation making it hard to read and work with.

Scene.addBox ({

_count := g

postStep := (e)=>{

if _then_else(_count > 9, {
count = _count - e.dt

[

timeTolLive =

1))
}
1)

Scene.addBox ({
_count := g
postStep := (e)=>{
if _then_else(_count > 9, {
_count = _count - e.dt

b A

timeTolLive =

1)

Comments

A comment is an annotation inside a script that is not run as code. Comments in Thyme work
exactly as they do in C and its derived languages.

A single-line comment starts with Jff§ and continues until the end of the line. For example:

Scene.my.apples := 3;

A multi-line comment starts with ffg and ends with . For example:

Try to avoid making comments about the obvious like | did above. As a general rule of thumb, the
more readable your code is, the less you'll have to use comments.

Using comments effectively

Comments are deleted by Algodoo when you enter code containing them. They can still be
useful if you use an external text editor to edit Thyme scripts (explained in its own section) or if
you need to show your code to others.

Comments should be used to summarise code or explain the intent of the code. If you use
comments to state the obvious or state exactly what the code is doing, it may be a sign that
your code is too hard to understand and should be re-written. For example:

‘
o
Q

apples :=

This comment is just restating the code. The code makes it obvious that the variable
stores the number of apples and that there are initially 3 apples - the comment is completely
unnecessary.

Better:

_objects = set.insert(_objects, object);

In this example, the comment is explaining why is being used instead of the list
concatenation operator.

Property Guide

Property Guide

There are far too many properties and variables that exist in Algodoo to exhaustively list in this
document. If you wish to learn more about a specific property that isn't already listed below,
check out the companion document:

B Thyme Property List

The following document contains several helpful functions (including xFor, xXWhile, filter, map

and fold, mentioned earlier).
E Thyme Additional Functions

Mathematical constants

Property Value Type Description

Float Mathematical constant e.

Float Mathematical constant .

Common mathematical functions

This following table lists most of the math functions used. It does not list all of them, as many
are simply helper functions to enable infix operations to exist.

Function Params | Param Description Function Description
Float: Input value Clamps [§ within the provided [
and [bounds:
Float: Lower bound o Ifffislessthan iy returns

Float: Upper bound e |[fis greaterthan ,

returns
e Otherwise, returns

Float/List: Lower bound | Linearly interpolates between E] and

E based on , where Elis when |8 isl
Float/List: Upper bound | and [§is when [§is ll. § and [§ must be
of the same type, and if they are
lists they must be lists of floats and
of equal length. (Technically can

Float

https://docs.google.com/document/d/1iuAnxx37MB7NJ0492_3PTqQrOrIHAfxpH_DymjaokrM/edit?usp=sharing
https://docs.google.com/document/d/1-c_89ZUqFE_dXHDx_HwIk2VE9Vjo9w12AO_MsEiMrY4/edit?usp=sharing

work on nested lists, follows the
same rules as adding nested lists)

Float: Domain in range
[-1, 1].

Returns the arccosine ofm in radians
if within the domain, otherwise

returns -

Float: Domain in range
['11 1]

Returns the arcsin ofm in radians if
within the domain, otherwise

returns -

Float

Returns the arctangent of [in
radians.

Float: Y value of vector

Float: X value of vector

Alternate function for arctangent
which takes components of a vector
and returns the angle of the vector
in radians. Use this function to get
the angle of a vector.

Float: Radians

Returns the cosine of fi in radians.

Float: Domain in range
[0, o]

Returns the natural log of [§if within
the domain, otherwise returns -

Float: Domain in range
[0, eo]

Returns log base 10 of [if within the
domain, otherwise returns [JElN.

Float Returns the highest ofEand E
Float

Float Returns the lowest ofEand E

Float

Float Returns the sine ofm in radians.

Float: Domain in range
[0, o]

Returns the square root of [f if
within the domain, otherwise
returns [JEI.

Float

Returns the tangent of [i]in radians.

Generating random numbers

Function Params Param Description | Function Description

boolean N/A Returns eitheror.

direction2D N/A Returns a vector of length 1 with a
random direction.

normal N/A Returns a random float value with
normal distribution with standard
deviation of 1

normal2D N/A Returns a random vector with
normal distribution with a
standard deviation 1 (Precise
mechanics unknown)

uniformol N/A Returns a random float value with
range [o, 1]

Even though there is no function for generating a set range of numbers, you can use
Tl e E R Felgli[<k! with some math to accomplish that goal. The basic math works out to be

o Tale IV g b el ol AR QU E I F N DR (13 To generate integers rather than floats, you
NeEleRefedmath . toInt (rand.uniform@l * (max - min)) + minMIR{IYCHIRGINEN

is exclusive, so a min of 4 and a max of 10 will generate numbers 4 through 9.

Converting between types

*Excluding ERd)Mol q@iyls, all conversion functions will act upon each element individually,
returning a list of converted values.

Function Params Param Description | Function Description

math.toBool Bool, Float, Int, Converts variables to booleans.
String, List* Numeric types are false when zero,

otherwise true. Strings must only
ve PN or HETPES] otherwise

throws an error (is case insensitive).

math.toFloat Bool, Float, Int, Converts variables to floats.
String, List* returns -, returns .

Strings must only contain numbers,
otherwise throws an error.

math.toInt

Bool, Float, Int,
String, List*

Converts variables to intsF
returns I, returns [g. Strings
must only contain integers,
otherwise throws an error.

math.toString Bool, Float, Int,

String, List

Converts variables to strings.

Converting between color formats

Function Params

Param Description

Function Description

Float List: HSLA
format

math.HSL2RGB

Converts an HSLA color to RGBA
(not to be confused with HSVA).

Float List: HSVA
format

math.HSV2RGB

Converts an HSVA color to RGBA.

Float List: RGBA
format

math.RGB2HSL

Converts an RGBA color to HSLA
(not to be confused with HSVA).

Float List: RGBA
format

math.RGB2HSV

Converts an RGBA color to HSVA.

Manipulating vectors

Function Params [Param Description

Function Description

math.vec.dist

Float List:

position

Float List:

position

Returns the distance between
pointsEandE

Float List:

position

math.vec.distSq

Float List:

position

Returns the square of the distance
between points E and E

math.vec.len

Float List:

vector

Returns the length of

math.vec.lenSq Float List: Returns the square of the length of

vector

and IER Y=Y FE]d both use an additional square root operation. If you

don‘t need the exact length/distance and want to compare them, [(ERS =T K=18Ys| and
UEN AT bRy aYe| are faster as they don't use a square root, cutting down the number of
operations.

So:

math.vec.len([a, b]) < math.vec.len([c, d])
math.vec.lenSq([a, b]) < math.vec.lenSq([c, d])

Manipulating strings and lists

Function Params Param Description | Function Description

string.length String/List Returns the number of characters if
is a string, or the number of
elements if is a list.

string.list2str List Converts into a string by

converting all elements into strings
and concatenating them.

string.split String Splits into a list of strings using
as a delimiter. Throws an

String: Single char | error if KRR is longer than one
character.

string.str2list String Splits BRag into a list of single
character strings.

Manipulating sets

A mathematical set is represented in Algodoo as a list. Mathematical sets cannot contain
duplicates, so these functions assume that you do not want duplicates in your lists.

Function Params Param Description | Function Description

set.insert Float/String List Appen to the end of

only if YEMIIE does not already

Float, String exist. can only be a list of
floats/ints, or a list of strings, not

both.
set.merge Float/String List Merges] and [§ by appending [§
_ _ onto g, removing duplicate values
Float/String List | from [§ doing so (does not remove

duplicates that exist in E). Both sets
may only contain either floats/ints,
or strings, not both.

For example, A EE-CCERNES PR ER returns.

Keyboard
Function Params Param Description | Function Description
Keys.bind String: Key code Binds [to [Riue, where pressing
the bound key will run . This
Parameterless binding persists across scene loads.
Inline Function
Keys.isDown String: Key code Returns a bool based on whether or

not [€3Y is being held down.

Keys.unbind String: Key code Unbindsfrom all functions
bound to it.

Key codes are names for keys on the keyboard; mouse; or gamepad, commonly they are the
same as what it outputs when you type, others are assigned special names.

The following list commonly used keys, seek B Thyme Built-In Properties for all possible key
codes.

Name Output

Returns true if the Enter key is pressed.

Returns true if the Enter key on the numeric keypad is pressed.
Only supported on keyboards with numeric keypads.

Returns true if the Spacebar key is pressed.

https://docs.google.com/document/d/1iuAnxx37MB7NJ0492_3PTqQrOrIHAfxpH_DymjaokrM/edit#heading=h.nlxtama8v89f

Not recommended as it’s intrinsically binded to pause/play the
simulation.

"mouse_left" Returns true if the Left Mouse Button is pressed.

"mouse_middle" Returns true if the Middle Mouse Button is pressed.

"mouse_right" Returns true if the Right Mouse Button is pressed.
Not recommended as it's intrinsically binded to open the
properties menu or rotate objects when held.

Returns true if the Ctrl key is pressed.
Adding left_ or right_ at the start does not correlate to the left or right
Ctrl keys.

Returns true if the Alt key is pressed.
Adding left_ or right_ at the start does not correlate to the left or right
Alt keys.

"shift" Returns true if the Shift key is pressed.

Adding left_ or right_ at the start does not correlate to the left or right
Shift keys.

"backspace" Returns true if the Backspace key is pressed.
Not recommended as it’s intrinsically binded to delete selected
objects.

Returns true if the Tab key is pressed.
Not recommended as it’s intrinsically binded to toggle the
visibility of the Algodoo’s GUI.

"escape” Returns true if the Escape key is pressed.

"delete" Returns true if the Delete key is pressed.
Not recommended as it’s intrinsically binded to delete selected
objects.

Mouse

Property Value Type Description

App.mousePos Float List | Position of the cursor in the scene.

Property Default Value | Type

Description

Sim.frequency Int

Number of simulation steps (ticks) per
second

Sim.tick Int

Number of ticks that have elapsed since
the scene started.

Sim.time Float

Number of simulation seconds that have

elapsed since the scene started. Equal to
unless
frequency has been changed after the
scene started.

Sim.timeFactor Float

Multiplier for how fast the scene runs.

System.time Float

Number of seconds that have elapsed
since Algodoo was opened. Not affected
by how fast the scene is running.

Manipulating the camera

Property Default Value Type

Description

Scene.Camera.pan Float

List | Position of the camera in the scene.

Scene.Camera.zoom Float

Zoom of the camera. Lower values
mean more zoomed out.

Scene.Camera. Float
rotation

Rotation of the camera in radians.

Manipulating gravity

Property Default Value | Type

Description

Sim.gravityAngle Float
Offset

Direction of gravity in radians.
Unlike other rotations, I is
downwards.

Sim.gravityStrength Float

Strength of gravity in meters per
second.

Manipulating wind

Property Default Value | Type Description

Sim.windAngle Float Direction of wind in radians.

Sim.windStrength Float Speed of wind in meters per second.

Sim.airFriction Float Linear component of air friction.
Linear

Sim.airFriction Float Quadratic component of air friction.
Quadratic

Sim.airFriction Float Multiplier applied to air friction.
Multiplier

Creating objects

Function Params | Param Description | Function Description
Scene.addBox Parameterless Creates and returns a box with
Inline Function properties declared within .
Scene.addCircle Parameterless Creates and returns a circle with
Inline Function properties declared within .
.addFixjoint Parameterless Creates and returns a fixate with
Inline Function properties declared within e,

Requires . Only seems to work
well when created in conjunction
with other newly created objects.

.addGroup Parameterless Groups objects together.
Inline Function Technically doesn’t require
anything, but requiresqm
in Mto be useful.

Best used to change what objects
the camera follows, see Changing
followed objects for more info.

.addHinge Parameterless Creates and returns an axle with
Inline Function properties declared within .

https://docs.google.com/document/d/1PDxl2rEUDyT7iEt5zRF-nFCzlTBh0J_YOgpX3hyxnPU/edit#heading=h.vviwwkaioyld
https://docs.google.com/document/d/1PDxl2rEUDyT7iEt5zRF-nFCzlTBh0J_YOgpX3hyxnPU/edit#heading=h.vviwwkaioyld

.addLaserPen

.addLayer

.addPen

.addPlane

.addPolygon

.addLineEndPoint

.addSpring

.addWater

.cloneEntityTo

.removeEntity

Requires . Only seems to work
well when created in conjunction
with other newly created objects.

Parameterless
Inline Function

Creates and returns a laser with

properties declared within g en.
Requires [sJef.

Parameterless
Inline Function

Creates and returns a layer with

properties declared within g en.
Requires .

Parameterless
Inline Function

Creates and returns a tracer with
properties declared within g en.
Requires , only persists if it can
attach to a geometry.

Parameterless
Inline Function

Creates and returns a plane with
properties declared within .

Parameterless
Inline Function

Creates and returns a layer with
properties declared within g en.

Requires IIIQEIA=H.

Parameterless
Inline Function

Creates and returns a line end point
with properties declared within
M, used in conjunction with
creating springs. Requires , will
disappear without a spring.

Parameterless
Inline Function

Creates and returns a spring with
properties declared within m
RKMIE 1 ineEndPoint1ENL!
lineEndPoint 2j{e Rl 8

Parameterless
Inline Function

Creates water, only uses and

requires and in .

ClassObject:
Entity

List: [x, y] position

Clones [Yi®RaY, placing it at LS.

Returns the cloned entity.

ClassObject:
Entity

Removes from the scene.

To use the object creation functions, you declare the object’s properties inside a parameter-less
function, e.g.:

Scene.addCircle({
color := [,

pos := [

3

This would create an orange circle which would spawn at the position ||

properties that aren’t specified will have their default values.

An easy way to spawn a tracer on an object is to do the following:

Scene.addPen({
attachedObject := Scene.addBox({

1)
geom := attachedObject.geomlD;

:= attachedObject.pos;

This script creates a variable e Idgl=le[0shfYqu, which is the object that will have the tracer
attached to it. The script then sets the tracer’s property to the of the new box.

A similar principle can be applied to fixjoints, lasers, etc.

To add water, you need to give the positions and velocities of each water particle. For example:

Scene.addWater({

vecs [[,])[:])[:]]:
vels := [[9, @], [-1, @], [-2, @]1;

3

This will create a water particle at (o, 0) with no speed, a water particle at (1, 0) moving to the

left and a water particle at (2, 0) moving faster to the left.

To create a group using scripting, simply add the s of each object you want to group,
you can also add a name for your group but it isn't mandatory.

Note that JRdsCIaCLN and BEEREqHN exist by default and have unique functionality, so they
shouldn’t be used, unless of course you intend to replace those groups with a new one.

Scene.addGroup({

name :=
entityIDs :

})
This will group all objects with an [His§s21y of

One last thing to know, if you regularly work with s, you may also work with
objects having references to other objects. Due to an odd quirk with how s are
handled, you cannot declare a in a create object function, instead any objects
are converted to functions. Instead, you must declare the after the create
object function. Simplest way to do it is like so:

circle := Scene.addCircle({

3

circle._object := alloc;

Doing it this way will properly create a [MEF{8]sg[=Iqd stored in the newly created object.
The same thing is true for references, which is useful if you want the object to still be able to
access the object that created it:

circle := Scene.addCircle({

1

circle. parent := e.this;

The ‘body’ variable

is a read-only property that can be found in all geometries. It controls what physics body
the geometry is a part of. Geometries that are glued together will have the same , and
geometries not glued together will have different values. Geometries glued to the
background will have a of . Geometries of inactive layers will have a of Il

Because [sJeJe)y is a read-only property, you can only set it upon creating new geometries, and it
cannot be changed after the geometry has been created.

Finding objects

Function Params | Param Description | Function Description

Scene.entityByGeomID id Int: Geom ID Returns the entity in the scene if it
exists, throws warning otherwise.

Scene.entityByID id Int: Entity ID Returns the entity in the scene if it
exists, throws warning otherwise.

Before you attempt to use these find object functions, you need to be aware that objects will
often have different IDs upon reloading the scene. You should not hardcode an ID, instead you
need to have the object provide its current ID upon scene load (such as through) or
find some other way of accessing the ID (within certain entities, you can find the IDs of
attached geometries within their property list, though generally only accessible through

readable)l
File 1/O

File /O (input/output) refers to transferring data to or from a file. Thyme offers two functions
for working with files

Function Params | Param Description | Function Description

System.ReadWholeFile file String: File path Returns the contents of asa
string. If it fails, it returns .
dis a file path where the root is

the user Algodoo directory.

System.WriteToFile String: File path Appends text to gBls. Returns
&on success.
String
Evaluating strings as code

Function Params | Param Description | Function Description

eval String: Script Evaluates as ascriptin the
current scope.

geval String: Script Evaluates as a scriptin the
global scope.

Reflection.ExecuteCode String: Script Same as [EENENI.

Reflection.ExecuteFile String: File path Readsand executes it as

code in the global scope.

HJNCInlolWeval ("print(\"Hello World!\")")KWelillskelglsid 'Hello World! "fdeRdslS

console:

rinEy Hello World!y")™)

75 ms: Console "print” cmd: Hello Warld!

This code shows the difference between and :

(e)=>{

eval("localvar

geval("globalvar :=

= 4%);

7");

Function

Scene.addWidget

App.GUI.ShowMessage

God .AddCheckbox

God.AddLabeledButton

God.AddSlider

Params Param Description

Function Description

Parameterless
Inline Function

Creates and returns a widget with
properties declared within .

Requires valid [[pXef<{=ya1),.

message String Creates a window displaying
nessagel
String: Bool Creates a checkbox that toggles
Variable the variable in .
String Creates a button labeled with

String: Script

that evaluates asa

script when pressed.

String: Float
Variable

Float

Float

INeT-EYah R olik¥ell Bool (OPTIONAL)

Creates a slider that changes
going from [#fy] to ﬁ
Uniquely, this function has an

optional parameter.
logarithmiclaA«SEVIaH
e, but it can be set to

to make the slider logarithmic.

God.AddTexturedButton texture

func

God

String: Skin path | Creates a button with a texture

that evaluates as a script

String: Script when pressed. This texture is not

a regular texture, but points to an
image file in Algodoo’s currently
selected skin.

Property Default Value

God.godMode

Type

Description

Bool

Whether or not God Mode is active. God
Mode enables various features, such as extra
options for axles and chains, more digits in
the info tab of objects, and an increase in how
far you can zoom in.

Technigues

Techniques

Learn about other techniques you can do with Algodoo.

e Reducing lag
List techniques (Testing for an item in a list, Removing items from lists)

Simulating anti-gravity
Creating trigger hitboxes

Object technigues (Destroying objects, changing followed objects, object constructors)
Creating polygons

Texture manipulation
Color manipulation

Editing scene files
Writing add-ons

Reducing lag

Reducing lag

Performance is a crucial part of simulations and can result in slow and inconsistent progression
if not taken into account.

It is important to look into efficient solutions to ensure that performance isn't impacted when
the simulation is running, this is especially useful for people you share the scene with in case
they don't have a powerful device to run the scene.

Sim-info

Sim-info logs information about the simulation, you can access it in the File menu and click the
Show sim-info option.
You can leave it open as the simulation is running to see how your scene is performing.

Sim-info =

100 of simulation time
Sirnul b time = 0.63 s
1 bodies

S ged

=y
i allision tests

Sim-info lists the following information.

e n% of simulation time / Paused - How much of the simulation is running based on the
simulation speed. e.g. 50.0% of simulation time at double speed means it's running at
normal speed (2x).

e Simulation time = n's - The number of simulation seconds has passed since the
simulation first started. In other words, this is the number of simulation steps that have
passed divided by the simulation frequency. Equivalent to ST PReIE.

e nbodies - The number of physics bodies that are used in the scene. A physics body is a
group of geometries that are glued together, the background has a physics body in
which geometries glued to the background are static.

n geometries - The number of geometries that exist in the scene.
n particles - The number of water particles that exist in the scene.
n narrow collision tests - The number of tests Algodoo is performing to check whether
geometries are colliding with one another, Algodoo checks for collisions if two objects’

bounding boxes overlap. A bounding box is the smallest rectangle that can be drawn
around the object without any rotation, a good way to view it is by using the Scale tool
on a geometry.

e n contacts - The number of points where geometries are touching each other. Separate
from collisions. During the tick an object first collides with another, it does not count as a
contact.

® n constraints - The number of axles and springs. The drag tool also technically counts as
a constraint.

e Running at n Hz - The simulation frequency where it controls the number of physics
steps performed per second, this can be changed in the Options menu under the
Simulation tab. The simulation frequency should match Algodoo’s frame rate (60 FPS
by default, 9o in older versions), lower values make physics choppy, whereas higher
values make physics accurate but can impact performance. Any changes may also
break some scripts that rely on it being the default value (60 Hz). Equivalent to
Sin. freguency]

e FPS: n - The framerate of Algodoo. This is separate from the simulation, it only affects
visual fidelity, lasers and anything to do with them, and the function.
Framerate should ideally be 60.

You can improve performance by doing the following.

1. The number of bodies should ideally be near the number of geometries, as bodies
containing a large number of objects can cause lag when reloading the scene, pressing
undo/redo, and when moving an object that’s part of a larger body using changing
scripts. The best thing you can do is avoid gluing anything to the background and
instead give them infinite density. A section further along describes why this is a good
idea in further detail.

2. Reduce the number of geometries in the scene, fewer geometries mean less work
Algodoo has to do in the scene. This also accounts for killer planes, which can be
deactivated in the Options menu under the Simulation tab.

3. Remove any water particles that are not in use, water is notoriously laggy for numerous
reasons. You can remove all the water particles in the File menu and click on the Erase
all water option.

Optimizing scripts

It is also important to optimize scripts in the scene to prevent unnecessary code from causing
lag spikes and frame drops in Algodoo.

The general rule of thumb is to have the program run as few operations as possible.

In this example, this object starts as red but turns green for 5 seconds when it collides with
another object.

_cooldown :

onCollide = (e)=>{
_cooldown <= ? {
_cooldown =
P A}
s

postStep = (e)=>{
_cooldown > ? {
_cooldown = _cooldown - e.dt;
color = [
2 A

color = |

onCollide = (e)=>{
_cooldown <= ? {
_cooldown = 5;
color = [0, 1, 0, 1];
postStep = (e)=>{
_cooldown > ? A
_cooldown = _cooldown - e.dt;
: Ao
color = [1, O, 0, 1];
postStep = (e)=>{};

The first example sets [T eiRelely to B when an object collides with it, then while
is above I, it turns green and ticks down until it hits I where it turns red.

The problem with this script is that the [oJef3#q=]s) script makes this check for every simulation
step causing unnecessary calls which may affect performance, this is easily resolved if the

script is first initialized when it is needed and is removed afterwards.

Of course, the above example script only serves as an example. The “bad” version is a perfectly

acceptable script in most cases, and it is more readable than the "good” method. Though, if

you have lots of objects running the script, it may be worth switching to the more performant
method.

Here are some ways to reduce lag on your scene. Ordering of the list is based on importance,

ease of optimization, and overall impact.

1.

Read your scripts diligently and think about how Algodoo runs them, focus on finding
redundant code and reduce the number of things (variables, functions, etc) used in the
script as much as possible. Algodoo runs them in a specific order, further information can
be found in the Update Order section

When comparing values with [§ or [operators, make sure both operands have defined
values - and have been observed to impact performance.

AGIE)s in Ofcos OB OREUE]t imeleigilgnath . sin Qfmath. cos OBSin. timel

R I8, or the ternary operator Il The former functions work by simply
calling the latter, acting as essentially middlemen that add extra unnecessary overhead.

Avoid scene variables () unless they absolutely need to be accessed globally
in the scene. Opt for local variables whenever possible.

Use function properties instead of setting values through other functions when
possible. For example, being set to is better than a
script that sets to that value at all times.

Reduce the number of math operations you perform. If you can, try precomputing
multiple operations, so instead of, try . Be wary though
as this can lead to magic numbers in your script, so only do this if you need the
performance boost.

If you're utilizing or ENAIYI4FEYs, you may want to try using
UEN AT =T BYe| or [(ER s PAL=Iee bR dYe|. These alternate functions don’t perform the

square root necessary for the correct answer. But, if you are comparing two lengths or
distances and don't need the correct values, they are useful.

Avoid super long variable names, the fewer characters the better. The effect of long
variable names is often insignificant. As long as variable names aren’t longer than 20
characters, you will be fine. Please choose readability over performance in this specific
case.

One last thing, Algodoo is known to have memory leaks and generally decreases in
performance over time. It's a good idea to regularly restart Algodoo when working on larger
projects to have a better idea on the actual performance.

Benchmarking

Benchmarking helps you to assess the performance of scripts. In Algodoo, you can use the
built-in e Y= function for benchmarking. It takes in a number of steps (ticks), runs the
scene for that many ticks and prints how many seconds it took to run those ticks.

" cteps took " + (System.time - £) + " seconds.")

steps took 0.30662775 seconds,

You can use benchmarking to compare the performance of multiple different solutions to the
same problem.

Scene.temp
is an alternative to .

While both objects are used to store variables intended to be accessed anywhere in the scene,
is explicitly meant for temporary variables that should not be saved with the
scene.

If you enter in into the console, then you can access

up until you reload the scene, or even undo the scene where the variable
will be undefined.

This may initially seem to be not useful, however there are cases where you may not actually
want variables to save with the scene, such as...
e Variables that are only defined when the scene starts.
o This can help clean up the object to only have more important
variables.
e Object references as they don't persist through scene reloads anyway.

o This allows for a super easy check to see if you need to recreate an object
reference, where just doing PRl el ML Cawaalete| Will return
once the object reference gets deleted.

Another benefit of storing object references in is that it will prevent variable leak.

An issue with storing object references in is that when the scene is saved, the
definitions of the object’s properties get erroneously saved in the scene.

When the scene is reloaded, those definitions are interpreted as creating new variables within
the global scope.

This is undesirable as it can lead to unintended behavior due to how Algodoo handles scope.
Instead of something like being undefined in boxes, the value returned will be the

LB in global scope.

A better way to glue to background

To glue a geometry to the background, you may prefer setting the geometry's to
-, this will act as if it's being glued to the background.

Some benefits with infinite density include...
e Freezing and unfreezing a geometry in place with scripts, which is impossible for the
other built-in methods.
No performance issues when moved via scripts.
Reloading the scene won't slow down.
Applying velocity will only affect the collision physics of that single geometry.

These issues are due to how physics bodies work.

The 'body' variable

Every geometry has a special read-only variable that controls which "physics body" the
geometry is a part of.
A physics body is simply a collection of geometries that all act as a singular object.

By default, each geometry gets its own physics body, so each object has a unique value.
Two geometries that are either glued together or connected with fixates are part of the same
physics body, so they will share the same value.

When you glue or fixate a geometry to the background, its is set to I - the background
can be thought of as being part of the oth body.

This means that every geometry glued to the background is technically glued to each other as
well.

Additionally, if you're utilizing the layer feature, making a layer inactive sets all body values on
that layer to -]

When you make the layer active again, none of the geometries remember being glued to the
background or to each other, and instead they all fall freely.

It also explains why if you unglue multiple geometries from the background at once, the
geometries still end up glued together, which is a problem.

In order for Algodoo to properly process geometries being glued together, it needs to calculate
internal values for their shared body whenever the scene is reloaded, or whenever a single
geometry is changed relative to the rest of the body.

This causes increased load times for the scene, and also means that moving, rotating, and
resizing glued objects that are glued causes lag.

If you've attempted to move glued geometries via script, you may have noticed that the script
may be much worse for performance than other scripts that affect physical properties (such as
velocity).

Considering that many scenes can easily have over a hundred geometries glued to the
background, you can see how this might be a significant cause for lag.

If you're interested in the numbers, on Erikfassett’s computer, 192 geometries were given a
position changing script in their postStep functions.

Using the sim-info window to check performance, the scene ran at 17.7% speed when the
geometries were glued to the background.

However, with the infinite density method, the scene ran without any slowdown at all.

Also if you apply a velocity to an object glued to the background, you will notice that suddenly
every glued geometry in the scene gains this velocity.

This is because geometries glued together will share the same velocity values at all times (as
long as angular velocity is o, at least), and geometries glued to the background are considered
glued to each other.

This leads to odd and seemingly unexplainable buggy behavior that can be frustrating.

List techniques

List techniques

Testing for an item in a list

Testing if an item exists in a list is not a particularly difficult task. In fact, here’s a naive (but still
useful in certain circumstances) method of doing so:

hasItem := (list, item)=>{
ret := false;
for(string.length(list), (i)=>{
list(i) == item ? {

ret = true
oo {3}
})s

ret

This method is considered naive as it is limited in some ways. Most notably, due to the
recursion limit, this method only works on lists that aren’t more than about fifty elements long
(exact number is unclear). Additionally, this method is slow, and it worsens with longer lists.
However, there is a far better method of handling this: .

Algodoo provides a couple of functions for handling sets. The rules for sets mean that you
cannot have duplicate items in a single set. helps with this by appending an
element to the end of a list only if the element does not already exist. Otherwise, the list is
unchanged. If you can’t already tell, this means we can compare the old list and new list to see
if the list had changed with the function. If it has changed, that means the item couldn’t have
already been in the list. If it hasn't changed, then the item must have already been in the list.
So, to facilitate this, here’s a function using :

hasItem := (list, item)=>{

string.length(list) == string.length(set.insert(list, item))

This function will work on lists of any size, and is a vast performance improvement compared
to the for loop method. A simple test on Erikfassett’s machine revealed the for loop method to
take more than 3 times longer on a list of 4 elements, and almost 10 times longer on a list of 16
elements.

You may think it would be best to always use the method, but there is one caveat
it has: it only works on lists of either numbers or strings. No other variable type works, whereas
with the for loop any type that can be compared with = works (and it can be modified to suit
other types of variables and nested lists). And, the list needs to be homogenous, a mixed list of
strings and numbers does not work with . However, as lists of types other than
strings and numbers are relatively rare, and heterogenous lists even rarer, this should cover
most cases.

Removing items from lists

One of the more annoying things to work with in Thyme are lists. Due to how they work, they
are rather static. At best, you can easily do some math on whole lists, and combine two lists
into one. You can’t change singular values at an index (IERRTEDIINEING is illegal), and you
can’t easily remove an item from the list. Though, when it comes to removing items from a list,
we do have more options.

The only real way we can remove items from a list is to create a smaller sublist from the
original list. The easiest items to remove are the items at the beginning and end of the list. To

remove the item at the beginning, you can simply do this: IEES RSy GRS

(E S - T @SR IEE®D). This uses the range operator. with the length of I§%E]d to

create a list of values like so: [[FIIETENI, Where the last number in this new list is equal
to the last index of (as the last index is equal to one less the length of the list). Because
using a list of values as the index of a list produces a new list containing all of the values in the
index list, you will get a list of numbers without the first item.

The same logic above applies to the end of a list, with the command slightly modified to this
instead: IRES K o RPN A 1M =P MO ES IEESD). The index list instead starts
at I to keep the first item and ends one less than the last index (two less than the length).

Of course, the above methods don’t work as well for items in the middle of a list. Though, if

you already know the current length of a list, you can do it manually: IEES SRR ST @ LI

EREERED). This creates a copy of IERRd without the item at index [f] and puts it back into
IERY. In other words, you're removing the item at index . But, of course, this only works for

lists that are seven items long. A longer list will lead to the end being chopped off, and a

shorter list will produce an error. Though, if you want the end to be chopped off as well, then it
can work for you too.

But, there is a general way to remove items from anywhere in a list:

list = list(@ .. (i - 1)) ++ list(i + 1 .. (string.length(list) - 1))

In this script, f is the index you want to remove. What it's doing is basically creating two
sublists: the first sublist contains every item up to (but not including) fl, and the second sublist
contains every item after. It then combines the two lists together to create a new list without
the item at . This script can work pretty well, but it has a couple of caveats: It's relatively slow
(the ! operator is relatively slow and worsens with larger ranges), it doesn‘t work for lists
much longer than 5o items (again thanks to the [flj operator), and it’s not helpful if you want to
remove a specific value from the list without knowing its index.

If you wish to remove a specific value from a list, then using a for loop to produce a new list
that excludes the specific item works well. Here’s an example:

list := [) b)) b)]5
newList := [];
for(string.length(list), (i)=>{

list(i) !'= 3 ? {
newList = newList ++ [list(i)]
yoo {}
}s

list = newlList;

This is a rather slow method, but it's reliable. It runs into similar issues to the above method to
remove an item at an index, so you still need to avoid lists longer than 5o items and consider
how often you remove items. If you absolutely need speed, then this isn't a super good
method.

Luckily, there is one more method that is a good bit faster, but it only works well if the target
list follows some rules. Specifically, the rules are that you should not have duplicate values in
your list (you can, but you'll run into some likely undesired behavior), and the list must either
contain only numbers or contain only strings. This is because this method utilizes a built-in
method. Here's an example:

list := > 3, 4, 5];
list = set.merge([3], list);

list = 1list(1 .. (string.length(list) - 1));
list;

So, what's going on here? Well, the trick is how works. As explained earlier in the
document, a set is a mathematical construct that contains a bunch of items, but none of the
items can be duplicates of each other. In Algodoo, this is represented using a list. All of the

methods in are built assuming you want to avoid duplicate items. There’s
which appends an item to the end of a list unless the item already exists, and then
which combines two lists in the same way does, but removes duplicate items.

However, with , the first list isn't actually touched at all. With S uES-ECIERND),

all items in B will remain intact (regardless of if there are duplicates in] or not). When
combining the lists, the function only removes items from E if they already exist in E So,
produces [EENENIRPEINEN). Now, if &
were to only contain items that already exist in [§, you may notice that the effect of RS aE
is equivalent to just moving items to the front of the list. So, with , we can move an
item to the front of the list and then make a simple operation to remove that item.

And, there’s more, we can remove a specific index as well:

list : » 3, 4, 5];
list = set.merge([list(2)], list);

list = list(1 .. (string.length(list) - 1));
list;

Here, we've gotten the item at index I and moved it to the front to be easily removed. And,
unlike the earlier method, this allows for any index to be removed.

Of course, as mentioned earlier, this only works on lists of either strings or numbers. And,
importantly, the list shouldn’t contain duplicate values. Both of these are due to how

(and TYERIETIaY) work, with the former limitation being a restriction of the
methods, and the latter being due to a side-effect of using the methods.

The main reason to avoid using this method on lists of duplicate values is that the duplicate
values get deleted. It doesn’t matter which item you're targeting, if an item has duplicates in
the list, those duplicates are removed. So, outside the unlikely case you want duplicate entries
to be removed as well, you should avoid this method if you know if you will be working with
lists containing duplicate entries.

Ultimately, there isn’t a single method for removing items from lists that's easy to use without
any downsides. However, at the very least one of the above methods should hopefully work for
you if you need to remove something from a list.

Color manipulation

Color manipulation

Using layers to multiply colors

You can use the JNIERETLIREWETY function to give layers a color (in the RGB format). Every
object in the layer will appear as if its color has been multiplied by the layer’s color.

To use the YJERETS[REWE]Y function, you must provide an ID (the layer number). To update a
pre-existing layer, just give the ID of the pre-existing layer.

For example, to turn layer o red, you would use this script:

Scene.addLayer({

id :=
color :

});

Example scene before the above script was applied:

The same scene after the script was applied:

The pink objects appear brighter as they have high red values. The green object, however, has
a very low red value, so appears black.

Here is a chart displaying a set of colored marbles under various colored layers:

Base Colors (White Light) Shadow (Reduced light) Extreme Shadow (Almost no light)
R:1.0] G:1.0| B:1.0 R: 0.65 | G: 0.65 | B: 0.65 R:0.1]G:0.1]B:0.1

Sunlight Sunset Nighttime
R:1.2 | G:1.05 | B:0.95 R:0.95| G:0.75 | B: 0.6 R:0.4|G:0.4]|B:0.5

Red Green Blue
R:1.0] G:0.0]B:0.0 R:0.0] G:1.0]|B:0.0 R:0.0]G:0.0]B:1.0

Yellow (W] Magenta
R:1.0] G:1.0| B: 0.0 R:0.0| G:1.0|B: 1.0 R:1.0|G:0.0]B:1.0

Using value and transparency to add colors

If the value of an object’s color is higher than il (100%) and transparency is low, then Algodoo’s
renderer will start adding the object’s RGB color to objects behind it. This effect improves the
larger value is and smaller transparency is.

The numbers for value and transparency can be found by setting the object’s color to whatever
you want with 100% transparency, and then multiplying value by a large number while dividing
transparency by the same large value. A good minimum value to multiply and divide by is
-. For a color with 100% value, this should lead to a value of- (1,000,000%) and a
transparency of- (0.01%). With a 50% color value, then value would change to -

An example of how additive color works can be seen here:

All three circles have a value of [EJelalg and transparency of EIEIEH. The magenta, cyan, yellow,
and white colors come from the circles adding their colors together.

The same three circles above will look different depending on different backgrounds. An
example on the default Algodoo sky background can be seen here:

The blue circle disappears entirely because the background already has the maximum blue
color, so adding more blue leads to no visual difference. This blue is also added to the red and
green circles, leading to their pink and cyan colorations.

This effect also works on textures. This rainbow texture has both a black and sky background
behind it, directly showing how each color is affected by different backgrounds.

Additionally, all objects in a layer can be made to have additive color blending by setting the

layer color to an RGB value of. This can be done easily

through running this function:

Scene.addLayer({
id := 0;

color := [

1)

This will force every object on layer o to additively blend its color with objects in their own layer

and lower layers. You can additionally combine this with color multiplication by multiplying the
above list with the RGB color you want to multiply by.

If you wish to, you can multiply and divide the value and transparency by a smaller number to
create a partial additive blend. This could be useful for things like fire, where you may want them
to not completely disappear on bright backgrounds, but still appear brighter than they would with
normal transparency blending. As a start, numbers 10 or less create a pretty good effect, but feel
free to experiment. You cannot use negative numbers to recreate subtractive blending.

Texture manipulation

Texture manipulation

A geometry’s (YUY g=IEYI@®Y property controls how its texture is displayed. It is a 3x3 matrix,
represented in Thyme as a list of g floats.

The default value of [V ERI®Y is the identity matrix:

[J J J J) J J)]

In matrix notation:

1 0 O
0 1 O
0 0 1
The following chart shows several transformation matrices you can use to manipulate

textureMatrixg

http://www.texrendr.com/?eqn=%5Cbegin%7Bpmatrix%7D1%20%26%200%20%26%200%20%5C%5C0%20%26%201%20%26%200%20%5C%5C0%20%26%200%20%26%201%5Cend%7Bpmatrix%7D#0

No change Translate Scale about origin

100 10 X WO O
0 10 0 1Y 0 H O

lom
[Flkwo

Rotate about origin Shearin x direction Sheariny direction
cosB® sinB 0 1 tan¢ O 1 00
tany 1 0

-sin® cos 6 0 o 1 0
| 4(sn 8, cos 6) lenen O)
WA ko Bl

'(cos 6, —sin B)

Reflectabout origin Reflect about x-axis Reflect about y-axis
=10 0 100 =
0-10 0-10 0 10

‘Tj‘”g -------------- L e F1]
,; o E v 1.0) ¢ _
-1y ©-1

One important thing to keep in mind though is that Algodoo handles its [=XqqU=IUERIE®Y a bit
differently than what the above chart implies. Here’s how to imagine how displaying textures

in Algodoo works:

Imagine an infinite repeating grid of the texture you've selected. The texture is sized to be
exactly a1m x am square (with rectangular textures being squished to fit in the square). The

center of the grid, (o, 0), is at the corner of four adjacent grid squares. The center of the grid is
also placed at the geometry's center of mass - or simply the center of the geometry.

What ({3 R d Ry defines is the shape, size, and rotation of a "view" or "camera" that is
looking at this infinite repeating texture grid. The displayed texture will be what's seen under
the view, where both the view and the infinite grid are both warped and transformed equally so
that the view becomes a 1x1 square centered at the origin. The resulting infinite texture grid
after this transformation is then what is displayed.

How the defines the view is as such: The 3rd and 6th numbers define the x
and y coordinate of the center of the view (i.e., the general position of the view on the infinite
texture grid). The 1st and 4th numbers define the x and y positions of the top left corner of the
view relative to the bottom left corner, and the 2nd and 5th numbers do the same but with the
bottom right corner relative to the bottom left corner. The top right corner is simply the top
left and bottom right corners combined. The last three numbers of the matrix should be left
untouched. Though, the very last number can be seen as a multiplier for all other numbers,
where all numbers are multiplied by the last number.

It is important to remember that the positions of the corners of the view are relative to the
bottom left corner, and the position of the bottom left corner is such that 3rd and 6th numbers
will always describe the position of the center of the view.

The reason the corners aren’t defined based on the origin is likely to make texture rotation easier

If the above was hard to follow, here are some example images of what is happening. The
following examples will use Erikfassett’s old Discord avatar, which is an image created by artist
sushiRoll.

This first image helps show how the view and textures warp with it. The top row shows what
the view looks like on an unmodified version of the texture grid, the middle row shows the part
of the texture the view actually sees, and the bottom row shows the texture being warped back
to be square and centered.

This second image shows how the view is affected by each number in the | {RquVIg=IERgR Y.
With this image, you can see how the positions of the top left and bottom right corners are
defined relative to the bottom left corner rather than the origin.

One final note about is that rectangular textures are first warped to be
square, which then requires the view to warp in such a way so that the final displayed texture is
once again properly rectangular. Additionally, the view isn't precisely what's actually displayed
on the final texture. It's just used as a reference for how to warp the texture plane, where the
view must return to being a 1m x am square. The displayed texture is the final warped texture
plane cut out by the geometry, where the center of the plane is the center of the geometry.

Object techniques

Object techniques

Destroying objects

There are two official ways to destroy entities:

1. Setting orto I
2. Using the SJEMECEITEISi#R4Y function (e.q. NLEHEEIEI TSR s A IR EY)] in
any event function; e EREEIOZI S AT ENdEID)] in onColllide).

Scene.RemoveEntityEllefadlle to [§ are the recommended methods to

delete objects. In some cases, setting to I is actually preferable because in some
specific cases AU F0y#R4Y for an unknown reason has a single tick delay.

For older versions of Algodoo, setting specific physics properties to I or- is the only available
method - this is not recommended for current versions.

Changing followed objects

If you look at a scene file, you might notice two groups that exist by default:

Scene.addGroup({
name := "tracked"

1)

Scene.addGroup({
name := "selected"

1)

The "tracked" group stores the entityIDs of the objects that are being followed by the camera.
Similarly, the "selected" group stores the entitylDs of the selected objects in the scene.

You can modify the contents of either group by using the SI{ERELe[e[e]¥]s function. For
example:

Scene.addGroup({
name := "tracked";
entityIDs := s

})

This causes the camera to follow the objects with entitylDs 34 and 35.

Object constructors

Creating objects via script can become unwieldy as you need to specify all of the properties of
the objects individually. This especially becomes a problem when you need to spawn multiple
different objects. In some cases, just using a for-loop may suffice, but in others that isn't
necessarily the case. If many objects being spawned have similar or identical properties, then
you may want to use an object constructor.

The add object functions provided by Algodoo take an inline function as an argument. It is
possible to have a function return an inline function, which means we can replace the inline
function in the argument with a "constructor" function. A constructor function would be set up
like so:

constructor

{

propertyA :
propertyB
propertyC

After setting up the constructor, you can then just run something like this:

ST [o [A IR NY Qe s Ey g e el @] This will spawn a circle with the properties specified in

the constructor.

Now, it is very important to note how the constructor is formatted. The properties of the
object are nested within two pairs of braces, not one like typical functions are. This is because
the inner pair of braces is an inline function that’s being returned. The add object function then
runs the returned inline function in order to set the spawned object’s properties. Attempting to
create a constructor that only has one pair of braces will lead to an error being thrown in the
console and no object being spawned.

Right now, the constructor isn't super useful. While it works well for spawning a specific object,
it only works for that specific object being spawned. Luckily, we can solve this pretty easily
using parameters. Here's an example:

constructor := (position, velocity)=>{

{

pos := position;
vel := velocity;
color := [0, O,
radius :=

};

Scene.addCircle(constructor([@,

In the above example, a constructor is set up to create a blue circle with a half meter radius.
But, the constructor allows you to set your own position and velocity for the circle. And, in the
above example, the spawned blue circle is given a position of and a velocity of

107}

It is also possible to add additional code before the returned inline function. In that case, you
can use extra logic or conditionals to determine some values in the returned function. You
could potentially even have multiple different possible inline functions be returned based on

conditionals.

Constructor functions shouldn’t always be used though. They are best used in situations where
similar object spawn scripts are found in multiple different places in code. And, there is the
alternative method of just calling a parameter function that itself contains the object spawn
code, instead of spawning an object with a constructor function. Which method you use
(function spawning object or spawning object with constructor) is up to you.

Creating polygons

Creating polygons

Creating circles or boxes using the object creation functions is fairly simple.

To create a circle with a specific size, you only need to specify its radius (a float or integer), e.qg.:

Scene.addCircle({

radius := 5

1)

To create a box with a specific size and orientation, you must specify its angle (a float or integer
in radians) and its size (a list containing its width and its height - both floats or integers), e.qg.:

Scene.addBox({
angle := math.pi / 2;
size := [, 15

1)

You can add more variables in order to create the exact object you want. Any required variable
that's left unspecified will be set to default values for the scene.

There are a few exceptions. Non-geometric entities like tracers, axles, and so on require certain
properties in order to be spawned. Generally the required properties are simply the IDs of the

geometries the entities will be attached to.

However, there is one object that requires a property much more complex: Polygons.

The ‘surfaces’ variable

If you look at a polygon’s script menu, you will see a read-only variable named HUYgEI=S. It is
a list of surfaces, where each surface itself is a list of vertices.

Note that can only be accessed by using the function on a reference to the

polygon. An example is [{gZelelel IXICIRUEEIPIELUGRelA=E] in an event function. This behavior

is indicated by the variable being in the bottom section of the script menu.

Algodoo uses each surface to draw a line, where it draws straight lines between vertices in
order, as if connecting numbered dots where each dot’s number is its index in a list. Once
Algodoo has all of the surfaces drawn, it uses two rules to fill in the polygon:

1. Every point along a surface must be adjacent to both filled and empty areas (i.e., every

surface must be a surface)

2. The shape must be contained within a finite area.
These two rules don't consider surfaces individually, but rather the combined structure of all
surfaces together. An easy way to tell whether or not a point is within the polygon is to draw a
straight line from that point towards any direction you want. If that line intersects surfaces an
odd number of times, the point is within the polygon. If the line intersects surfaces an even
number of times, then the point is outside the polygon. (If the line intersects a point where two
surfaces intersect, or a point where a surface intersects itself, that counts as intersecting two
surfaces).

There are some additional currently unknown rules regarding how multiple surfaces are
allowed to be placed. More testing needs to be done, but it appears as if the combination of
surfaces cannot allow for a discontinuous polygon. In other words, all parts of a polygon must
be connected to each other.

Ultimately, how precisely Algodoo fills in a shape is often unnecessary for polygon generation.
Only if you're trying to procedurally generate complex shapes may this information be more
important.

All that's needed right now is that is a list of surfaces, and each surface is a list of
vertices.

A simple right-angled triangle is created like this:
Scene.addPolygon({

surfaces := [[[b)]) [b)]J [b)]]]:

1

Each vertex is represented as a position vector (so a list of two floats or integers). The position

points to where the vertex would be if were and [JJIAANEN were

(more on that variable later).

Notice that each vertex is stored in a list, and that list itself is also nested within a list. This is
important. The three vertices in a list constitute a single surface, and that surface itself isin a
list of surfaces. In this example, the list of surfaces only contains a single surface. The number
of brackets you need can get confusing at times, especially with more complex scripts that
procedurally generate surfaces.

If you're having trouble formatting the whole variable, the errors Algodoo throws
should provide some hints.

In the first case, the error thrown states "Not a List". This means that you only have a single
surface not within a list of surfaces.

ene.addPolygon({

surfaces = [[0, 0], [0, 11, [1, O1];

WG - Failed to evaluate: Scene.addPolygoni(y

=[[0, 0], [0, 1], [1, O1]

In this example, Algodoo was expecting to find a list, but instead found I

In the second case, the error thrown states that it got a list that was too long. This means that
the whole list of surfaces was accidentally inserted inside another list.

v addPaolygon({
f [[[fo, o], [o, 11, [1, O]111;

G - Failed to evaluate: Scene.addPolygon({

= [[[[o, o], [0, 1], [1,

o vector of length 2, got list of length 3

In this example, Algodoo was expecting to receive a list of two floats/integers, but got a list of
three lists instead (|| EEFEEE PO EEPES P EZA N).

Analysing the triangle:

Algodoo takes the first vertex (), draws a line to the second vertex (/M) draws
another line from the second vertex to the third vertex ([ElfIER]) then, seeing that the third
vertex is the last one, draws a line back to the first vertex.

You can extend the script above to create a square by simply adding the vertex [[EIFIER]:
Scene.addPolygon({

surfaces := [[[0, @], [0, 1], [1, 1], [1, @]]];

});

The order of the vertices matters. This diagram below shows Algodoo’s drawing process for

the above square:

If you change the order of the vertices to the following, it will not produce a box:

Scene.addPolygon({

surfaces := [[[0, @], [0, 1], [1, @], [1, 1]]];
1)

Now, because these vertices themselves are position variables, you don’t actually need to
define a variable to place the polygon in the correct place, assuming the vertices have
been set up to put those points in the correct positions as well.

However, once the polygon is created, Algodoo does modify the variable to center
it at the origin. The polygon will still be in the position you set it via the vertices, as Algodoo
figures out the corresponding as well, but it does mean that a pre-generated polygon
cannot have its surfaces used to set the position of a resulting polygon. Only manually placed
or programmatically generated points in can be used to replace .

Generate QO'!QOH vertices

The thyme.cfg file contains a function that simplifies the creation of regular polygons (which
has been altered to make more readable):

Scene.my.generatePolygonVertices = (radius, sides)=>{
outputList := [];
for(sides, (i)=>{
angle = (2 * math.pi * i) / sides;

outputList = outputList ++ [radius * [math.cos(angle),
math.sin(angle)]];

}s
outputList;

};

The function takes a ‘radius’ (the distance between the centre of the polygon and each vertex)
and the number of sides of the polygon.

Here is code that creates a reqular hexagon using the above function:

Scene.addPolygon({

surfaces := [Scene.my.generatePolygonVertices(l, 6)];

s

This is the resulting hexagon:

An explanation of what the function does:

e Inthe first iteration of the for loop, [N
e The code calculates the angle between the positive x axis and a line to the current

vertex. Sinceisl, * math.pi * i / isalsol.

e The code then works out the vertex’s cartesian (x and y) coordinates using the radius

and the angle (the x coordinate is [l M EIRIELY (I Y ELT-AL=D] and the y coordinate
is (LRI R I C I -20Y)). The vertex (in this case, [[EINIERD is then added to

the output list.

The vertex in the diagram below is named 'Vertex o’ as it is the first element in the list of vertices.

e Inthe second iteration of the for loop, i = 1.
e The code calculates the new angle, now 1/3 (60°).

e The code then uses the radius and the angle to calculate the vertex coordinates and

adds the new vertex to the list (EHETICIIIIEELER]) -

This process is repeated until each vertex has been created. Algodoo then draws the polygon
with the generated vertices.

Creating a reqular polygon with 48 or more sides will create a polygon effectively indistinguishable
from a circle.

Rings

You can also use the function to create composite shapes. An
example is a ring. The following code creates a circular ring by generating the vertices for a
circle and the vertices for another smaller circle. While the function generates regular polygons
rather than circles, a regular polygon with many sides is a very good approximation for a circle
(which is the best you can get for a polygon in Algodoo as only the circle tool can generate
perfect circles anyway).

Scene.addPolygon({
surfaces := [Scene.my.generatePolygonVertices(1,),

Scene.my.generatePolygonVertices(,)1,

})s

The ring should look like this:

The ‘polyTrans’ variable

The [oJISANENE variable is a list of four floats/integers that represents a 2x2 transformation
matrix. Like , it is read-only and, like , can only be accessed through the

AEEEEE function.

Taking our right-angled triangle example from above:

Scene.addPolygon({

surfaces := [[[b)]) [b)]) [b)]]];

3

We can scale a polygon by x times using the following transformation matrix:

r 0
0 =«

To scale a polygon by 2, for example, we would use the following matrix:

2 0
0 2

In code:

Scene.addPolygon({
polyTrans := [2, 0, 0, 2];

surfaces := [[[b)]J [b)]J [b)]]];
})s

Comparing the new polygon (right) to the old polygon (left), we can see that the new polygon
is twice as large:

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bpmatrix%7Dx%20%26%200%20%5C%5C0%20%26%20x%5Cend%7Bpmatrix%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bpmatrix%7D2%20%26%200%5C%5C0%20%26%202%5Cend%7Bpmatrix%7D#0

We can rotate a polygon by 0 radians clockwise using the following transformation matrix:

cos) sinb
—sinf cost

To rotate a polygon by 1/2 (90°) clockwise, for example, we would use the following matrix:

0 1
-1 0

In code:

Scene.addPolygon({
polyTrans := [0, 1, , 0];

surfaces := [[[)]) [b)]) [b)]]]:
1)

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bpmatrix%7D%5Ccos%5Ctheta%20%26%20%5Csin%5Ctheta%5C%5C-%5Csin%5Ctheta%20%26%20%5Ccos%5Ctheta%5Cend%7Bpmatrix%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bpmatrix%7D0%20%26%201%5C%5C-1%20%26%200%5Cend%7Bpmatrix%7D#0

Comparing the new polygon (right) to the old polygon (left), we can see that the new polygon
is the same as the old polygon but rotated 1/2 (90°) clockwise:

polyTrans = @, i, =1, @]

Here are the matrices for reflections:

Reflection in the x axis:

1 0
0 —1

http://www.texrendr.com/?eqn=%5Cbegin%7Bpmatrix%7D1%20%26%200%5C%5C0%20%26%20-1%5Cend%7Bpmatrix%7D#0

Original

polyTrans =
[1J B) @, '1]

Reflection in the y axis:

-1 0
0 1

polyTrans = Original
[_1J @, 9: 1]

Reflection about the origin (i.e. in the line y = -x):

-1 0
0 -1

http://www.texrendr.com/?eqn=%5Cbegin%7Bpmatrix%7D-1%20%26%200%5C%5C0%20%26%201%5Cend%7Bpmatrix%7D#0
http://www.texrendr.com/?eqn=%5Cbegin%7Bpmatrix%7D-1%20%26%200%5C%5C0%20%26%20-1%5Cend%7Bpmatrix%7D#0

Original

polyTrans =
[-1, @0, 0, -1]

More complicated shapes

If you want to spawn a polygon that is too complicated for the methods described above, you
can create the polygon in Algodoo then copy and paste it into a script. Copying a polygon will

copy a AR elelonRY={e]y script to your clipboard that will create the exact polygon you
copied. Bear in mind that the variable tends to get very long for complicated

polygons.

Simulating anti-gravity

Simulating anti-gravity

As stated in a previous section, to change the gravity of the entire scene, you would set

SER (VAR AR S ¥YLd to the desired value. Giving individual objects an anti-gravity
effect is more difficult, however.

First of all, we have to negate the current effects of gravity. The force of weight due to gravity
causes an acceleration (by default 9.8 ms? downwards), so we'll have to counteract that with
an equal acceleration in the opposite direction.

To give an object constant acceleration, we can add to its velocity at a given time interval in
pfefy) o=le]. Our time interval is . This value is the length of time in between [l d=]y

calls assuming no lag. It's equivalent to I AR IRIR e I0S], Where is the
number of simulation steps, or ticks, per second. The velocity we need to add is
e Ra R aaarzads, Which is in meters per second squared (when representing
acceleration). Because the value for gravity strength is a representation of acceleration over
one second, we need to correct it so it represents acceleration over a single tick. This is easily

LA ISim. gravityStrength * e.dt]

postStep = (e)=>{
vel = vel + [- math.sin(Sim.gravityAngleOffset),

math.cos(Sim.gravityAngleOffset)] * Sim.gravityStrength * e.dt;
}

A little explanation of the trigonometry:

@ —sin(x)
@ cos(x)

As you might be able to tell, x represents SERIIFAENERAZA WA FFETELY, — sin(x) represents

the horizontal velocity we need to counteract gravity and cos(x) represents the vertical
velocity we need to counteract gravity.
e Atx = 0, gravity points downwards, so the counteracting acceleration should have no
horizontal component (— sin(x) = 0)and a vertical component pointing upwards (
cos(x) = 1).
o Atx = %, gravity points to the right, so the counteracting acceleration should have a

horizontal component pointing to the left (— sin(x) = — 1)and no vertical
component (cos(x) = 0).

e Atx = T, gravity points upwards, so the counteracting acceleration should have no
horizontal component (— sin(x) = 0)and a vertical component pointing downwards
(cos(x) = —1).

o Atx = 37“, gravity points to the left, so the counteracting acceleration should have a

horizontal component pointing to the right (— sin(x) = 1)and no vertical
component (cos(x) = 0).

You may notice that the object continues to move a bit after entering the gravity script. This
happens as Algodoo performs physics calculations before running scripts. Algodoo uses the
object’s resultant force to calculate the new velocity of the object, then uses that velocity to
calculate the object’s new position. Air resistance also comes into play here, which makes things
far more complicated. To get a perfect lack of movement, you should turn off air resistance and set
the velocity so that the object would be moving away from the direction of gravity with a speed
equivalent to gravity’s acceleration over a single tick. With default values, this would be a speed of
9.8/60 m/s.

To give an individual object an anti-gravity effect (i.e. the object’s gravity is in the opposite

direction to the scene’s gravity), we simply multiply by 2:

postStep = (e)=>{
vel = vel + [- math.sin(Sim.gravityAngleOffset),
math.cos(Sim.gravityAngleOffset)] * Sim.gravityStrength * 2 * e.dt;

}

Our original script counteracted gravity by adding an acceleration that was equal and opposite

to the scene's gravity, making the total acceleration zero. By adding that acceleration again,
the total acceleration on the object will be equal and opposite to gravity.

To give an individual object a gravity effect in any direction, we need to counteract gravity and
add the appropriate acceleration of the new gravity effect (where is the
direction of your gravity effect):

postStep = (e)=>{
vel = vel + ([- math.sin(Sim.gravityAngleOffset),

math.cos(Sim.gravityAngleOffset)] + [math.cos(newGravityAngle),
math.sin(newGravityAngle)]) * Sim.gravityStrength * e.dt;

}

The above functions can be simplified if the direction of gravity in the scene is known to not
change. In the case of gravity pointing downwards (default direction), the simple anti-gravity
script can be simplified to this:

postStep = (e)=>{

vel = vel + [0, Sim.gravityStrength * * e.dt];

Likewise, the function for any direction of gravity can be simplified to this:

postStep = (e)=>{
vel = vel + ([@, 1] + [math.cos(newGravityAngle),

math.sin(newGravityAngle)]) * Sim.gravityStrength * e.dt;
}

These simplified functions should only be used if the direction of gravity is known to be both
unchanging and pointed straight down.

You may find that other people use Sim.frequency instead of e.dt in their gravity scripts.
Sim.frequency and e.dt are the inverse of each other, so dividing by Sim.frequency leads to the
same outcome as multiplying by e.dt. Sim.frequency is used as that was and is still more
well-known than e.dt. Using e.dt is recommended though as Sim.frequency has a greater impact
on performance than e.dt. However, forewarning, you cannot use e.dt outside of postStep, as e.dt
is intrinsic to postStep. Technically it exists in update as well, but its behavior there is different.
Use e.dt for any script within postStep (or in any function called by postStep that takes e as an
argument), and use Sim.frequency everywhere else.

Creating trigger hitboxes

Creating trigger hitboxes

By default, the [eJg[®eBBBHe[= function is rather limited. It's only called upon an actual initial
collision, and there’s no built-in way to actually test if an object enters another object’s hitbox

without colliding. However, through the use of negative restitution, it is possible to almost
perfectly create what is known as a trigger.

Triggers are commonly used in video games to activate things and begin events whenever a
player or some other entity enters an area. To put it simply, a trigger is an area that if entered
will cause something to happen. In the vast majority of situations, entities never directly
interact with triggers.

To create a trigger, simply set its restitution to a negative value. Ideally this negative value
should be large, something like - would work well. Then, the trigger needs its
function set so that it either changes any colliding object’s collision layers, or it
changes its own collision layers, so that the collision between the trigger and an object can
only happen once. This is needed because Algodoo handles simple collisions and objects
overlapping differently, and restitution stops being the only factor when objects are
overlapping rather than simply colliding.

Here's a simple example: You create a trigger and put it on collision layer A. Then you can put
this code in its [eJg[®eJMBXe[E function so that it changes any other object that collides with it to
layer B.

(e)=>{

e.other.collideSet

If done correctly, objects should pass through the trigger as if they never collided, but any
additional code you may stick into [eJy[®(elREXe[=] will have been run once.

There are some limitations to this method. The most obvious limitation is that the trigger does
have to change the collision layers of the object, which may be undesirable in some
circumstances. This collision layer change also means that the trigger can only be activated
once, but good placement of triggers can help fix that issue.

Another issue that you might run into is that triggers don't work for objects with a restitution
ofl. In fact, restitutions close to I in general don't work as well with triggers. As an object’s

restitution gets close to I, the negative restitution needed for the trigger to function gets
greater and greater. This is why it's recommended that the negative restitution is set to be
large. At I, the needed negative restitution would theoretically be -, but this doesn’t work
as in this case, objects with I restitution just get deleted due to collision force calculations
breaking and setting a velocity value of, an invalid value. Non-zero restitution
values actually do work with negative infinite restitution, but as to not accidentally delete zero
restitution objects it's safer to not use negative infinite restitution.

One last issue that may be encountered is that collisions have different behavior if the two
objects start off overlapping. This could be achieved by an object starting off inside the trigger,
or the object’s collision layer is changed to be back to the trigger’s collision layer while still
inside the trigger. In both of these situations, the object’s velocity may be affected as
restitution is no longer the only factor in how the object’s velocity is affected by the collision, as
Algodoo wants to prevent two colliding objects from overlapping.

However, these downsides are far outweighed by the benefits of using triggers. The two other
alternatives for triggers are simply testing if the position is within a certain area, and lasers.
The former method is very inefficient, inflexible, only easily allows for simple shapes, and
causes lag if used too much. The latter isn’t great either as objects can block lasers, lasers can
be difficult to hide, only work well as single lines, and they run on frame rate rather than tick
rate, which can lead to being unreliable regardless of implementation. Triggers on the other
hand are very performance friendly, can be any shape, and are extremely reliable if
implemented well.

Editing scene files

Editing scene files

Text editors

If you enter an incorrect script into a variable, Algodoo will replace it with its last known value.
This can get rather annoying as your incorrect script (which you may have been working on for
a while) is removed completely.

This problem can be avoided if you edit your scripts in an external program. | personally use
Visual Studio Code (https://code.visualstudio.com/), although you are free to use other editors

if you prefer.

Some editors provide syntax highlighting (highlighting different parts of the code with
different colors). This makes the code more readable and easier to follow.

If using Visual Studio Code, you can set the language’s syntax highlighting by clicking the third
option from the right.

Ln1,Col 16 Spaces:4 UTF-8 CRLF PlainText & 0

Select Language Mode

This will bring up a list of all the languages you can use for syntax highlighting. Thyme is not on

the list, so feel free to use a language with syntax highlighting rules that you think are
appropriate. | personally use F#'s rules.

Notepad++ allows you to create your own syntax highlighting rules. It is only available on
Windows, however.

This is an example of Thyme code highlighted with F#'s rules in Visual Studio Code:
Note that F# is not Thyme. The two programming languages have little in common.

https://code.visualstudio.com/

File Edit Selection View Go Debug Terminal Help scene.phn - Visual Studio Code

scene.phn X
ohn

moveFrame

currentTimeOffset m.time - _fra
pos = lerp(_currentFrame(8® nextFrame(@
angle lerp(_currentFrame(1l nextFrame(1 currentTimeOffset

if_then_else(currentTimeOffset 1 nextFramePointer string.length(_frames

currentFrame frames(_nextFramePointer)(@ offsetPos, _frames(_nextFramePointer)(1
frameStartTime = System.time

nextFramePointer nextFramePointer + 1

transitionTime frameTimes(_nextFramePointer

nextFrame frames(_nextFramePointer) (8 offsetPos, _frames(_nextFramePointer)(1

if_then_else(_nextFrame(l currentFrame(1 math.pi
nextFrame nextFrame(8 nextFrame(1 math.pi 2

currentFrame(1 nextFrame(1 math.pi
nextFrame nextFrame(8 nextFrame(1 math.pi

onFrameChanged(_nextFramePointer

nextFramePointer string.length(_frames
pos nextFrame(®

angle nextFrame(1

postStep postStepAfterAnimation

Ln44,Col3 Spacess4 UTF-8 CRIF R* @ 0
Don‘t worry about what any of this code actually means! The Thyme guide will help you
understand it.

Some editors even provide tab-completion (just as the console does) - start typing an identifier
and you can press tab to finish it.

cu 1111|

abe entTimeOffset
postiabc _ entFrame

When saving a Thyme file, | personally use the .phn extension as Algodoo scene files (not
packages) are written in Thyme and have the .phn extension. There is more information on this in
the 'Editing .phz and .phn files’ section.

Editing .phz and .phn files

Algodoo scene package files (.phz files) are actually compressed archives. They can be

converted into .zip files by changing the file extension (i.e. from .phz to .zip):

Make sure you have File name extensions shown, this can be done in the View tab of File
Explorer.

[tem check boxes

»'| File name &
Hidden items

Sh

The screenshots shown are taken on Windows 10, but the same principle applies to all operating
systems.

When you extract the .zip file into a new folder and go into the folder, you'll see three files and
afolder:

Mame - Date modified Type

l textures 1272019 11:43 File folder

. checksums.txt 1272019 11:46 Text Document 1 KB
[scene.phn /122019 11:46 Algodoo Scene File 18 KB
E thumb.png 1272019 11:46 PMG File T KB

textures - a folder storing all of the scene’s textures.

e checksums.txt - a text file containing the name of every other file alongside a
hexadecimal checksum. Algodoo uses this to check whether the scene has been
tampered with - if it has, an error will appear in the console when you load the scene
and you won't be able to upload the scene to Algobox. The scene will work normally
otherwise.

e scene.phn - a Thyme file containing information about the scene - including
information about every object.

e thumb.png - the scene’s thumbnail.

You can open scene.phn in a text editor. You should see something like this:

File Edit Selection View Go Debug Terminal Help « scene.phn - Visual Studio Code

FileInfo
title
author
version

gravitySwitch true
gravityStrength 9.8066802
gravityAngleOffset e

airSwitch true
airfrictionMultiplier = 1
airfrictionLinear 0.8099999998
airfrictionQuadratic 06000000
rotFrictionlLinear = 0.0 999
airDensity = 0.0899999998
windStrength = 8.88000000
windAngle 0.00008000
airfrictionVersion = 3
legacyMode 2

timeFactor = 1.0000000
geomAttraction = true
multipleContactEventPerPair false
collideCallbacksEveryStep true
scriptUpdatesEveryStep = true
cables = false

limitAngVel ©.25600080
directContactSolveAll = false
direct_friction false
directHingeSolve true
directSpringSolve false
solvelter = 30

X ®ohAo @ Ln9,Col0 Spaces4 UTF8withBOM LF 2 ©® 0Q

The [@BERRTe object contains information about the scene:

Property Data type | Description

FileInfo.algoboxID i The scene’s ID on Algodoo's file-sharing
platform Algobox.

FileInfo.author The author of the scene.

FileInfo.description The description of the scene.

FileInfo.standardAuthor The default value of RSNk iuglelg fOr
new scenes.

This is never saved with the scene, but can be
accessed from the console.

FileInfo.title The title of the scene.

FileInfo.version i The version of Algodoo the scene is created in
(e.g. if the scene were created in version 2.1,
the value of this property would be Ei).

All of these properties can be accessed from the console.

Several other objects are also saved with the scene:

B - contains information about the features of the application Algodoo.

- contains basic properties for the scene’s background, including the
background’s color, whether clouds are shown and their opacity.

- contains properties for the scene’s grid, including the number of axes, the
scale of the grid and how transparent it is.

- contains properties about Algodoo’s Ul, such as whether to draw axles.

- contains properties about visualising forces.

- contains a single property - whether to display the accelerometer or
not. This does not seem to have an effect.

- contains properties about new geometries that are drawn with the circle,
box and polygon tools.

- contains information included in the scene such as textures, sounds and its
gravity rotation offset.

- contains general properties for the scene’s ‘view’, such as how much
the scene is zoomed in, or where the ‘camera’is placed in the scene.

- contains general information about how to simulate the scene, including the
simulation speed and gravity properties.

- short for ‘smoothed-particle hydrodynamics’. Contains properties for the scene’s
water, such as the size of each particle, the amount of time particles die after no
contact with its neighbours and the viscosity of each particle.

- contains information about the scene’s drag tool, including the
strength of the drag, whether it must drag the center of an object and whether the drag
force is shown.

If you've declared any variables in the object, you'll notice that they are saved too:

o Debug Terminal Help scene.phn - Visual Studio Code

SLIEngLn — LUuuuuou.
smartAttachRad 1.0000000
noRot = false

solveD = 4.0000000

Scene.Camera
pan 5.7356281, 2.59300837
rotation]
trackRotation = false
zoom = 107.54664

App . Background
cloudOpacity = 8.68000002
drawClouds = true
skyColor ©.44999999, ©.55000001, 1.0000000, 1.6080000

Fcene.my.ispalindrume word
wordLength string.

wordArray tr2l

if then_else(w T rray(wordLength 1
Scene.my.isPalindrome(string.list2str(wordArray(1 wordLength
false

Scene.addLayer
visible [
color
id 0]

dynamic true

Scene.addPlane
collideWater
[8.1
onCollide
X ®@ohAo @ Ln 206, Col 1 (339 selected) Spaces:4 UTF-8with BOM F F# @ 0Q

Finally, you'll notice a lot of object creation functions (o=I=RETele[21o)d, SR [c (O I N=,

etc.). This is how objects are stored in Algodoo scenes. You'll also notice that every single

property is saved here - when you use the object creation functions in scripts, you only specify
a few properties - the rest are set to their default values.

When you cut or copy any object in Algodoo, it cuts/copies the relevant object creation function
with all of the object’s properties to your clipboard. You can use this to edit objects individually
without needing to unpack the entire scene.

You can edit the scene in an external text editor. Make sure that all your code is valid Thyme
(otherwise the scene may not open properly) before saving.

To package your scene back together, put all of the scene’s components into a .zip file:

@ Burn to disc

=t Print
-
i
o = Fax

Send

Zip

Create a compressed [zipped)

folder that contains the selected

items.
FTU=3-21 . S 12/ : File folder
P10-3-2 . checksums.tct Text Document
P10-4-4 B scene.phn Algodoo Scene File

P2T-4zif B thumb.png PMG File

Change the new .zip file’s extension to .phz, and you will be able to open it in Algodoo again!

Note that .phn files can be opened in Algodoo, but any textures the scene requires that aren’t in
your textures folder won't load.

Writing add-ons

Writing add-ons

Algodoo scenes can communicate with external programs via file I/O. An example of an add-on
is AlgoSound, created by Steve Noonan.
http://www.algodoo.com/forum/viewtopic.php?f=13&t=11738&p=85506#p85506.

(Make sure HTTPS-Only mode is disabled on your browser when visiting this site.)

AlgoSound works like this:
e When you want to play a sound, you call Scene.my.playSound with the appropriate
arguments.
Scene.my.playSound writes the appropriate information to a file.
The external program reads the file, seeing the information. It then uses the
information to play the requested sound.

This concept could be used to do other things with Algodoo that are outside Thyme's
capabilities.

For example, a multiplayer game in Algodoo could work like this:

e Player 1 moves their character.

e A Thyme script writes Player 1's position to a file.

e An external program on Player 1's computer sees that the file has been changed and
reads the file.
The external program sends Player 1's position to a web server.
The external program on Player 2's computer then receives Player 1's position from the
web server.
The external program writes Player 1s position to a file.
A Thyme script on Player 2's computer reads the file and sets Player 1's position to the
position stated in the file.

An automatic fan marble race signup system could work like this:

e A YouTube bot is hosted on the host’s computer (the host being the one doing the FMR
livestream).

e When a YouTube user wants to sign up, they enter a bot command in the livestream
chat.

e The bot detects the command and checks whether the signup is valid. Has this user
already signed up? Has this marble been taken?

e Ifthe signup is valid, the bot writes the appropriate data to a file on the host's
computer.

http://www.algodoo.com/forum/viewtopic.php?f=13&t=11738&p=85506#p85506

e A Thyme script sees that the file has been changed and reads the file.
e The Thyme script updates the scene to show that the user has signed up.

Writing an add-on of your own requires you to know another programming language with file
I/O capabilities.

Add-ons are often incorrectly called ‘mods’. They are not mods as they do not modify Algodoo
itself. It is very, very difficult to create a true Algodoo mod as Algodoo was written in C++, which is
compiled to assembly code (very close to machine code that the CPU runs). Decompiling assembly
code will result in code that is very hard to understand - assembly has no concept of variable
names, meaning that the decompiler must come up with them itself. Mods are easier to create
with games such as Minecraft (Java edition only) or Terraria (desktop version only - written in C#)
as Java and C# compilers preserve a significant amount of the information in the original code.
The resulting decompiled code is much easier to understand.

Example add-on: Text Relay

This add-on will take a message from the console (of the external program) and display that
message on a box in Algodoo.

This is what will happen:
e When you write a message into the console, the program will write the message to a
file.
e Ascriptinside Algodoo will periodically check the file for any changes. Once it sees a
new message, the script will then change the box’s text property to the message.

This tutorial is done in three languages: C#, Python and JavaScript (with Node.js). Each
language section assumes that you are already familiar with the basics of programming in each
of these languages.

First, create a plain text file (this tutorial will call it ‘communication.txt’) in Algodoo’s home
directory. Algodoo’s home directory should be:

e Documents\Algodoo on Windows.

e Library/Application Support/Algodoo on MacOS.

e ~/Algodoo on Linux.

This file will be used to allow your program to communicate with Algodoo.

Move to the external program section of your preferred programming language. After finishing
the external program, move to the Thyme script section.

C# program

Create a new Console Application project.
e Using Visual Studio on Windows:
https://docs.microsoft.com/en-us/dotnet/core/tutorials/with-visual-studio?tabs=cshar

e Using Visual Studio for Mac:

https://docs.microsoft.com/en-us/dotnet/core/tutorials/using-on-mac-vs
e Usingthe .NET Core CLI:

https://docs.microsoft.com/en-us/dotnet/core/tutorials/cli-create-console-app

Declare a constant string storing the path to the communication file.

const string targetFileDirectory =
@"C:\Users\Username\Documents\Algodoo\communication.txt";

On Windows, the directory separator character is a backslash || rather than a forward slash ! as it
is on other operating systems though it’s accepted when you manually type it. The backslash is an

escape character, so the code above makes use of a verbatim string literal, which works the same
in C# as it would in Thyme.

Declare a variable that will store the message:

string message;

We will repeatedly ask the user to enter a message until they enter an empty string. To do this,
we can use a do...while loop:

while (message != "");

Inside the do...while loop, ask the user to enter input and set the message variable to contain
the contents of the input:

Console.Write("Enter message: ");

message = Console.ReadlLine();

https://docs.microsoft.com/en-us/dotnet/core/tutorials/with-visual-studio?tabs=csharp
https://docs.microsoft.com/en-us/dotnet/core/tutorials/using-on-mac-vs
https://docs.microsoft.com/en-us/dotnet/core/tutorials/cli-create-console-app

You will now need to write the message to a file. At the top of the code file, import the

System.lO namespace (which contains classes for file I/O):

using System.IO;

Declare a new StreamWriter for the communication file:

using (var fileWriter = new StreamWriter(targetFileDirectory))

{
}

Note that once a file stream is opened, it must be closed in order to allow other programs to access
it. A using statement automatically closes the file stream with the closing curly bracket .

Inside the using statement, write the message to the file:

fileWriter.Write(message);

Finally, give the user confirmation that the message has been successfully written to the file:

Console.WriteLine($"The message '{message}' has been written! Please

wait for the message to appear!");

The full code should look like this:

using System;
using System.IO;

namespace TextRelay

{

class Program

{

static void Main(string[] args)

{

const string targetFileDirectory =
@"C:\Users\Username\Documents\Algodoo\communication.txt";

string message;
do
{

Console.Write("Enter message: ");
message = Console.ReadlLine();

using (var fileWriter = new StreamWriter(targetFileDirectory))

fileWriter.Write(message);

Console.WriteLine($"The message '{message}' has been written! Please wait
for the message to appear!");

}

while (message != "");

When running the program, the console should ask you for input:

B8 Microsoft Visual Studio Debug Conscle = O *

Enter a message and press enter. The console should tell you that the message has been
written:

B3 Microsoft Visual Studio Debug Console = O X
Enter message: Hello World from C#!

The me

Enter m

If you open the file, you should see that the message has been written:

| communication.txt - Notepad = O >

Eile Edit Format View Help
Hello World from C#!

Ln1, Col 100% Windows (CRLF) UTF-8

If your program works, you can move onto the Thyme code.

Python program

Create a new Python file in Algodoo’s home directory:

B textrelay.py 0 Python File

Declare a variable that will store the message:

message = " "

We will repeatedly ask the user to enter a message until they enter an empty string (which is
why the initial value of the message variable is not an empty string). To do this, use a while
loop:

while message != :
Inside the while loop, ask the user to enter input and set the message variable to contain the
contents of the input:

message = input("Enter message: ")

Open the communication file for writing:

with open("communication.txt", "w") as communication_file:

Note that once a file stream is opened, it must be closed in order to allow other programs to access
it. A with statement automatically will automatically close the file stream.

Inside the with statement, write the message to the communication file:

communication_file.write(message)

Finally, give the user confirmation that the message has been successfully written to the file:

print(f"The message '{message}' has been written! Please wait for the

message to appear!")

The full code should look like this:

message = " "

while message != ""

message = input("Enter message: ")

with open("communication.txt", "w") as communication_file:

communication_file.write(message)

print(f"The message '{message}' has been written! Please wait for the message to
appear!")

When running the program, the console should ask for input:
el CAWindows\py.exe — O *

Enter mess

Enter a message and press enter. The console should tell you that the message has been
written:

il CAWindows\py.exe — O =

n written! Please wait for the mes

| communication.tet - Notepad — O x

Eile Edit Format Wiew Help
Hello World from Python!

Ln1, Col 100% Windows (CRLF) UTF-8

If your program works, you can move onto the Thyme code.

Node.js program

Create a new JavaScript file in Algodoo’s home directory:

) textrelay.js {) JavaScript File

We need to import both the filesystem and readline modules:

const fs = require("fs");
const readline = require("readline");

To use the readline module, we need to create a readline interface:

const readlinelnterface = readline.createlnterface({
input: process.stdin,
output: process.stdout

3

We will repeatedly ask the user to enter a message until they enter an empty string using a
recursive function.

As Node.js is single-threaded, we cannot use a synchronous loop to get console input. Instead, we
must use a recursive function.

Declare a function called E 4R INUEEREE:

function askForMessage() {

}

Inside the EFJRIMUEEREAS function, ask for the user to enter a message:

readlineInterface.question("Enter message:

3

', (message) => {

Inside the callback function, if the message isn't an empty string, write the message to the
communications file:

if (message != "") {

fs.writeFileSync("communication.txt", message);

Inside the if statement, give the user confirmation that the message has been successfully
written to the file:

console.log(The message '${message}' has been written! Please wait

for the message to appear!’);

At the end of the if statement, call the EH4RIRUEREEILE function:

askForMessage();
Finally, at the bottom of the code file, call B 4RIgUEEFE !

askForMessage();

The full code should look like this:

const fs = require("fs");
const readline = require("readline");

const readlineInterface = readline.createInterface({
input: process.stdin,
output: process.stdout

1)

function askForMessage() {
readlineInterface.question("Enter message: ", (message) => {
if (message != "")
{

fs.writeFileSync("communication.txt", message);

console.log(The message '${message}' has been written! Please wait for the

message to appear!’);

askForMessage();

1)

askForMessage();

When running the program, the console should ask you for input:

= PowerShell Core

Enter message:

Enter a message and press enter. The console should tell you that the message has been
written:

& PowerShell Core > -

Enter message: Hello World from Node. js!

The message 'Hello World from Node.js!' has been written! Please wait
for the message to appear!

Enter message:

If you open the file, you should see that the message has been written:

| communication.txt - Notepad = O *

File Edit Format View Help
Hello World from MNode.js!

Ln1, Col 100% Windows (CRLF) UTF-8

If your program works, you can move onto the Thyme code.

Thyme script

In this section, we will script a box in Algodoo to display the contents of the communication
file.

Draw the box that will display the text:

4. m
4 m
I I N .

In this example, we will set a timer script. Checking the file every time [gJef3#54=]s] is called may
cause lag, so in this example we will check the file every second.

Declare an object variable on the box named [T RaBL:
' | |] @@ |

Enter the following script in [sJeEy ey d=]e):
(e)=>{

if then_else(System.time - _startTime > 1, {
_checkFile();

_startTime = System.time;

b A1)

This is the timer script. Every second, the script will run the IRg[J{zBES function and reset

_startTimel

Declare two more object variables:

° - a function that will read all of the text from the communication file,
check whether the text has changed and if it has, change the displayed text to the text
from the file.

) - used to determine whether the file’s text has changed.

Box

Algodoo scripting is for advanced users only
at awn risk!

_checkFile := {}; _oldFileText ="

Inside the el 4FERES function, declare a local variable named EREK4d and set its value to
the contents of the communication file:

fileText := System.ReadWholeFile("communication.txt");

If R and WX FREYENYY are different, change el FREIENYY and {244 to
fileText]

if _then_else(fileText != _oldFileText, {
text = oldFileText = fileText

b A

If everything works, the box should display the contents of the file:

H = I I 0] WO rI d ! Liquify = i-:'ltrin-_:.iu::

_checkFile =

While the scene is running, run your program. Enter a new message and the box should display
the message.

Glossary

Glossary

Argument - a value passed into a function.

Boolean - a data type that can have one of two values - true or false.

Comment - an annotation or explanation in code that is not executed. Used to make
the code easier for humans to understand.

Concatenation - joining things together in a series.

Encapsulation - the bundling of data with the methods that operate on that data or the
restricting of direct access to some of an object’s components.

Expression - a combination of values and/or functions to create a new value.

Event - an action that occurs as a result of the user or another source, such as a mouse
click.

Float - a data type representing a number with a decimal part.

Function - a block of code that performs a specific task.

Identifier - a user-defined name of a program element.

Integer - a data type representing a number with no decimal part (i.e. a whole number).
Iteration - where a set of instructions is repeated a given number of times or until a
given condition is met.

List - a data type that represents a collection of ordered values.

Literal - a notation that represents a fixed value in code.

Operand - a value that is manipulated by an operator.

Operator - a symbol that tells the language to perform a mathematical, relational or
logical operation to produce a result.

Parameter - identify values that are passed into a function. They allow functions to
perform tasks without knowing the specific input values ahead of time.

Primitive - basic, not derived from anything else.

Property - a named member of an object.

Recursion - a method of solving a problem where the solution depends on solutions to
smaller instances of the problem.

Return - where the execution of a function stops and a value is given out.

Scope - the region where a variable can be used.

Selection - where a program takes a course of action depending on a condition.
Sequence - where defined actions happen in order. A program is formed by sequences
of statements.

Statement - an instruction telling a computer to perform a specified action. A program
is formed by sequences of statements.

String - a sequence of characters used to represent text.

Variable - a name given to a stored data value that can change.

e Vector - a quantity with both direction and magnitude.

	Preface
	Algodoo Scripting Guide
	Document tabs

	Environment Guide
	Environment Guide
	Console
	Script menu
	Object console
	Object properties

	Thyme Guide
	Thyme Guide
	Basic data types
	Basic data types
	bool
	int
	Binary literals
	Hexadecimal literals

	float
	Angles
	Infinity & NaN

	string
	String escapes & verbatim string literals
	Markup language & entity references
	The span element

	Summary Table

	Lists
	Lists
	Vectors
	Colors

	Variables
	Variables
	Variable scope

	Functions
	Functions
	Event functions
	Event arguments
	e.this
	Event properties table

	Object properties as functions

	Logic structures
	Logic structures
	Sequence
	Sequence
	Update order

	Selection
	Selection
	If statements
	Boolean expressions
	if function
	if_then_else function
	Ternary operator

	Iteration
	Iteration
	Built-in for function
	Kilinich’s xFor function
	The Real Thing’s xWhile function
	Recursion
	Higher order functions
	Filter
	Map
	Fold

	Custom functions

	Objects
	Objects
	Owner and Entity
	Encapsulation
	References
	Null

	Operators
	Operators
	Assignment operators :=, =
	Arithmetic operators +, -, *, /, %, ^
	Prefix plus and minus operators +, -
	String concatenation operator +
	List concatenation operator ++
	Boolean logical operators !, &&, ||
	Reference table of logic gates

	Equality operators ==, !=
	Comparison operators <, >, <=, >=
	Range operator ..
	Ternary operator ?:
	Member access operator .
	Indirection operator ->
	Summary table
	Custom operators

	Readability Guide
	Readability Guide
	Meaningful identifiers
	Avoiding ‘magic numbers’
	Using indentation correctly
	Comments
	Using comments effectively

	Property Guide
	Property Guide
	Mathematical constants
	Common mathematical functions
	Generating random numbers
	Converting between types
	Converting between color formats
	Manipulating vectors
	Manipulating strings and lists
	Manipulating sets
	Keyboard
	Mouse
	Time
	Manipulating the camera
	Manipulating gravity
	Manipulating wind
	Creating objects
	The ‘body’ variable
	Finding objects
	File I/O
	Evaluating strings as code
	UI
	God
	

	Techniques
	Techniques
	Reducing lag
	Reducing lag
	Sim-info
	Optimizing scripts
	Benchmarking
	Scene.temp
	A better way to glue to background
	The 'body' variable

	List techniques
	List techniques
	Testing for an item in a list
	Removing items from lists

	Color manipulation
	Color manipulation
	Using layers to multiply colors
	Using value and transparency to add colors

	Texture manipulation
	Texture manipulation
	Object techniques
	Object techniques
	Destroying objects
	Changing followed objects
	Object constructors

	Creating polygons
	Creating polygons
	The ‘surfaces’ variable
	Generate polygon vertices
	Rings
	The ‘polyTrans’ variable
	More complicated shapes

	Simulating anti-gravity
	Simulating anti-gravity
	Creating trigger hitboxes
	Creating trigger hitboxes
	Editing scene files
	Editing scene files
	Text editors
	Editing .phz and .phn files

	Writing add-ons
	Writing add-ons
	Example add-on: Text Relay
	C# program
	Python program
	Node.js program
	Thyme script

	Glossary
	Glossary

