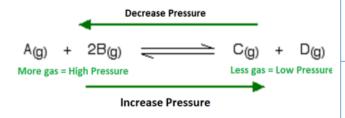
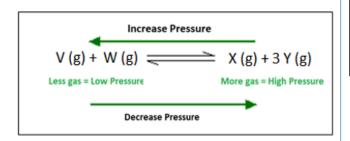
# **Dynamic Equilibrium**

A reversible Reaction (≠) may reach equilibrium in a sealed container when:

\* Forward & backward rate are equal \*Concentrations stay constant

## **Changing Conditions #1**


Changing conditions moves equilibrium left or right to oppose change.


#### Increase Pressure:

Equilibrium moves to side with less gas

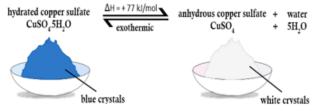
#### **Decrease Pressure:**

Equilibrium moves to side with more gas





# **Changing Conditions #2**


Negative  $\Delta H$  means exothermic (forwards) Positive  $\Delta H$  means endothermic (forwards)

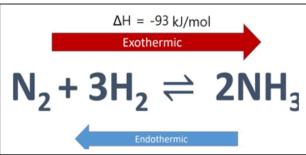
### Increase Temperature:

Reduce Temp by favouring Endothermic

## **Decrease Temperature:**

Increase Temp by favouring Endothermic




Forwards reaction is endothermic

### Increase Temperature:

Favours Endothermic - moves right

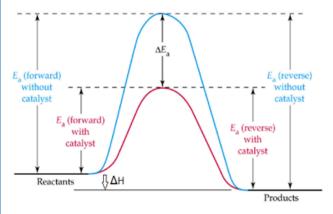
#### **Decrease Temperature:**

Favours Exothermic – moves left



Forwards reaction is exothermic

#### Increase Temperature:


Favours Endothermic – moves left

## **Effect of Catalysts**

Forward & backward Activation energy both lowered

Increases forward & backward rate equally Doesn't affect the position of equilibrium.

Only affects rate



### Rate & Yield

If  $\Delta H$  is negative the reaction is exothermic

\*Heating it will move it left – lower yield \*But the rate will be faster

$$CH_3OH + H_2O \rightleftharpoons CO_2 + 3H_2$$

This reaction will be faster at high Pressure

But will move left = low yield