

Directory watching API for repo rules

Authors: wyv@bazel.build (Xudong Yang)​
Status: (7.1.0)​Implemented
Reviewers: fabian@meumertzhe.im (Fabian Meumertzheim), lberki@google.com
(Lukács T. Berki), pcloudy@google.com (Yun Peng)​
Created: ​2023-05-02
Updated: 2023-05-04

Please read Bazel Code of Conduct before commenting.

Background
●​ Module extensions can invoke repo rules to define repos, but it's a long-standing

limitation that they cannot invoke native repo rules (as in, those implemented in Java
instead of Starlark) (#15412).

○​ Bazel currently has 5 native repo rules.
1.​ local_repository
2.​ new_local_repository
3.​ local_config_platform
4.​ android_sdk_repository
5.​ android_ndk_repository

○​ Thus we decided to Starlarkify those 5 native repo rules instead (#18285).
○​ Out of the five rules, 1 and 3 are trivially Starlarkifiable. The other three are

currently not, as they get a DirectoryListingValue out of Skyframe one
way or another, and that's not possible with the current repo rule API.

●​ Additionally, the fact that path.readdir doesn't cause the repo to be refetched
when the contents of the directory in question change has been reported as a bug
(#14200). There is currently no available API to resolve this.

Proposed solution
Augment path.readdir

●​ We augment path.readdir to additionally register a Skyframe dependency on the
corresponding DirectoryListingValue.

http://github.com/Wyverald
http://github.com/fmeum
https://github.com/lberki
https://github.com/meteorcloudy
https://www.contributor-covenant.org/version/1/4/code-of-conduct
https://github.com/bazelbuild/bazel/issues/15412
https://github.com/bazelbuild/bazel/issues/18285
https://bazel.build/rules/lib/builtins/path.html#readdir
https://github.com/bazelbuild/bazel/issues/14200

○​ That is, a call to path.readdir will cause Bazel to "watch" that directory,
and refetch the repo whenever that directory's contents (as in direct children)
have changed.

○​ This is technically not a breaking change, as the only consequence is that we
trigger refetches on repos potentially more often. It also triggers more repo
rule restarts, which is more dangerous (due to #10515).

●​ We also write the hash of the returned Dirents as an entry into the marker file of the
repo.

○​ For those not familiar, the marker file of a repo is used to check whether a
refetch is needed. Conceptually, it's the "repo cache key".

○​ The entry will have the key "DIR:" followed by the path to the directory.
●​ Note that we need to consciously not watch any directory located within the current

working directory, i.e. the output directory of the repo we're constructing.
○​ "Watching" such a subdirectory is not only useless (as we just created this

subdirectory at some earlier point during the repo rule evaluation), but also
results in a Skyframe dependency cycle.

Augment ctx.read for symmetry
●​ Today, we "watch" the contents of a file to trigger refetches, if a Label to said file

was ever converted to a path by any means during repo rule evaluation.
○​ The conversion could happen via an explicit rctx.path(some_label) call,

or when a label is passed to any path-taking method (for example,
rctx.read(some_label)).

○​ The reason why we only do this for paths converted from Labels is unclear.
This functionality was introduced in 44847d8.

●​ This means that even if we read the contents of a file during repo rule evaluation, we
don't trigger a refetch when that file changes unless that file was referred to using a
Label.

○​ For example, rctx.read("/etc/myconfig.rc") doesn't watch
/etc/myconfig.rc, though rctx.read(Label("//:myconfig.rc"))
watches //:myconfig.rc.

●​ Since we're making path.readdir "watch" the contents of the directory (no matter
whether it is addressable by a label), it would make sense to have any method relying
on the contents of a file "watch" the contents of that file.

○​ In other words, such a method would register a FileValue dependency, and
cause the hash of the file in question to be written to the marker file.

○​ Impacted methods include:
■​ rctx.read
■​ rctx.symlink (for the symlink target only)
■​ rctx.template (for the template file only)
■​ path.exists
■​ path.realpath

○​ Notably, simply creating a path object no longer necessarily causes Bazel to
watch the file the path points to.

https://github.com/bazelbuild/bazel/issues/10515
https://github.com/bazelbuild/bazel/commit/44847d8442d5c93c2ffbf76e11fd76e9a1567ff3

■​ Except that, in the interest of backwards compatibility, we need to
retain the behavior of watching a file whenever a Label is converted
to a path, in part because it’s used as a workaround for avoiding
repository rule restarts.

●​ Since a watched file is no longer necessarily addressable by a label, we need to
change the marker file format for FILE: entries.

○​ The key of such entries used to be FILE: followed by an absolute label.
○​ We can simply change it to be FILE: followed by an absolute path.

■​ Since the marker file is never shared between different machines, this
is safe.

○​ We'll increment the marker file version for this change (effectively invalidating
all fetched repos, forcing a refetch of everything once the user upgrades their
Bazel to this version).

●​ Similar to the concern with path.readdir, we need to make sure not to watch any
file located within the output directory of the repo we're constructing.

○​ This didn't use to be a problem, since it was effectively impossible (or, at
least, crazy) to acquire a label pointing into the repo under construction.

Alternatives considered
An explicit rctx.watch API

●​ Instead of implicitly registering a Skyframe dependency on every path.readdir
call, we could have an explicit rctx.watch_dir() API.

○​ Similarly, instead of rctx.read() & co registering a FileValue
dependency, we could have an explicit rctx.watch() API.

●​ Pros:
○​ We avoid accidental refetches of the repo if we need to list the children of a

directory (or read the contents of a file) but for some reason do not want to
refetch if that directory / file is changed.

○​ As any Skyframe dependency registration triggers a restart of the repo rule
impl function, users could consciously group calls to watch/watch_dir at
the top of the impl function to make restarts less expensive.

■​ This is similar to the trick we have today, where we ask authors of long
repo rules to group their rctx.path(Label(...)) calls at the top
of the impl function.

○​ An explicit API allows us to watch a file/directory without actually reading the
file or listing the directory contents in Starlark. This might be the case if, for
example, we're actually reading the file in another program run by
rctx.execute.

●​ Cons:
○​ It's unclear that anyone would ever want to avoid refetches if they call

path.readdir and the directory contents change.

https://github.com/tensorflow/tensorflow/blob/1931f5a645066eeb504be8770a958244168c460f/third_party/repo.bzl#L55

○​ Having these separate APIs goes against the "sensible default" principle.
Users will likely forget to call watch when necessary.

A watch boolean parameter to the methods above
●​ We could add a watch boolean parameter to the methods mentioned above

(including path.readdir, rctx.read, rctx.symlink, etc.) to specify whether
changes should cause a refetch.

●​ Depending on the default value of watch, this has similar pros and cons to either the
proposed solution (if watch defaults to True) or the explicit API alternative (if
watch defaults to False).

●​ Extra pros compared to the proposed solution:
○​ Gives the user more control, while retaining a sensible default.

●​ Extra cons compared to the proposed solution:
○​ More API surface, meaning more cognitive burden and chance to foot-shoot.

Document History

Date Description

 2023-05-04 First proposal

Archive
Which API do we attach this to?

●​ We could always introduce a new method like
repository_ctx.list_directory(some_path).

●​ But we already have Path#readdir. It currently calls readdir() on the given
directory path, and returns the names of the direct children (sans their file types etc).

○​ The problem is that it doesn't currently register a Skyframe dependency on
anything, so if that directory changes, the repo rule is not rerun.

○​ But do we just change it to use a DirectoryListingValue? This opens up
more questions.

■​ Is that backwards compatible? Mostly… since running a repo rule more
often is probably not a breaking change. But it might be surprising?

■​ Notably, we do a similar thing for FileValue, if we ever try to turn a
Label into a Path. That is, if we (for example) try to read the

https://bazel.build/rules/lib/builtins/path.html#readdir

contents of a file identified by a label, we "watch" the file, and rerun the
repo rule if the file changes. But we do not try to "watch" any file that's
not pointed to by a label (so if we just tried to
rctx.read(rctx.path("/etc/myconfig.rc")), then changes
to that file does not cause us to refetch). Why is that? Should we
change that behavior to always watch those files?

	
	Directory watching API for repo rules
	Background
	Proposed solution
	Augment path.readdir
	Augment ctx.read for symmetry

	Alternatives considered
	An explicit rctx.watch API
	A watch boolean parameter to the methods above

	Document History
	Archive
	Which API do we attach this to?

