
Go Web Programming Bootcamp

Link:

​ is.gd/gobootcamp

Trainer:

Caleb Doxsey (caleb@doxsey.net)

Resources:

golang-book.com

golang.org

cloud.google.com/appengine/docs/go

mailto:caleb@doxsey.net

Monday 7/6

1: Machine Setup

Instructions: www.golang-book.com/guides/machine_setup

2. Hello World

Outline:

●​ Files & Folders

●​ Terminal

●​ Text Editor

●​ Hello World

●​ godoc

Problems:

1.​Create a program which prints “Hello World” to the terminal.

2.​What is whitespace?

3.​What is a comment? What are the two ways of writing a comment?

4.​Our program began with package main. What would the files in the

fmt package begin with?

5.​We used the Println function defined in the fmt package. If we

wanted to use the Exit function from the os package what would we

need to do?

6.​Modify the program we wrote so that instead of printing Hello

World it prints Hello, my name is followed by your name.

3. Variables

Outline:

●​ Samples

●​ Blank Identifiers

●​ Short Variable Declarations

●​ Assignment

●​ Zero Values

●​ Scope

●​ Constants

Problems:

1.​Create a program which prints “Hello <NAME>” with <NAME> replaced

with your name to the terminal using a variable.

2.​Use fmt.Scanf to read a user’s name and print “Hello <NAME>” with

<NAME> replaced with the user’s name to the terminal.

3.​Create a program which converts:

a.​Miles to Kilometers

b.​Fahrenheit to Celsius

c.​Pounds to Kilograms

4. Types

Outline:

●​ Integers

●​ Floating Point Numbers

●​ Strings

●​ Booleans

Problems:

1.​How are integers stored on a computer?

2.​We know that (in base 10) the largest 1 digit number is 9 and the

largest 2 digit number is 99. Given that in binary the largest 2

digit number is 11 (3), the largest 3 digit number is 111 (7) and

the largest 4 digit number is 1111 (15) what's the largest 8

digit number? (hint: 101-1 = 9 and 102-1 = 99)

3.​Although overpowered for the task you can use Go as a calculator.

Write a program that computes 32132 × 42452 and prints it to the

terminal. (Use the * operator for multiplication)

4.​What is a string? How do you find its length?

5.​What's the value of the expression (true && false) || (false &&

true) || !(false && false)?

5. A Deeper Look

Outline:

●​ Memory

●​ Stack vs Heap

6. Control Structures

Outline:

●​ For

●​ If

●​ Switch

Problems:

●​ Write a program that prints out all the numbers evenly divisible

by 3 between 1 and 100. (3, 6, 9, etc.)

●​ Write a program that prints the numbers from 1 to 100. But for

multiples of three print "Fizz" instead of the number and for the

multiples of five print "Buzz". For numbers which are multiples

of both three and five print "FizzBuzz".

Tuesday 7/7

7. Strings Revisited

Outline:

●​ Immutability

●​ strings

●​ strconv

●​ Command line arguments

Problems:

1.​Modify our miles to kilometers program to display in the

following format:​

​ +-------------------------+​

​ | Miles: 50 |​

​ +-------------------------+​

​ | Kilometers: 80.47 |​

​ +-------------------------+​

Miles will be input by the user, and kilometers should be

formatted to 2 decimal places.

2.​Modify the above program so that it generates HTML instead of

text. For example:​

​ <!DOCTYPE html>​

​ <html>​

​ ​ <head></head>​

​ ​ <body>​

​ ​ ​ Miles: 50
​

​ ​ ​ Kilometers: 80.47​

​ ​ </body>​

​ </html>​

Feel free to use any HTML tags and CSS you may know.

3.​Create a program which parses a query to do distance conversions.

For example, from a terminal:​

​ $ distance_converter 50mi km​

Should produce:​

​ 80.47km​

It should support miles (mi), kilometers (km), feet (ft) and

meters (m).

4.​One classic method for composing secret messages is called a

square code. The spaces are removed from the english text and

the characters are written into a square (or rectangle). For

example, the sentence "If man was meant to stay on the ground god

would have given us roots" is 54 characters long, so it is

written into a rectangle with 7 rows and 8 columns. ​

​

​ ifmanwas​

​ meanttos​

​ tayonthe​

​ groundgo​

​ dwouldha​

​ vegivenu​

​ sroots​

​

The coded message is obtained by reading down the columns going

left to right. For example, the message above is coded as: ​

​

​ imtgdvs fearwer mayoogo anouuio ntnnlvt wttddes aohghn sseoau​

​

In your program, have the user enter a message in english with no

spaces between the words. Have the maximum message length be 81

characters. Display the encoded message. (Watch out that no

"garbage" characters are printed.) Here are some more

examples:​

​

​ Input Output​

​ haveaniceday hae and via ecy​

​ feedthedog fto ehg ee dd​

​ chillout clu hlt io

8. Arrays, Slices and Maps

Outline:

●​ Arrays

●​ Slices

●​ Maps

Problems:

1.​How do you access the 4th element of an array or slice?

2.​What is the length of a slice created using: make([]int, 3, 9)?

3.​Given the array:​

​ x := [6]string{"a","b","c","d","e","f"}​

what would x[2:5] give you?

4.​Write a program that finds the smallest number in this list:​

​ x := []int{​

​ ​ 48,96,86,68,​

​ ​ 57,82,63,70,​

​ ​ 37,34,83,27,​

​ ​ 19,97, 9,17,​

​ }

5.​Write a program that takes in a state code and returns the

state’s name. (eg CA -> California)

9. Functions

Outline:

●​ Functions

●​ Multiple Return Values

●​ Variadic Functions

●​ Closure

●​ Recursion

●​ Panic & Recover

Problems:

1.​sum is a function which takes a slice of numbers and adds them

together. What would its function signature look like in Go?

2.​Implement the sum function

3.​Write a function which takes an integer and halves it and returns

true if it was even or false if it was odd. For example half(1)

should return (0, false) and half(2) should return (1, true).

4.​Write a function with one variadic parameter that finds the

greatest number in a list of numbers.

5.​Using makeEvenGenerator as an example, write a makeOddGenerator

function that generates odd numbers.

6.​The Fibonacci sequence is defined as: fib(0) = 0, fib(1) = 1,

fib(n) = fib(n-1) + fib(n-2). Write a recursive function which

can find fib(n).

7.​What are defer, panic and recover? How do you recover from a

run-time panic?

8.​Create a function which reverses a list of integers:​

​ reverse([]int{1,2,3}) → []int{3,2,1}

Wednesday 7/8

10. Review

Outline:

●​ Create Javascript Cheat Sheet: is.gd/XaJQal

●​ Pair-program on problems

Problems:

1.​Create a program which reads user information (at least name and

email) and creates a profile page in HTML. Also use or generate a

profile image from gravatar.com.

2.​Implement WordCount. It should return a map of the counts of each

“word” in a string. (You might find strings.Fields helpful.)​

​ WordCount(“test test”) → map[string]int{ “test”: 2 }

3.​Implement a centeredAverage function that computes the average of

a list of numbers, but removes the largest and smallest values. ​

​ centeredAverage([]float64{1, 2, 3, 4, 100}) → 3

4.​Given a non-empty list, return true if there is a place to split

the list so that the sum of the numbers on one side is equal to

the sum of the numbers on the other side. ​

​ canBalance([]int{1, 1, 1, 2, 1}) → true​

​ canBalance([]int{2, 1, 1, 2, 1}) → false​

​ canBalance([]int{10, 10}) → true

5.​Say that a "clump" in a list is a series of 2 or more adjacent

elements of the same value. Return the number of clumps in the

given list.​

​ countClumps([]int{1, 2, 2, 3, 4, 4}) → 2​

​ countClumps([]int{1, 1, 2, 1, 1}) → 2​

​ countClumps([]int{1, 1, 1, 1, 1}) → 1

11. Pointers

Outline:

●​ * and &

●​ new

●​ Scan

Problems:

1.​How do you get the memory address of a variable?

2.​How do you assign a value to a pointer?

3.​How do you create a new pointer?

4.​What is the value of x after running this program:​

​ func square(x *float64) {​

​ ​ *x = *x * *x​

​ }​

​ func main() {​

​ ​ x := 1.5​

​ ​ square(&x)​

​ }

5.​Write a program that can swap two integers (x := 1; y := 2;

swap(&x, &y) should give you x=2 and y=1).

6.​Generalize swap into a rotate function so that it works with any

number of variables:​

​ rotate(&x, &y, &z), with x=1, y=2, y=3, yields x=2, y=3, z=1

7.​Create a rotateRight function which does the same thing as rotate

but in the other direction.

12. Structs and Interfaces

Outline:

1.​Structs

a.​Initialization

b.​Fields

2.​Methods

3.​Embedded Types

Problems:

1.​What's the difference between a method and a function?

2.​Why would you use an embedded anonymous field instead of a normal

named field?

3.​Add a new method to the Shape interface called perimeter which

calculates the perimeter of a shape. Implement the method for

Circle and Rectangle.

Thursday 7/9

13. Review

Outline:

●​ Add to Javascript Cheat Sheet

●​

14. Files and IO

Outline:

●​ Opening, Closing, Reading, Writing

●​ Readers and Writers

●​ Copy

●​ Bufio, Scanner

Problems:

1.​Write “Hello World” to a file

2.​Read “Hello World” from that file and write it to stdout.

3.​Generalize #2 and create your own version of cat which reads a

file and dumps it to stdout. (my-cat file)

4.​Create your own version of cp which reads a file and writes it to

another file. (my-cp src dst)

5.​Create a program which converts the first character of each line

in a file to uppercase and writes it to stdout. (make-uppercase)

6.​Remember WordCount? Use WordCount to count the frequency of words

for a large book (eg

http://www.gutenberg.org/files/2701/old/moby10b.txt).

7.​Write a program which finds the longest word in the book.

8.​

9.​Base64 is often used to encode binary data safely for text

transmission. Create a program which can base64 encode a file.

(`my-base64 filename` should return something like ‘dGVzdA==’).

10.​ Modify #9 so that it supports decoding as well via a mode

switch (`my-base64 MODE filename`, where MODE is ‘encode’ or

‘decode’)

http://www.gutenberg.org/files/2701/old/moby10b.txt

15. CSV

Outline:

●​ Reading a CSV file

Problems:

1.​Download a CSV file of state information from statetable.com and

implement a program which takes in a state code (AL, CA, …) and

returns a table of information for that state (name, region,

etc…). Make sure to use a struct in your program.

2.​Download this CSV file:

https://data.illinois.gov/api/views/i97v-wnmd/rows.csv?accessType

=DOWNLOAD, which contains information about monuments in the

Champaign IL area. Write a program which finds the monument at

the highest elevation and display infor​ mation about that

monument as HTML.

3.​

https://data.illinois.gov/api/views/i97v-wnmd/rows.csv?accessType=DOWNLOAD
https://data.illinois.gov/api/views/i97v-wnmd/rows.csv?accessType=DOWNLOAD

Friday 7/10

15. Review

Outline:

●​ io, csv

Problems:

1.​Grab historical financial data from Yahoo (eg

http://finance.yahoo.com/q/hp?s=GOOG+Historical+Prices) as a csv

file, read that file and dumps the contents as an HTML table.

CHALLENGE: draw a line chart of the data.

2.​Create a program which finds the md5 checksum of a file. (`my-md5

filename` should return a large hexadecimal number like

‘d47c2bbc28298ca9befdfbc5d3aa4e65’)

3.​Modify #2 so that it computes all the md5 checksums for a

directory

http://finance.yahoo.com/q/hp?s=GOOG+Historical+Prices

16. Concurrency

Outline:

●​ goroutines

●​ wait groups

●​ channels

●​ select

Problems:

1.​Create a program which prints “Hello World” 5 times using 5

goroutines.

2.​Create a ping-pong program with one goroutine writing “ping” to a

channel, a second goroutine reading “ping” and then writing

“pong” to another channel

3.​Modify #1 so that you use a wait group to wait for all 5 hello

world printers to finish

4.​Modify #15.2 so that it computes all the md5 hashsums for a

directory of files concurrently.

17. Time

Outline:

●​ Duration

○​ Sleep

●​ Time

○​ Parse

○​ Format

Problems:

1.​Create a program which sleeps for 10 seconds then prints “Hello

World” to the screen

2.​Create a program which can find the number of days between two

dates: (`datediff 2015-07-10 2015-07-11` should give you 1)

Monday 7/12

18. Why Go?

●​ Simple, well-defined language

○​ https://youtu.be/5kj5ApnhPAE

●​ Powerful, well-documented API

●​ Great Tools

○​ Compiler speed, modularity built in

●​ Concurrency

●​ OO without hierarchy

19. JSON

Outline:

●​ Decode, Unmarshal

●​ Encode, Marshal

Problems:

1.​Create a struct, encode it as JSON, and write it out to stdout.

2.​Create a JSON file and a program to read that JSON file into a

struct and write it to stdout.

3.​Create a program which can read the csv file from #15.1 and write

it as a JSON file.

20. Packages

Outline:

●​ Multiple packages

●​ go get

●​ godoc, go-search, etc…

●​ godep, gb, etc…

Problems:

1.​Create a new package ‘week2/day1/hello’ with a function named

‘Hello’ which prints ‘Hello World’ to the screen. Use this

package in a program and call this ‘Hello’ function.

2.​Create a new package ‘week2/day1/converters’ with some of the

conversion functions we created last week (miles to km,

fahrenheit to celsius, etc…). Rewrite the conversion program to

use this library.

3.​Use a 3rd party library to add color to your program (for

example: github.com/ttacon/chalk)

21. Testing

Outline:

●​ go test

●​ Test functions

●​ Test strategies

○​ Unit Testing

○​ Integration Testing

○​ Mocking (File vs Reader)

●​ Benchmarks

●​ goconvey, race detector

Problems:

1.​Create a new package ‘week2/day1/testing-example’ with the Sum

function we wrote last week in a file ‘sum.go’. Add a

‘sum_test.go’ file which tests this function.

2.​Add a benchmark function to benchmark the Sum function.

22. Networking

Outline:

●​ Protocols

●​ OSI Model

○​ https://en.wikipedia.org/wiki/OSI_model#Description_of_OSI_l

ayers

○​ IP, TCP, HTTP

●​ An Exploration of a Web Request

○​ DNS

○​ HTTP: net tab (fiddler)

○​ TCP: wireshark, traceroute

○​ Packet Switched Routing

●​ Distributed Systems

○​ Client / Server

○​ Peer to Peer

●​ Web Architecture

○​ DNS

■​ nameservers, dig, whois

○​ Stacks

■​ Reverse proxies / load balancers (nginx, haproxy)

■​ Web servers (nginx, apache, IIS, …)

■​ Backend servers (databases, mail servers, …)

■​ Cloud services

■​ Queues

https://en.wikipedia.org/wiki/OSI_model#Description_of_OSI_layers
https://en.wikipedia.org/wiki/OSI_model#Description_of_OSI_layers

23. TCP Servers

Outline:

●​ Listen, Accept, Conn

●​ telnet (for windows: `pkgmgr /iu:"TelnetClient"`)

●​ Dial

Problems:

1.​Create a TCP server that sends ‘Hello World’ to new connections

and then closes them.

2.​Create an ‘echo’ TCP server. It should accept a connection and

write to the connection anything that’s sent to it.

Tuesday 7/14

24. Review

●​ json

●​ packages

●​ tests

●​ tcp listen and dial

Also: init

Problems:

1.​Create a simplified redis clone which accepts GET, SET and DEL

commands. ‘GET <KEY>’ should write the value of <KEY> followed by

a new line. ‘SET <KEY> <VALUE>’ should set the value of <KEY>.

‘DEL <KEY>’ should remove the value. Data should be stored in

memory.

2.​Modify ‘echo’ so that it returns messages as rot 13.

3.​Create a chat room server. A client can connect and send messages

to the server. Those messages will be broadcast to any other

currently connected clients.

Digression: On Redis

25. HTTP Servers (From Scratch)

Outline:

●​ HTTP Spec: http://www.w3.org/Protocols/rfc2616/rfc2616.txt

●​ Format:​

 Request = Request-Line​

 *(header CRLF)​

 CRLF​

 [message-body]​

 Request-Line = Method Request-URI HTTP-Version CRLF​

 Header = Name: Value​

 Response = Status-Line ​

 *(header CRLF)​

 CRLF​

 [message-body]​

 Status-Line = HTTP-Version Status-Code Reason-Phrase CRLF

●​ Verbs / Methods (GET, POST, PUT, DELETE, HEAD)

●​ Headers

○​ Accept

○​ Connection

○​ Content-Type

○​ Location

○​ Range

○​ Referer

○​ Transfer-Encoding

○​ WWW-Authenticate

●​ Caching:

https://developers.google.com/web/fundamentals/performance/optimi

zing-content-efficiency/http-caching

Problems:

1.​Create a TCP server which can handle a simple HTTP request and

return ‘Hello World’

2.​Create a TCP server which can handle a simple HTTP request and

return the URL that was passed into it

26. The net/http package

Outline:

●​ ListenAndServe, Serve

●​ Handler, Request, ResponseWriter

●​ ServeMux, DefaultServer

Problems:

1.​Create a ‘Hello World’ http server using the net/http package

2.​Create an echo http server that returns a plain text page contain

the url the user accessed (going to localhost/whatever displays

‘/whatever’)

3.​Create an http server which returns an html page with a picture

of a cat for ‘/cat’ and a picture of a dog for ‘/dog’ using a

ServeMux

27. Serving Files

Outline:

●​ Manually

●​ ServeContent

●​ ServeFile

●​ FileServer

Problems:

1.​Create an http server that serves a file from the disk

2.​Modify #1 to use ServeContent

3.​Modify #1 to use ServeFile

4.​Create a static http server (perhaps named static-http) that

serves the contents of the current working directory.

Wednesday 7/15

28. Review

●​ http servers

●​ mux

●​ files

29. Templates

Outline:

●​ ParseFiles, ParseGlob

●​ Execute, ExecuteTemplate

●​ Actions

Problems:

1.​Create an http application that returns Hello World using a

template.

2.​Modify #1 so that it returns the currently selected URL (use a

variable in your template)

3.​Modify the financial CSV program we wrote so that it outputs HTML

using a template file instead of a string. Zebra stripe the

table.

30. Forms and the Query String

Outline:

●​ Request.URL.Query().Get(KEY)

●​ Request.FormValue(KEY)

●​ Request.FormFile(KEY)

Problems:

1.​Create an http application which has a page with a form that

takes in first and last name and on submit displays “Hello

<FIRST> <LAST>”

2.​Create an http application with a form that accepts a file and

uploads it to “/tmp”.

31. Cookies, Session and Context

Outline:

●​ Set-Cookie

●​ Request.Cookie

●​ Sessions

Problems:

1.​Create an http application that tracks how many times a user

accesses your web page with a cookie.

2.​Create an http application that supports at least 2 endpoints:

login and logout. login should accept a form and save a cookie.

(with at least the username) logout should clear the cookie.

32. TLS and Certificates

Outline:

●​ ListenAndServeTLS

●​ go run $(go env GOROOT)/src/crypto/tls/generate_cert.go

--host=somedomainname.com

Problems:

1.​Create a certificate and use it with ListenAndServeTLS in an http

server.

33. Project: Photo Blog

Our goal for this project is to create a basic photo blog. It should

have a few pages:

●​ The initial page (https://localhost:8080/) should list the most

recent uploaded photos. Clicking a photo should download it.

(hint: HTML5 download attribute or the Content-Disposition

header)

●​ There should be an admin page (https://localhost:8080/admin)

which allows a user to login (you can hardcode the username and

password).

●​ Once logged in the admin user should be presented with a form to

upload an image. The uploaded image should then be accessible on

the main page.

●​ The admin section should require TLS. A self-signed certificate

is ok. It’s ok to require TLS for the regular section of the site

as well.

●​ Try to use the HTML/CSS skills you learned earlier to make the

photoblog look nice. Make sure to upload some interesting photos

(that perhaps reflect your personality)

Feel free to team up on this project. At the end of the day everyone

will demo what they built and explain their code.

This project is intentionally open-ended. Using Google is not

cheating.

Thursday 7/16

34. Review

●​ Routes with Serve Mux

●​ Templates

●​ Sessions

●​ Listing a Directory

●​ Uploading a File

●​ Setting up TLS

37. Manual Server Management

Outline:

●​ Virtual Machines

●​ SystemD

●​ Deploy

●​ Monitoring

38. App Engine Setup

Outline:

●​ https://cloud.google.com/appengine/docs/go/gettingstarted/introdu

ction

Friday 7/17

39. App Engine Introduction

Outline:

●​ App Engine

○​ Managed PAAS on Google Infrastructure

○​ Free to Start, Affordable Limits

○​ Autoscales

■​ cloud.google.com/appengine/docs/scaling

○​ Managed VMs, Compute Engine, Cloud SQL

●​ Project Layout

○​ go stuff

○​ app.yaml

○​ instead of `goapp deploy`

■​ appcfg.py update --oauth2 ./

●​ Console

○​ APIs

○​ Logs

○​ Quotas

40. Users

Outline:

●​ Google Logins (cloud.google.com/appengine/docs/go/users)

○​ user.LoginURL, user.LogoutURL

○​ Through the YAML:

https://cloud.google.com/appengine/docs/go/config/appconfig#

Go_app_yaml_Requiring_login_or_administrator_status

○​ OAuth?

○​ Or Manual

Problems:

●​ Modify the photo-blog app so it uses Google logins

https://cloud.google.com/appengine/docs/go/config/appconfig#Go_app_yaml_Requiring_login_or_administrator_status
https://cloud.google.com/appengine/docs/go/config/appconfig#Go_app_yaml_Requiring_login_or_administrator_status

40.5: Custom Domains

41. Session Redux

Outline:

●​ ClearContext

●​ Other Routers

●​ Three Options:

○​ Use Google logins and avoid session

○​ Use Gorilla sessions with manual routing (either via

http.ServeMux or some other router)

○​ Use a Session ID and Memcache

42. Memcache

Outline:

●​ Get, Set, Delete

●​ Increment

Problems:

1.​Use memcache to implement a counter every time a user visits the

page and show the value of the counter.

2.​Update the counter application so that it requires a login and

add a per-user counter in addition to the global counter.

43. DataStore

Outline:

●​ Entities

○​ Kind

○​ Identifier (string or int)

○​ Ancestors

○​ Put, Get, Key, IncompleteKey

●​ Queries

○​ Indexes (index.yaml,

https://cloud.google.com/appengine/docs/go/config/indexconfi

g)

○​ kind, filters, sort

○​ KeysOnly

○​ Project

Problems:

1.​Create a user profile page that requires login (via Google) and

save profile information in the data store.

44. AJAX

Outline:

●​ Building APIs

45. Project: ToDo

Create a google appengine application which implements a simple todo

app. It should require login via Google and store a todo list for each

user (one todo list per user). That todo list should only be visible

to that user.

The todo list should support:

●​ A list of each item

●​ Adding a new item to the end of a list

●​ Removing an item from the list

This application should be implemented using Javascript and a JSON

backend. For example to build the list view you should make a request

to your server (perhaps GET /api/todos) which will return a JSON

array. Similarly removing todo items can use (DELETE

/api/todos/{TODO_ID}) and adding can use (POST /api/todos).

Monday 7/20

46. Todo Application Walkthrough

47. Project: Twitter Clone

For this project we are going to build a twitter clone. As we learn

more about App Engine we will add features to our application.

To get started we want to support the following:

●​ The home page should display a login button and list recent

tweets:​

​

twitter-clone.appspot.com/​

​

●​ User accounts can be done with standard Google Login. An account

should not be required to view someone’s tweets but should be

required to post tweets.

●​ The first time a user logs in they should be required to create a

username. This username will be used when they tweet (@whomever).

Usernames are required to be unique.

●​ Tweets should be visible on a user’s profile. For example we

might have:​

​

twitter-clone.appspot.com/<USERNAME>​

​

​

Which would list the most recent tweets for that user.

●​ For logged-in users the top right should have a tweet button

which displays an overlay with a form inside of it. Submitting

the form should create a new tweet.​

●​ There should also be a logout button. Logout should log the user

out of the twitter application but not out of their google

account.

●​ Tweets should be limited to 140 characters. Use an Ajax API to

implement tweet submission.

Tuesday 7/21

48. Logs

Outline:

●​ Infof, Errorf, Debugf, …

49. Testing

Outline:

●​ goapp test

50. Review

●​ Process

○​ Github

○​ Managing Complexity Using Issues

●​ Assessment

○​ Git

○​ Deployed

○​ Home Page

■​ Shows Tweets

■​ Login Button

○​ User Profile Page

■​ Shows Username

■​ Shows Tweets

■​ Login or Tweet+Logout Buttons

○​ Tweet Overlay

■​ Submission Creates Tweet and Refreshes

○​ At least one test for data functions

51. Projection Queries

Outline:

●​ We can restrict the data returned with .Project():​

​

 q := datastore.NewQuery("People").Project("FirstName",

"LastName")​

​

Would only return the first and last name properties.

Wednesday 7/22

52. Twitter Clone: Followers

A user in Twitter has the ability to “Follow” another account. When a

logged in user goes to the twitter clone they should only see the

Tweets of their followers in their Timeline.

Add to our twitter app the ability to follow / unfollow another user

and update the home page to show Tweets accordingly. Also add a page

to a user’s profile page to show their followers.

53: Review

●​ Follower Implementation

54. Data Modeling without Joins

●​ FYI:

http://highscalability.com/blog/2013/7/8/the-architecture-twitter

-uses-to-deal-with-150m-active-users.html

55. Mail

Outline:

●​ Sending: http://godoc.org/google.golang.org/appengine/mail#Send

○​ func confirm(w http.ResponseWriter, r *http.Request) {​

 c := appengine.NewContext(r)​

 addr := r.FormValue("email")​

 url := createConfirmationURL(r)​

 msg := &mail.Message{​

 Sender: "Example.com Support <support@example.com>",​

 To: []string{addr},​

 Subject: "Confirm your registration",​

 Body: fmt.Sprintf(confirmMessage, url),​

 }​

 if err := mail.Send(c, msg); err != nil {​

 c.Errorf("Couldn't send email: %v", err)​

 }​

}

http://godoc.org/google.golang.org/appengine/mail#Send

56. Twitter Clone: Send an Email for @mentions

When a user tweets a message that contains another username (for

example “hi @example”) send an email to the mentioned user with the

content of the message.

CHALLENGE: write an incoming mail handler which can post a tweet on a

user’s behalf via email.

57. Realtime Updates

Users should not be required to refresh their page to receive updates.

Implement realtime updates by periodically polling an API endpoint and

alerting the user when new tweets are available.

Thursday 7/23

59. Channels

Outline:

●​ Go: Create, Send

●​ Javascript:

○​ <script type="text/javascript"

src="/_ah/channel/jsapi"></script>

○​ goog.appengine.Channel(token)

○​ open(optional_handler)

Problems:

1.​Build a hello world app engine channel application.

2.​Build a chat application using app engine channels.

a.​https://github.com/golang-book/bootcamp-examples/tree/master

/week3/day4/chat-example

60. Search

Outline:

●​ Documents, Indexes, Queries and Results

●​ Open, Put, Get, Search, Delete

Problems:

1.​Build a simple movie information site that has search

capabilities. It should require login, any user can add a movie,

and it should support searching.

Friday 7/24

61. Movie Search Implementation

Outline:

●​ Code

●​ Open Search

62. Google Cloud Storage

This is going to be painful...

Outline:

●​ https://cloud.google.com/appengine/docs/go/googlecloudstorageclie

nt/getstarted

●​ ~/go_appengine/dev_appserver.py . --appidentity_email_address

<your_app_email_address>@developer.gserviceaccount.com

--appidentity_private_key_path pem_file.pem

●​ google.golang.org/appengine/file.DefaultBucketName(ctx)

●​ google.golang.org/cloud/storage, golang.org/x/oauth2/google

○​ (https://github.com/calebdoxsey/tutorials/blob/master/appeng

ine/cms/api.go#L194)

○​ Bucket

○​ Writer

○​ Reader

Problems:

1.​Create an http application with an upload form which uploads

files to Google Cloud Storage

2.​Add movie images to the movie information site

63. URLFetch

Outline:

●​ urlfetch.Client(ctx)

○​ Do, Get, Head, Post, PostForm

●​ developer.github.com/v3/markdown/

Problems:

1.​Add markdown support to the movie information site using Github’s

API:

a.​curl -X POST -d '{​

 "text": "Hello world github/linguist#1 **cool**, and #1!",​

 "mode": "gfm",​

 "context": "github/gollum"​

}' https://api.github.com/markdown

Monday 7/27

64. Review

Outline:

●​ Movie Markdown Walkthrough

●​ Movie Posters via GCS

65. Self-Destructing Messages

Build an application which allows sharing a message which after a

certain amount of time expires.

Improve the security of the application by encrypting the message with

a randomly generated private key which is never stored on the server.

66. Basic File Browser

Build an application which can access any GCS bucket using a provided

JSON credentials file. It should support uploading, downloading and

listing directories.

67. API Example: Financial CSV

Build an application which can take in two stock ticker symbols and

calculate the covariance between their returns over the last 5 years.

Add a chart of their two relative returns.

Tuesday 7/28

68. Review

●​ Financial CSV, charts, correlation

69. API Example: Stripe

Create an application which uses the Stripe API to allow site

payments.

https://stripe.com/docs/tutorials/charges​

https://github.com/stripe/stripe-go

70. API Example: 3rd Party OAuth

Create an application which uses a 3rd party for authentication rather

than the built in Google provider.

Problem:

●​ Implement 3rd party login with another provider (google, twitter,

facebook, etc…)

71. Task Queue

Outline

●​ cloud.google.com/appengine/docs/go/taskqueue

●​ google.golang.org/appengine/delay

72. Scheduled Tasks

