
Background knowledge
 As early as the PIP-6, we implemented exactly-once delivery for single messages from
producers. We introduced the concepts of producerName and sequenceId, where the
producerName is globally unique and the sequenceId defaults to start from 0, incrementing for
each message. Of course, we also allow users to set the producerName and sequenceId
themselves. When the message deduplication feature is enabled, the broker filters out duplicate
messages based on the sequenceId and producerName. Moreover, since Pulsar's message
resending mechanism always sends to the same partition, even for multi-partition topics,
single-message delivery is exactly-once.

However, this mechanism does not guarantee atomicity for sending multiple messages.
To address this issue, we introduced transactions in the PIP-31 proposal. Before diving deep
into this proposal, it is highly recommended to read PIP-6 and PIP-31 better to understand the
design of idempotent producers and Pulsar Transaction.

In the design of Pulsar transactions, messages sent using a transaction will carry the
transaction ID of that transaction. When a transaction is committed or aborted, we write a
commit or abort marker into all topics the transaction has sent messages to. Importantly, a
transaction's messages do not become immediately visible to consumers upon its commitment.
We can determine if a message is a transactional message by checking whether it carries a
transaction ID. Prior to the marker being written, all messages following the transactional
message are invisible to consumers. For example, in a given scenario, before the txn1-commit
marker is written, all messages after txn1-m1 are unreadable. Even if txn2-commit and
txn3-abort markers have been written to the topic, all messages from txn2 and txn3 related to
this topic remain invisible to consumers.

https://github.com/apache/pulsar/wiki/PIP-6:-Guaranteed-Message-Deduplication
https://github.com/apache/pulsar/wiki/PIP-6:-Guaranteed-Message-Deduplication
https://docs.google.com/document/d/145VYp09JKTw9jAT-7yNyFU255FptB2_B2Fye100ZXDI/edit#heading=h.hj2cu2mfr8gf

Motivation

In some use cases, we may face challenges. Imagine a scenario where we need
to start a task to process messages. The task's logic is similar to opening a transaction,
using it to process some messages, and then committing the transaction. However, due
to some failures, we lost contact with the task and had to restart another task to work. In
this situation, there will be two tasks processing the same job. If the previously
disconnected task1 has already terminated, it is possible that, as shown in the previous
example, the committed messages of txn2 are not visible to consumers due to txn1 not
being finished. In this case, we can only wait for txn1 to time out before task 2 can work
normally. If task 1 is only disconnected but not terminated, the situation is even worse,
as both tasks receive duplicate messages from the same topic and use transactions to
cumulatively ack these messages, then commit the transactions. This would result in
duplicate message processing. Note that cumulative ack does not have conflict ack, so
that duplicate consumption can occur. In the case I mentioned earlier, tasks use
cumulative ack, and the acks mentioned below refer to cumulative ack.

Therefore, we hope to immediately fence the previous task's transaction after a

task starts a new transaction. That is, the broker should immediately end the transaction
started by the previous task and reject all requests coming from that transaction.

Goal

In Scope
●​ Provide users with a transaction key mechanism to ensure that only one active

transaction and one active connection is associated with a given transaction key.
●​ Abort previous transactions associated with the same transaction key and

prevent them from performing further operations.

 This will create a clean working environment for the newly started transaction.

Out of Scope
●​ This proposal does not consider the expansion of transaction coordinators.
●​ Addressing duplicate messages caused by message reconnection, redelivery, or

failover consumers is not covered in this proposal. Separate proposals will be
responsible for these issues.

High-Level Design
The principal objective of this proposal is to ensure that only one active

connection and transaction are associated with a given transaction key. To achieve this,
we propose to maintain a map within the Transaction Coordinator (TC). This map will
record the transaction keys managed by the TC, and the corresponding epochs of their
connections, as well as the transaction IDs.

When a connection is established, it will bring along the epoch from the last

connection. Once the connection is successfully established, the TC will return a new
epoch that will be stored on the client side. When a connection is made for the first time,
the epoch will be set to -1L.

The TC will only accept the connection from the most recent epoch and will close

the old connection and abort the old transaction as soon as a new connection is
established.

The transaction key, the connection's epoch, and the transaction ID will be

recorded in real-time in a newly added system topic, the `_transaction_key`. This serves
to persistently track and manage the associations between transaction keys, connection
epochs, and transaction IDs, ensuring that each transaction key is associated with only
one newest active connection and transaction at a time.

Detailed Design

Design & Implementation Details

Key Concepts
●​ Transaction key: The transaction key consists of an owner identifier and a

user-defined key. Users provide this key when creating a PulsarClient. For a
given owner and transaction key, there can only be one active transaction at a
time. After hashing the transaction key, it is bound to a transaction coordinator,
which is responsible for handling all transaction operations for this transaction
key.

●​ Connection epoch: Every transaction key is associated with a unique,
incrementing long integer, initialized at -1, serving as the epoch. When a client
initiates a connection with a specific transaction key, the transaction coordinator
responsible for managing this key increments the epoch and communicates the
updated value back to the client. At any given time, only one active connection is
allowed for each transaction key. If a new connection is established, the system
terminates the preceding connection associated with the earlier epoch and aborts
the ongoing transaction linked to that transaction key.

●​ System Topic ‘__transaction_key_’： Each Transaction Coordinator maintains

a system topic named `__transaction_key`, used to store information related
to all transaction keys managed by the coordinator. We initially considered
including the transaction key as a part of the TransactionMetadataEntry and
writing it to the `__transaction_log_`. However, since the
`TransactionMetadataEntry` is cleared upon transaction completion, we decided
against this persistence approach.

Public-facing Changes

Public API

PulsarClientBuilder
To support the proposed changes, we will introduce a new configuration option in the

PulsarClient builder for setting the transaction key. Users can use this option to specify the
transaction key when creating a PulsarClient instance.

With regard to transaction keys, each user can have multiple transaction keys, but these
keys must be unique within the same user role. This ensures that different transactions initiated
by the same user role can be distinguished from one another. Similarly, for authenticated users
without a specific role, all transaction keys should also be unique to prevent any interference
between transactions.

It's important to note that each transaction key must not contain the '&' symbol. This is

because the broker uses the combination of owner and transaction key (owner&transaction
key) as the key mapping to associate the transaction with the corresponding epoch. By doing
so, the broker can efficiently manage and differentiate transactions for different users or roles.
Including the '&' symbol in a transaction key could lead to incorrect or ambiguous mappings,
resulting in unexpected behavior or errors.

Java

Java

public class PulsarClientBuilder {
 ...
 // Add a new field for the transaction key
 private String transactionKey;

 ...

 // Add a new method to set the transaction key
 // The transactionKey should not contain the symbol `&`. ​
 public PulsarClientBuilder transactionKey(String
transactionKey) {
 this.transactionKey = transactionKey;
 return this;
 }

 ...
}

Then, when users create a PulsarClient, they can set the transaction key using the
following code:

PulsarClient client = PulsarClient.builder()
 .serviceUrl("pulsar://localhost:6650")
 .transactionKey("user-defined-transaction-key")
 .build();

By including the transaction key in the PulsarClient builder, users can easily configure
and manage their transaction keys when working with Pulsar transactions.

ExpiredTransactionException

We will introduce a new exception called `ExpiredTransactionException` to
handle cases where an expired transaction is used for operations. This exception will provide
more informative error messages to users and allow them to handle such cases in their
applications.

Java

Java

it's also important to note that we don't need to add a new exception for expired
connections. If a transaction coordinator client attempts to connect using an old connection
epoch, it will receive a `NotAllowedException`. This exception will efficiently handle the
scenario, negating the need for a separate exception for expired connections.

The definition of the new exception is as follows:

package org.apache.pulsar.client.api.exceptions;

/**
 * Exception thrown when an expired transaction is used for
operations.
 */
public static class ExpiredTransactionException extends
PulsarClientException {

 public ExpiredTransactionException(String message) {
 super(message);
 }

 public ExpiredTransactionException(String message, Throwable
cause) {
 super(message, cause);
 }

 public ExpiredTransactionException(Throwable cause) {
 super(cause);
 }

}

This exception will be thrown in the relevant parts of the code where an expired
transaction is detected, and the corresponding operation should be rejected. Users may
encounter the ExpiredTransactionException when calling one of the following two asynchronous
APIs:

1. producer.newMessage(transaction).sendAsync();

Java

Java

2. consumer.acknowledgeCumulativeAsync(messageId, transaction);

When these APIs are called using an expired transaction, the returned
CompletableFuture will complete exceptionally with an ExpiredTransactionException. Users can
handle this exception in the exceptional handler, for example:

producer.newMessage(transaction).sendAsync().thenAccept(messageId
-> {
 System.out.println("Message sent: " + messageId);
}).exceptionally(e -> {
 if (e instanceof ExpiredTransactionException) {
 System.out.println("Attempted to use an expired
transaction: " + e);
 } else {
 System.out.println("Failed to send messages: " + e);
 }
 return null;
});

Binary protocol
We propose to add a new field to record the epoch in the
`CommandTcClientConnectRequest` and
`CommandTcClientConnectResponse` messages in the binary protocol. This
change will allow the system to handle connections based on the appropriate epoch
associated with a given transaction key.
The modified protobuf message definitions would be:
For the request:

message CommandTcClientConnectRequest {
 required uint64 request_id = 1;

Java

 required uint64 tc_id = 2 [default = 0];
 required uint64 epoch = 3; // Added field to record epoch
}

And for the response:

message CommandTcClientConnectResponse {
 required uint64 request_id = 1;
 optional ServerError error = 2;
 optional string message = 3;
 required uint64 epoch = 4; // Added field to record epoch
}

​

Configuration
None

Admin API & CLI
To provide better support for managing transaction keys and their associated

transactions, we will extend the admin API and the CLI with the following new endpoints and
commands:

Admin API Endpoints
1.​ `GET /admin/v2/transactions/transaction-keys`: Retrieve a list of all

transaction keys in the system.
2.​ `GET /admin/v2/transactions/transaction-keys/{transaction_key}`:

Retrieve information about a specific transaction key, such as the current epoch and
associated transaction IDs.

3.​ `DELETE
/admin/v2/transactions/transaction-keys/{transaction_key}`:
Remove a transaction key from the system, effectively aborting any associated
transactions.

CLI Commands
1.​ `pulsar-admin transactions list-transaction-keys`: List all transaction

keys in the system.
2.​ `pulsar-admin transactions get-transaction-key

<transaction_key>`: Retrieve information about a specific transaction key, such as
the current epoch and associated transaction IDs.

3.​ `pulsar-admin transactions delete-transaction-key
<transaction_key>`: Remove a transaction key from the system, effectively
aborting any associated transactions.
By adding these new admin API endpoints and CLI commands, users will have better

visibility and control over the transaction keys and their associated transactions. This will help
ensure the correct functioning of the transaction key feature and allow users to manage their
transaction keys more effectively.

Metrics
To better monitor and manage the new feature, we will add some related metrics.

These metrics can help users better understand the usage and performance of the new
feature and make necessary optimizations and adjustments. Specifically, we will add the
following metrics:

Name Label Type Description

pulsar_txn_transa
ction_key_count

 Gauge Records the
number of
transaction keys
currently used in
the system, which
can help users
understand the
system's load
status.

pulsar_txn_transa
ction_key_epoch

Transaction key
​

Gauge Records the most
recent epoch
used for each
transaction key, in
order to identify
and resolve any
potential epoch
conflicts.

pulsar_txn_transa
ction_key_age
​

Transaction Key Summary Records the
active time of
each transaction

key in order to
identify and clean
up unused
transaction keys.

Security Considerations
No security considerations are needed.

Backward & Forward Compatability
The newly added transaction key feature has been carefully designed and

implemented to ensure that it does not introduce any disruptive changes. This means
that it is fully compatible with previous versions of the system and can be seamlessly
integrated into existing environments.

Upgrade
Users can confidently update to the version that includes this new feature and

enjoy its benefits without worrying about any adverse effects on their existing systems
and business. The development team is committed to ensuring that the new feature
works together with existing features and architectures, enabling smooth transitions and
continuous improvements.

Revert

If users need to downgrade to a version that does not use the new feature in

some cases, it is straightforward to do so. Simply delete the transaction key-related
configuration in the Pulsar client configuration. This way, the system will no longer use
the newly added transaction key feature and instead revert to the processing method
used in the previous version. This flexibility allows users to switch features freely
according to their actual needs and scenarios, ensuring the stability and reliability of the
system.

Testing
The new feature has been carefully designed and implemented to ensure that it

does not introduce any breaking changes. This means that it is fully compatible with
previous versions of the system and can be seamlessly integrated into existing
environments. Users can confidently upgrade to a version that includes this new feature
and enjoy its benefits without worrying about any adverse effects on existing systems
and businesses. The development team is committed to ensuring the new feature works
with existing functionality and architecture to achieve smooth transitions and continuous
improvements.

The new feature will undergo unit, chaos, and stress testing. Each testing

method focuses on different goals and scenarios to ensure the stability and
performance of the new feature.

●​ Unit testing: Unit testing focuses mainly on the independent components of the

new feature to ensure that they work as intended. By writing test cases for each
component, we can validate the implementation of the new feature at a lower
level.

●​ Chaos testing: Chaos testing focuses on ensuring system reliability in the event
of component failures and unstable environments. By simulating consumer,
producer, proxy, and other component failures in various states, we can verify
that the new feature can still meet basic guarantees under these conditions and
ensure system stability.

●​ Stress testing: Stress testing focuses on evaluating the performance of the new
feature under high-load conditions. By simulating large amounts of concurrent
requests, high traffic, or other pressure scenarios, we can identify performance
bottlenecks and verify that the new feature can continue to function properly
under these conditions.

By applying these three testing methods, we can comprehensively evaluate the

implementation of the new feature and ensure that it provides stable performance in
various scenarios and conditions.

Alternatives

None

General Notes
Note

Links

<!--
Updated afterwards
-->
* Mailing List discussion thread:
* Mailing List voting thread:

	Background knowledge
	
	
	
	
	
	Motivation
	Goal
	In Scope
	Out of Scope

	High-Level Design
	Detailed Design
	Design & Implementation Details
	Key Concepts

	Public-facing Changes
	Public API
	PulsarClientBuilder
	ExpiredTransactionException

	Binary protocol
	Configuration
	Admin API & CLI
	Admin API Endpoints
	CLI Commands

	Metrics

	
	Security Considerations
	Backward & Forward Compatability
	Upgrade
	Revert

	Testing
	Alternatives
	General Notes
	Links

