Go Board and Lattice iCECubeZ2 Installation Notes Peter Halverson Last update 3/15/2020
http://halverscience.net/index.html

NanLand Go Board Notes, including how to setup Lattice iCECube2 on Linux Ubuntu 16

These are Halverson's personal notes. They are unedited and there is no guarantee of accuracy. Use at your own risk. | am
making them available to you because they might actually be helpful. If they are helpful, | would really appreciate a "thank

you".

Link to the live version of these notes:
https://docs.google.com/document/d/17WIW-UdGRF7cPRGURCYEWLN411LGdGJSxkyKU7m-21c/edit?usp=sharing

Go Board Index Page htips://www.nandland.com/goboard/index.html **** Start here

NandLand home page: https://www.nandland.com/

Go Board home page: https://www.nandland.com/goboard/

GoBoard basic specs:

----Clock = 25 MHz

----Voltage = 3.3 V

----Memory: 64kBits Number of RAM4k Blocks: 16

----FPGA Device Family = iCE40, Device = HX1K, Device Package = VQ100

----The "Home page" for the iCE40 FPGA is here: http://www.latticesemi.com/Products/FPGAandCPLD/iICE40.aspx
The "Application Notes" link at the bottom of the page is useful.

Power consumption, running a DDS sine wave generator
GoBoard + DA3 25 mA
GoBoard alone 20 mA

Communication with the Go Board via USB.
I got this info from the comments section of the You Tube Video "Nandland Go Board - Watch This When You Receive Your

Board" at https://www.youtube.com/watch?time continue=123&v=wWMIY9kjlJO

FOR LINUX USERS. For recent linux (over Ubuntu 11.10, kernel 3.0.0-19) (mine is kernel 4.4.0-140-generic based on ubuntu
16.04) you just need:

1. sudo apt-get install gtkterm

2. connect your go-board

3. sudo gtkterm -p /dev/ttyUSB1 -s 115200 -b 8 -t 1 <o YES *rxxess*

You DO NOT NEED to install any drivers; they already come with the kernel and they recognize the go-board (FTDI serial
port).

BOTH ports /dev/ttyUSBO and dev/ttyUSB1 are seen by:

dmesg | grep FTDI

that answers:

[5997.028880] usb 2-3: Manufacturer: FTDI

[5997.029520] ftdi_sio 2-3:1.0: FTDI USB Serial Device converter detected

[5997.030774] usb 2-3: FTDI USB Serial Device converter now attached to ttyUSBO
[5997.031048] ftdi_sio 2-3:1.1: FTDI USB Serial Device converter detected

[5997.031462] usb 2-3: FTDI USB Serial Device converter now attached to ttyUSB1

http://halverscience.net/index.html
https://docs.google.com/document/d/17WlW-UdGRF7cPRGuRcYEWLN411LGdGJSxkyKU7m-21c/edit?usp=sharing
https://www.nandland.com/goboard/index.html
https://www.nandland.com/
https://www.nandland.com/goboard/
http://www.latticesemi.com/Products/FPGAandCPLD/iCE40.aspx
https://www.youtube.com/watch?time_continue=123&v=wWMIY9kjlJ0

BUT only /dev/ttyUSB1 worked for me.

Continuing with setting up the programming environment --------------
I am now using the info here: https://www.nandland.com/goboard/setting-up-environment-icecube.html

Lattice Semiconductor's web page for the IceCube2 FPGA programming tool:

http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/iCEcube?.aspx
(Works on Windows and on Linux)

Downloading for Linux, 361 Mb, iCEcube2setup_Sep_12 2017_1708.tgz
Unpack and then right-click > run the iCEcube2setup_Sep_12_2017_1708 file.

It asks for the IceCube?2 license file. (7/20/2021: | had to go through this process again.)

Get it from the Lattice web site > products> Software Tools > IceCube2 > Licensing > lceCube?2 Free License.

SHORTCUT to the licensing:

https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/iCEcube2# 12092ABF818047B59CC4303964
92212C

It asks for my computer's mac address. In a terminal, | type

ifconfig

The first line of output says

ethO Link encap:Ethernet HWaddr f4:4d:30:66:91:b9

and the mac address is the "HWaddr" above. (It wants the colons replaced with dashes so f4-4d-30-66-91-b9
It now emails the license to me. (I decide to install the license later)

When | start IceCube2, it looks but fails to find the license file here: /usr/local/flexm/licenses/license.dat

So | create the directory and put the license.dat file in there. (I had to use "sudo")

The lceCube2 program is in ~/Iscc/iCEcube2.2017.08/ICEcube2 It works!

(Note that there is a "LicenseSetup" program there that | guess would move the license to where it belongs automatically.)

I now get the Lattice Programmer tool from here:
http://www.latticesemi.com/Products/DesignSoftwareAndIP/ProgrammingAndConfigurationSw/Programmer.aspx

| click "Programmer Standalone 3.11.1 64-bit for Linux" and start the 62 Mb download.
programmer_3_11_x64-441-0-x86_64-linux.rpm

| extract the file and it seems to have unpacked a file intended to go into /usr/local
Wait and see for now.

| am now here: https://www.nandland.com/goboard/your-first-go-board-project.html
Create a file Switches_To LEDs.v using Text Editor and save to ~/Documents
Create a project. My project directory is ~/Documents/GoBoard_work.

Project settings "In the New Project” window that need changing are

Device > Device Family > iCE40
> Device > HX1K

https://www.nandland.com/goboard/setting-up-environment-icecube.html
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/iCEcube2.aspx
https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/iCEcube2#_12092ABF818047B59CC430396492212C
https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/iCEcube2#_12092ABF818047B59CC430396492212C
http://www.latticesemi.com/Products/DesignSoftwareAndIP/ProgrammingAndConfigurationSw/Programmer.aspx
http://www.latticesemi.com/view_document?document_id=52743
https://www.nandland.com/goboard/your-first-go-board-project.html

> Device Package > VQ100
IOBank Voltage(V) > topBank > 3.3 left, bottom, right also 3.3

Get constraints file. Go_Board_Constraints.pcf Put it in my project by clicking P&R Flow > Add P&R Files > right-click
Constraints Files

ADDED NOTE: You eventually need Go_Board_Clock_Constraint.sdc, which you put into the project by opening Synthesis
Tool > right-clicking Constraints Files

Try running Synthesis, and | get error: Child process exit with 2.

| tried to fix by reinstalling license (using the license installer) and running the setup and selecting "repair" but that didn't help.
Finally | found in the discussion at the bottom of the page this solution:

| tried a test project but failed to pass synthesis (I always got

‘error 2' on both Windows and Linux).

The solution to this problem is as follows: In Lattice iCEcube2: right-click

on "Synthesis Tool".

A pop-up appears, showing "Select Synthesis Tools...". Click on the pop-up

and select "Lattice LSE". This changes the command-tree to

"Run Lattice LSE Synthesis" making it finally possible to create a bitstream.

*hkkkkkk YES *kkkkkk

Now Synthesis works.

Getting the bit file into the Go Board

| couldn't get the Diamond programmer to work. Use the open-source "lceStorm" programmer instead.

(The Diamond programmer download is a .rpm file, which tells me it is a RedHat or Centos type file. "Alien" is supposed to be
able to install such files, but the installed software is not working.)

Instead, | will try to use lceStorm. (Suggestion in the discussion)
http://www.clifford.at/icestorm/

Installing prerequisites (this command is for Ubuntu 14.04):

sudo apt-get install build-essential clang bison flex libreadline-dev \
gawk tcl-dev libffi-dev git mercurial graphviz \
xdot pkg-config python python3 libftdi-dev \
gt5-default python3-dev libboost-all-dev cmake

Installing the IceStorm Tools (icepack, icebox, iceprog, icetime, chip databases):

git clone https://github.com/cliffordwolf/icestorm.git icestorm
cd icestorm

make -j$(nproc)

sudo make install

| want to use iceprog invoking it with the bitfile which was previously created
iceprog Switches_To_LEDs_bitmap.bin

but | get an error:

http://www.clifford.at/icestorm/
https://github.com/cliffordwolf/icestorm

init..
Can't find iCE FTDI USB device (vendor_id 0x0403, device_id 0x6010 or 0x6014).
ABORT.

But THIS Works < _______ *hkkkkkkkkk YES *kkkkkkkkk
sudo iceprog Switches_To_LEDs_bitmap.bin And the code programs the FPGA OK!!

------------- How to program the Go Board without having to use "sudo"
| found advice here https://stackoverflow.com/questions/36633819/iceprog-cant-find-ice-ftdi-usb-device-linux-permission-issue

sudo pico /etc/udev/rules.d/53-lattice-ftdi.rules

| put this in the .rules file:

ACTION=="add", ATTR{idVendor}=="0403", ATTR{idProduct}=="6010", MODE:="666"

After fixing that file, and disconnecting and reconnecting the device, you should be able to program the FPGA as normal user
without sudo. <-----********** YES it works

Try installing the rest of the IceStorm system.
Note: As far as | can tell, the rest of IceStorm is not needed for using the Go Board. OK to skip.

I ran into a problem where cmake was looking for "Eigen3"
Solved with this command:
sudo apt-get install libeigen3-dev

Making the rest of lceStorm:

git clone https://github.com/cseed/arachne-pnr.git arachne-pnr
cd arachne-pnr

make -j$(nproc)

sudo make install

git clone https://github.com/YosysHQ/nextpnr nextpnr

cd nextpnr

cmake -DARCH=ice40 -DCMAKE_INSTALL_PREFIX=/usr/local .
make -j$(nproc)

sudo make install

Simple user manual for IceStorm:
http://hedmen.org/icestorm-doc/icestorm.html#Configuration-process

Simulation using EDA Playground
https://www.edaplayground.com/

Login: Use my work address, PW="the usual K"
1/19/2021: A year ago it was ok. Now I'm having trouble to get it to work. Additional licensing requirements have been
added and the one free simulation has errors connecting.

Go Board's PMOD connectors
Looking at the connector, into the holes you see two rows of 6 holes:
000000 1st row

https://stackoverflow.com/questions/36633819/iceprog-cant-find-ice-ftdi-usb-device-linux-permission-issue
http://hedmen.org/icestorm-doc/icestorm.html#Configuration-process
https://www.edaplayground.com/

000000 2nd row

The first row, which is for PMOD module 1, going left-to-right is
Pin 6, VCC (+3.3 V)
Pin 5, Ground

Pin 4, io_PMOD_4
Pin 3, io_PMOD_3
Pin 2, io_PMOD_2
Pin 1, io_PMOD _1

usually a clock signal to the module)

can be data or other signal)

usually data to or from the module)

usually a select or "activate" signal, active low, to the module)

.~ o~~~

The second row, which is for PMOD module 2, going left-to-right is

Pin 12, VCC (+3.3 V)

Pin 11, Ground

Pin 10, io_ PMOD_4 (usually a clock signal to the module)

Pin 9, io_PMOD_3 (can be data or other signal)

Pin 8,i0 PMOD_2 (usually data to or from the module)

Pin 7,io_PMOD_1 (usually a select or "activate" signal, active low, to the module)

Go Board's VGA connector
Looking at the connector, into the holes you see two rows of holes:

00000 1st row (Five holes)
00000 2nd row (Five holes)
00000 3rd row (Five holes)

The first row, going left-to-right is

Pin 5, Ground

Pin 4, nc (no connection)

Pin 3, Blue signal (connects to o VGA Blu_0, 1, 2 via resistors)
Pin 2, Green signal (connects to o VGA_Grn_0, _1, _2 via resistors)
Pin 1, Red signal (connects to o VGA _Red 0, 1, 2 via resistors)

The second row, going left-to-right is
Pin 10, Ground

Pin 9, nc

Pin 8, Ground

Pin 7, Ground

Pin 6, Ground

The 3rd row, going left-to-right is

Pin 15, nc

Pin 14, Vertical sync signal, o_VGA_VSync (I sometimes use this to trigger the oscilloscope)
Pin 13, Horizontal sync signal, o VGA_HSync

Pin 12, nc

Pin 11, nc

Note that the sync signals, pins 14 and 13 are a convenient place output
an oscilloscope trigger signal, assuming you're not connect a VGA display.

pmod "AD1" ADC from Digilent
"Home" page for PmodAD1:

https://reference.digilentinc.com/reference/pmod/pmodad/start

https://reference.digilentinc.com/reference/pmod/pmodad1/start

"Sales" page:

https://store.digilentinc.com/pmod-ad1-two-12-bit-a-d-inputs/
Two channels, 1 Msample/s each channel. 500 kHz low pass anti-alias filters.

| got the AD1 module to work on an Arduino. Info here:
https://www.hackster.io/56479/using-the-pmod-ad1-with-arduino-uno-38dd4a

In the process | learned that the optimum clock frequency is 20 MHz, and the 25 MHz clock on the GoBoard is inconvenient.
Unfortunately, the Lattice ICE-40 HX1 on the GoBoard DOES NOT have an internal PLL to derive 20 MHz from the 25 MHz.

Background info on the SPI serial data format used by Pmod devices, including the AD1:

https://reference.digilentinc.com/learn/fundamentals/communication-protocols/spi/start
More info here: https://reference.digilentinc.com/learn/programmable-logic/tutorials/pmod-ips/start

J1 Pin connections to the controller or FPGA:
Pin1 CS Chip Select

Pin2 DO Data out for 1st ADC

Pin3 D1 Data out for 2nd ADC

Pin4 CLK Serial Clock

Pin5 GND

Pine VCC

J2 pin connections for the analog output:
Pin1 A0 Analog in for 1st ADC
Pin2 GND

Pin3 A1 Analog in for 2nd ADC
Pin4 GND

Pin5 GND

Pin6 Vcc

pmod "DA2" DAC from Digilent
"Home" page for PmodDA2:

https://reference.digilentinc.com/reference/pmod/pmodda?2/start

12-bit digital-to-analog converter
Two simultaneous conversion channels

Texas Instruments Data Sheet:
http://www.ti.com/lit/ds/symlink/dac121s101.pdf

Max clock = 30 MHz Since each output sample requires 16 (or 177?) clock cycles, this implies an output speed of 1.8e6
samples/second. But its nowhere near this fast.

It has trouble handling more than 250000 samples/s.
According to data sheet the "settling time" is 8 microseconds, which implies
a maximum of 125000 samples/s

J1 Pin connections to the controller or FPGA:
Pin1 ~SYNC (active low)

Pin 2 DINA

Pin3 DINB

Pin4 SCLK

https://store.digilentinc.com/pmod-ad1-two-12-bit-a-d-inputs/
https://www.hackster.io/56479/using-the-pmod-ad1-with-arduino-uno-38dd4a
https://reference.digilentinc.com/learn/fundamentals/communication-protocols/spi/start
https://reference.digilentinc.com/learn/programmable-logic/tutorials/pmod-ips/start
https://reference.digilentinc.com/reference/pmod/pmodda2/start
http://www.ti.com/lit/ds/symlink/dac121s101.pdf

Pin5 GND
Pin6 VCC

J2 pin connections for the analog output , logging into the connector, left-to-right
Pin6 Vcc (Furthest to the left)

Pin5 GND

Pin 4

Pin 3 Vout 2

Pin 2

Pin1 Vout1 (Furthest to the right)

pmod "DA3" DAC from Digilent
"Home" page for PmodDAS3:

https://reference.digilentinc.com/reference/pmod/pmodda3/start

High resolution, 16-bit Digital-to-Analog converter

Low noise analog output

SMA connector

2.5V reference voltage (Hence, the output range is 0 to 2.5 Volts)
Uses AD5541A which has a 1 microsecond settling time.

https://www.analog.com/media/en/technical-documentation/data-sheets/AD554 1A.pdf
Max clock rate: 50 MHz

J1 Pin connections to the controller or FPGA:
Pin1 ~CS (chip select, active low)
Pin2 DIN

Pin3 ~LDAC

Pin4 SCLK

Pin5 GND

Pin6 VCC

The Pmod Y Cable -------------------
https://store.digilentinc.com/2x6-pin-to-dual-6-pin-pmod-splitter-cable/

How to get different clock frequencies: the PLL
Bad news: The ICE40 in the VQ100 package has NO plls. This info is from here:

http://www.latticesemi.com/view_document?document_id=47778

| haven't yet gotten it to work, but here is some info:

Application Note for the PLL: http://www.latticesemi.com/view_document?document_id=47778

The tool to create Verilog Code to activate (instantiate) the PLL seems to be Lattice Radiant, downloadable for Windows and
Linux:

http://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandL DS/Radiant

The Lattice Radiant User Manual is here:

https://www.latticesemi.com/-/media/LatticeSemi/Documents/UserManuals/EI2/FPGA-TN-02052-1-0-iCE40UP-sysCLOCK-PL
L-Radiant-SW.ashx?document id=52236

A good starting point for ICE40 info in general is:
http://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40# 21E33C7ECOBD48AA80FE384ED73CC895

https://reference.digilentinc.com/reference/pmod/pmodda3/start
https://www.analog.com/media/en/technical-documentation/data-sheets/AD5541A.pdf
https://store.digilentinc.com/2x6-pin-to-dual-6-pin-pmod-splitter-cable/
http://www.latticesemi.com/view_document?document_id=47778
http://www.latticesemi.com/view_document?document_id=47778
http://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/Radiant
https://www.latticesemi.com/-/media/LatticeSemi/Documents/UserManuals/EI2/FPGA-TN-02052-1-0-iCE40UP-sysCLOCK-PLL-Radiant-SW.ashx?document_id=52236
https://www.latticesemi.com/-/media/LatticeSemi/Documents/UserManuals/EI2/FPGA-TN-02052-1-0-iCE40UP-sysCLOCK-PLL-Radiant-SW.ashx?document_id=52236
http://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40#_21E33C7EC0BD48AA80FE384ED73CC895

| need to implement Memory! How? Some info might be here ----------------
Link to Application Note on Memory:
http://www.latticesemi.com/view_document?document_id=47775

NICE! The application note's Appendix A has example code on how to infor (automatically use) the memory. Single and
dual port.

Memory capacity = 64 kBits = 8 kBytes = 4 kWords (16 bit) = 5.333 kWords (12 bit)

Separate this Verilog code into three files to compile

/I Filename: Read_ADC_Top.v

/I Written by me, Peter Halverson, and posted on my web page http://halverscience.net/ Nov 4, 2019
/I This Verilog code is intended to run on a GoBoard, available from nandland.com,

/I and it uses a PmodAD1 analog-to-digital converter, available from Digilent

/I This is the top module. NOTE: | had trouble with the Lattice LSE Synthesis tool

/I not "autoguessing" that this is the top module. | had to explicitly tell the tool.

/l To do that, go into Tool > Tool Options > LSE (tab) > Top Level Unit and type in "Read_ADC_Top"

module Read_ADC_Top
(input i_CIk, /I Wire from the Main Clock, 25 MHz
output o_Segment1_A, // Wiring to the 1st 7-segment display.
output o_Segment1_B,
output o_Segment1_C,
output o_Segment1_D,
output o_Segment1_E,
output o_Segment1_F,
output o_Segment1_G,
output o_Segment2_A, // Wiring to the 2nd 7-segment display.
output o_Segment2_B,
output o_Segment2_C,
output o_Segment2_D,
output o_Segment2_E,
output o_Segment2_F,
output o_Segment2_G,
outputo LED 1, // Wiring to the LEDs
outputo LED 2,
outputo LED 3,
output o LED 4,
output io PMOD 1, /I Wiring to the ADC board ~ chip select (active low)
input io PMOD_2, // data from ADC 0
input io_PMOD_3, // data from ADC 1 (not used)
outputio PMOD 4, I clock to read out data
inputi_Switch_1, // Wires to the switches. Not used now, but useful for debugging.
inputi_Switch_2,
input i_Switch_3,
inputi_Switch_4);

wire w_Segment1_A, w_Segment2_A;

http://www.latticesemi.com/view_document?document_id=47775

wire w_Segment1_B, w_Segment2_B;

wire w_Segment1_C, w_Segment2_C;

wire w_Segment1_D, w_Segment2_D;

wire w_Segment1 _E, w_Segment2_E;

wire w_Segment1_F, w_Segment2_F;

wire w_Segment1_G, w_Segment2_G;
wirew_LED 1,w _LED 2, w LED 3,w _LED 4;

wire [11:0] w_ADC_Data;

wire w_ADC_Data_Valid;

reg [31:0] r_Readout_Count = 0;

parameter Readout_Period = 125000; // 125000 gives 200 per second (25 MHz clock / 125000)
reg [11:0] r_ADC_Data; // Only low order 12 bits are used. Four high order bits always zero
regr_ADC_Data_Requested = 1'b0;

// Code to read the ADC and put the results on the 7-segment display (upper 8 bits)
// and the LEDS (lower 4 bits)
always @(posedge i_CIk) begin
if (r_Readout_Count >= Readout_Period) begin
r_Readout_Count <= 0;
r_ADC_Data_Requested <= 1'b1; // Tell Read_ADC we want data
end else begin
r Readout Count <=r_Readout _Count + 1;
r ADC_Data_Requested <= 1'b0;
end
if (w_ADC_Data_Valid == 1'b1) begin
/lif (1'b1 == 1'b1) begin
r ADC_Data <=w_ADC_Data; /I Get the data from Read_ADC
end
end

/Il Interface (instantiation) to the code that triggers the ADC and reads its data.

/[parameter ADC_CLKS PER _BIT determines the readout speed of the bits from the ADC.
/I Its the GoBoard's clock frequency divided by the parameter.

/l Example: 25,000,000 / 25 would give 1 mega-baud.

// Maximum, according to Analog Devices AD7476 data sheet is 20 mega-baud

Read_ADC #(.ADC_CLKS_PER_BIT(4)) Read_ADC_Inst // 4 is gets me 6.25 Mbaud, 160 ns clock
(.i_Clock(i_CIk),

.i_ ADC_Data_Serial(io_PMOD_2),

.i ADC_Data_Requested(r_ADC_Data_Requested),
.0_ADC_Data_Valid(w_ADC_Data_Valid),

.0_ADC _ Data(w_ADC_Data),

.0_ADC_Chip_Select_Not(io_PMOD_1),

.0_ADC_Clock(io_PMOD_4));

// Binary to 7-Segment Converter for Upper Digit, highest nibble of ADC data
Binary_To_7Segment SevenSeg1_Inst

(.i_CIk(i_ClIk),

.i_Binary_Num(r_ADC_Data[11:8]),

.0_Segment_A(w_Segment1_A),

.0_Segment_B(w_Segment1_B),

.0_Segment_C(w_Segment1_C),

.0_Segment_D(w_Segment1_D),
.0_Segment_E(w_Segment1_E),
.0_Segment_F(w_Segment1_F),
.0_Segment_G(w_Segment1_G));

assign o_Segment1_A = ~w_Segment1_A;
assign o_Segment1_B = ~w_Segment1_B;
assign o_Segment1_C = ~w_Segment1_C;
assign o_Segment1_D = ~w_Segment1_D;
assign o_Segment1_E =~w_Segment1_E;
assign o_Segment1_F = ~w_Segment1_F,;
assign o_Segment1_G = ~w_Segment1_G;

// Binary to 7-Segment Converter for Lower Digit, middle nibble of ADC data
Binary_To_7Segment SevenSeg2_Inst

(.i_CIk(i_ClIk),

.i_Binary_Num(r_ADC_Data[7:4]),

.0_Segment_A(w_Segment2_A),

.0_Segment_B(w_Segment2_B
.0_Segment_C(w_Segment2 C
.0_Segment_D(w_Segment2_D
.0_Segment_E(w_Segment2_E),
.0_Segment_F(w_Segment2_F),
.0_Segment_G(w_Segment2_G));

~

~

~ -

assign o_Segment2_A = ~w_Segment2_A;
assign o_Segment2_B = ~w_Segment2_B;
assign o_Segment2_C = ~w_Segment2_C;
assign o_Segment2_D = ~w_Segment2_D;
assign o_Segment2_E = ~w_Segment2_E;
assign o_Segment2_F = ~w_Segment2_F,;
assign o_Segment2_G = ~w_Segment2_G;

assigno LED 1 =r ADC _Data[3]; // Lowest nibble of ADC data will be displayed on the four LEDs
assign o_LED 2 =r_ADC_Data[2];

assigno LED 3 =r ADC_Data[1];

/lassign o_LED_3 =i_Switch_3;

/lassign o_LED_4 =i _Switch_4;

/lassign o_LED_4 =r_Readout_Count[22];

assigno_LED 4 =r_ ADC_Data[0];

endmodule // Read_ADC_Top

/I Filename: Read_ADC.v

/I ADC Readout for Digilent PMOD AD1, which has two Analog Devices AD7476A 12-bit ADCs
/I Written by Peter Halverson and posted on http://halverscience.net/ Nov. 4, 2019

/l Based on UART RX from http://www.nandland.com

module Read_ADC
#(parameter ADC_CLKS_PER_BIT = 25)

(
input i_ Clock,

input i_ADC_Data_Serial,

input i ADC_Data_Requested,// Set this to True when you want an ADC readout
output o_ADC_Data_Valid, // When this is true, it means the adc data is ready

output [11:0] o_ADC_Data, /lits a 12 bit ADC

output o_ADC_Chip_Select_Not, // The ~CS line is active when False

output o_ADC_Clock /l Falling edge requests next bit, bit is read on rising edge
);

parameter IDLE = 2'b00; // State Machine states

parameter ADC_CONVERSION_DELAY = 2'b01; // Not needed? Datasheet says 10 ns minimum is needed.
parameter READ_DATA_BITS = 2'b10;
parameter CLEANUP =2'b11;

reg [7:0] r_Clock Count =0;
reg [3:0] r Bit Index = 15;//4 zero bits + 12 data bits = 16 bits total
reg [15:0] r ADC Data =0; //First 4 bits always zero

reg r_ ADC_Data_Valid = 0;

reg [2:0] r SM_Main =0;

reg r_ADC_Chip_Select_Not = 1;
reg r ADC_Clock =1;
reg [7:0] r_Delay_Clock_Count = 0;
reg r_Got_The_Bit= 1'b0;

// Read ADC state machine
always @(posedge i_Clock)

begin
case (r_SM_Main)
IDLE : begin
r ADC_Data_Valid <= 1'b0;
r_Clock Count <=0;

r_Delay_Clock_Count <= 0;

r Bit Index <=14; // ADC send 15 bits (not 16) High order bits first
r_ADC_Clock <=1'b1;

if i_ADC_Data_Requested == 1'b1) begin

r_SM_Main <= ADC_CONVERSION_DELAY;

r ADC_Chip_Select Not <= 1'b0; // Start the conversion

end else begin

r SM_Main <= IDLE;

r_ADC_Chip_Select_Not <= 1'b1; // Don't start the conversion

end

end // case: IDLE

ADC_CONVERSION_DELAY : begin

if (r_Delay_Clock_Count < 0) begin // Adjust to give time for ADC to start a conversion
/1 0 gives 80 ns (Three cycles of 25 MHz clock), 1 gives 120 ns, 2 gives 160 ns, etc
r_Delay_Clock_Count <= r_Delay_Clock_Count + 1;

r_SM_Main <= ADC_CONVERSION_DELAY;

end else begin

r_Delay Clock_Count <= 0;

r_SM_Main <= READ_DATA_BITS;

end

end // case: ADC_CONVERSION_DELAY

READ_DATA_BITS : begin

if (r_Clock_Count < ADC_CLKS_PER_BIT-1) begin

if (r_Clock_Count < (ADC_CLKS_PER_BIT/2)) begin

r ADC_Clock <= 1'b0; // Falling edge tells ADC to output a bit
r_Got_The_ Bit <= 1'b0;

end else begin

r ADC_Clock <= 1'b1; /I Rising edge is when we get the bit. (It is now stable)
if (r_Got_The_Bit == 1'b0) begin

r_ADC_Data[r_Bit_Index] <=i_ADC_Data_Serial; // GET THE DATA BIT!!
r_Got_The_Bit <= 1'b1; //We want to latch the bit only once

/I Check if we have received all bits

if (r_Bit_Index > 0) begin /' We need to get more bits (We get 16 bits, 1st four are zero)

r_Bit_Index <=r_Bit_Index - 1; //ADC send bit 15 first, then bit 14, ...
r SM_Main <= READ_DATA_BITS;
end else begin

r_ADC_Data_Valid <= 1'b1; /[All 15 bits are now valid. Tell caller to get the data.

r ADC_Chip_Select Not <= 1'b1; // Stop the conversion
r SM_Main <= CLEANUP;

end

end

end

r Clock _Count <=r_Clock_Count + 1;

end else begin

r_Clock _Count <= 0;

end

end // case: READ_DATA_BITS

CLEANUP : begin I/l Stay here 1 clock

/[r_Delay_Clock_Count <= 0;

r SM_Main <= IDLE;

r ADC_Data_Valid <= 1'b0;

end // case: CLEANUP

default :

r SM_Main <= IDLE;

endcase

end

assign o_ADC_Data Valid =r_ADC_Data_ Valid;
assign o_ADC_Data = r_ADC_Data[11:0];
assign o_ADC_Chip_Select Not =r_ADC_Chip_Select Not;
assign o_ADC_Clock = r_ADC_Clock;
endmodule // Read_ADC

/I Filename: Binary_To 7Segment.v
[T T

/| File downloaded from http://www.nandland.com
[T T

/I This file converts an input binary number into an output which can get sent

/l to a 7-Segment LED. 7-Segment LEDs have the ability to display all decimal
/I numbers 0-9 as well as hex digits A, B, C, D, E and F. The input to this

/I module is a 4-bit binary number. This module will properly drive the
/[individual segments of a 7-Segment LED in order to display the digit.
/| Hex encoding table can be viewed at:

/I http://en.wikipedia.org/wiki/Seven-segment_display
[T LT T

module Binary_To_7Segment

(

input i Clk,

input [3:0] i_Binary_Num,
output 0_Segment_A,
output o0_Segment_B,
output o0_Segment_C,
output o_Segment_D,
output o0_Segment_E,
output o_Segment_F,
output o0_Segment_G

);
reg [6:0] r_Hex_Encoding = 7'h00;

// Purpose: Creates a case statement for all possible input binary numbers.
// Drives r_Hex_Encoding appropriately for each input combination.
always @(posedge i_CIk)
begin
case (i_Binary_Num)
4'b0000 : r_Hex_Encoding <= 7'h7E;
4'p0001 : r_Hex_Encoding <= 7'h30;
4'b0010 : r_Hex_Encoding <= 7'h6D;
4'b0011 : r_Hex_Encoding <= 7'h79;
4'b0100 : r_Hex_Encoding <= 7'h33;
4'p0101 : r_Hex_Encoding <= 7'h5B;
4'b0110 : r_Hex_Encoding <= 7'h5F;
4'b0111 : r_Hex_Encoding <= 7'h70;
4'b1000 : r_Hex_Encoding <= 7'h7F;
4'p1001 : r_Hex_Encoding <= 7'h7B;
4'b1010 : r_Hex_Encoding <= 7'h77;
4'p1011 : r_Hex_Encoding <= 7'h1F;
4'b1100 : r_Hex_Encoding <= 7'h4E;
4'b1101 : r_Hex_Encoding <= 7'h3D;
4'b1110 : r_Hex_Encoding <= 7'h4F;
4'b1111 : r_Hex_Encoding <= 7'h47;
endcase
end // always @ (posedge i_ CIk)

// r_Hex_ Encoding[7] is unused

assign o_Segment_A =r_Hex_Encoding[6];
assign o_Segment_B =r_Hex_Encoding[5];
assign o_Segment_C =r_Hex_Encoding[4];
assign o_Segment_D =r_Hex_Encoding[3];
assign o_Segment_E =r_Hex_Encoding[2];
assign o_Segment_F =r_Hex_Encoding[1];

assign o_Segment_G = r_Hex_Encoding[0];

endmodule // Binary_To_7Segment

