

Embedded System Q & A

1. What Is An Embedded System?

 An embedded system is a specialized computing device designed for a specific task or a

set of tasks within a larger system. It is tightly integrated into a larger system and

typically has dedicated hardware and software optimized for its intended application.

2. Differentiate Between Microprocessor And Microcontroller.

A microprocessor is a central processing unit (CPU) that only performs computations

and requires external components for memory and I/O.

A microcontroller combines a CPU, memory, I/O ports, and other peripherals on a single

chip, making it a self-contained computing device.

3. Explain The Role Of A Compiler In Embedded Systems.

 A compiler translates source code written in a high-level programming language into

machine code that the microcontroller can execute. It ensures compatibility between

the human-readable code and the microcontroller’s architecture.

4. Provide An Example Of A Real-Time Operating System (RTOS) Commonly Used In

Embedded Systems.

 FreeRTOS is a popular open-source real-time operating system kernel for embedded

systems. It provides scheduling, synchronization, and communication mechanisms,

making it suitable for a wide range of applications.

5. Write A C Code Snippet To Toggle A GPIO Pin On An Embedded Microcontroller.

#include <avr/io.h>

int main() {

 DDRB |= (1 << DDB0); // Set PB0 as output

 while(1) {

 PORTB ^= (1 << PB0); // Toggle PB0

 _delay_ms(500); // Delay for 500 milliseconds

 }

 return 0;

}

This code toggles the PB0 pin on an AVR microcontroller.

6. What Is EEPROM In Embedded Systems?

 EEPROM (Electrically Erasable Programmable Read-Only Memory) is non-volatile

memory that retains data even when the power is turned off. It allows for the storage

and retrieval of data in embedded systems.

7. Explain The Purpose Of A Watchdog Timer In Embedded Systems.

 A watchdog timer is a hardware component that resets the microcontroller if it doesn’t

receive periodic “petting” signals. It helps recover from system hangs or malfunctions,

ensuring the system stays responsive.

8. Provide An Example Of Using An Interrupt In An Embedded System.

#include <avr/io.h>

#include <avr/interrupt.h>

volatile int counter = 0;

ISR(TIMER1_COMPA_vect) {

 counter++;

}

int main() {

 // Initialize Timer1 for CTC mode

 OCR1A = 15624; // Compare value for 1Hz at 16MHz clock

 TCCR1B |= (1 << WGM12); // CTC mode

 TIMSK1 |= (1 << OCIE1A); // Enable compare match interrupt

 sei(); // Enable global interrupts

 while(1) {

 // Main code

 }

 return 0;

}

This code sets up Timer1 on an AVR microcontroller to generate an interrupt at 1Hz.

9. Explain The Purpose Of A UART In Embedded Systems.

 UART (Universal Asynchronous Receiver/Transmitter) is a hardware module that

facilitates serial communication between a microcontroller and external devices. It

allows for asynchronous, bidirectional data transfer.

10. What Is PWM (Pulse Width Modulation) In Embedded Systems?

 PWM is a technique used to generate analog-like signals using digital hardware. By

rapidly switching a digital signal on and off, PWM can approximate the effect of varying

the signal’s amplitude.

11. Write A Code Snippet To Initialize And Use A PWM Signal On An Embedded

Microcontroller.

#include <avr/io.h>

void setup_PWM() {

 // Set OC1A/PD5 as output

 DDRD |= (1 << DDD5);

 // Set Fast PWM mode

 TCCR1A |= (1 << WGM11) | (1 << WGM10);

 TCCR1B |= (1 << WGM13) | (1 << WGM12);

 // Set non-inverted mode for OC1A

 TCCR1A |= (1 << COM1A1);

 // Set prescaler to 64

 TCCR1B |= (1 << CS11) | (1 << CS10);

}

void set_PWM_duty_cycle(uint8_t duty_cycle) {

 // Set duty cycle (0-255)

 OCR1A = duty_cycle;

}

int main() {

 setup_PWM();

 while(1) {

 // Vary the duty cycle as needed

 set_PWM_duty_cycle(127); // Example: 50% duty cycle

 }

 return 0;

}

This code initializes PWM on an AVR microcontroller and sets a 50% duty cycle.

12. Explain The Purpose Of An Analog-To-Digital Converter (ADC) In Embedded

Systems.

An ADC converts analog signals (continuous voltage levels) into digital values (discrete

binary numbers) that can be processed by a microcontroller. This is crucial for

interfacing with analog sensors or signals.

13. Provide An Example Of Using An ADC In An Embedded System.

#include <avr/io.h>

void setup_ADC() {

 // Set reference voltage to AVcc

 ADMUX |= (1 << REFS0);

 // Enable ADC and set prescaler to 128

 ADCSRA |= (1 << ADEN) | (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);

}

uint16_t read_ADC(uint8_t channel) {

 // Select ADC channel

 ADMUX = (ADMUX & 0xF0) | (channel & 0x0F);

 // Start conversion

 ADCSRA |= (1 << ADSC);

 // Wait for conversion to complete

 while (ADCSRA & (1 << ADSC));

 // Return ADC value

 return ADC;

}

int main() {

 setup_ADC();

 while(1) {

 uint16_t value = read_ADC(0); // Read from ADC channel 0

 // Process ADC value

 }

 return 0;

}

This code initializes and reads from an ADC channel on an AVR microcontroller.

14. What Is The Purpose Of A Memory-Mapped I/O In Embedded Systems?

 Memory-mapped I/O allows the microcontroller to control external hardware by

reading from and writing to specific memory addresses. This enables direct interaction

with peripherals, making it efficient for I/O operations.

15. Provide An Example Of Memory-Mapped I/O In An Embedded System.

#define PORTB (*((volatile uint8_t*) 0x25))

int main() {

 // Set PB3 as output using memory-mapped I/O

 PORTB |= (1 << 3);

 while(1) {

 // Main code

 }

 return 0;

}

This code uses memory-mapped I/O to set PB3 as an output on an AVR microcontroller.

16. Explain The Purpose Of A Linker Script In Embedded Systems.

 A linker script is used during the compilation process to specify the memory layout of

the program. It defines the memory regions where code and data will be stored,

allowing for efficient memory utilization in embedded systems.

17. Write A Simple Linker Script Example For An Embedded System.

MEMORY

{

 FLASH (rx) : ORIGIN = 0x0000, LENGTH = 32K

 RAM (rwx) : ORIGIN = 0x8000, LENGTH = 2K

}

SECTIONS

{

 .text : { *(.text) } > FLASH

 .data : { *(.data) } > RAM

 .bss : { *(.bss) } > RAM

}

This linker script defines memory regions for program code (FLASH) and data (RAM) on

an embedded system.

18. What Is A Watchdog Timer In Embedded Systems?

 A watchdog timer is a hardware component that resets the microcontroller if it doesn’t

receive periodic “petting” signals. It helps recover from system hangs or malfunctions,

ensuring the system stays responsive.

19. Provide An Example Of Using A Watchdog Timer In An Embedded System.

#include <avr/io.h>

#include <avr/wdt.h>

void pet_watchdog() {

 cli(); // Disable interrupts

 wdt_reset(); // Reset the watchdog timer

 sei(); // Enable interrupts

}

int main() {

 wdt_enable(WDTO_1S); // Enable watchdog timer with 1-second timeout

 while(1) {

 // Main code

 pet_watchdog(); // Pet the watchdog

 }

 return 0;

}

This code demonstrates using a watchdog timer on an AVR microcontroller to reset the

system if it hangs.

20. Explain What Is Meant By “Volatile” Keyword In Embedded C Programming.

 In embedded C programming, the volatile keyword informs the compiler that a

variable’s value may change unexpectedly, without any action being taken by the code

the compiler finds nearby. This prevents the compiler from making optimizations that

might not be correct in the presence of such changes.

21. Provide An Example Of Using The “Volatile” Keyword In Embedded C.

volatile int sensorValue;

int main() {

 while(1) {

 // Read sensor value

 sensorValue = readSensor();

 // Use sensorValue in computations

 }

 return 0;

}

In this code, sensorValue is declared as volatile because it can be changed by external

factors not apparent to the compiler.

22. What Is A Mutex In Embedded Systems?

 A mutex (short for mutual exclusion) is a synchronization primitive used to prevent

multiple threads from concurrently accessing shared resources. It ensures that only one

thread can access the critical section at a time, preventing race conditions.

23. Write A C Code Snippet To Create And Use A Mutex In An Embedded System.

#include <avr/io.h>

#include <avr/interrupt.h>

// Define a mutex

volatile uint8_t mutex = 0;

void acquire_mutex() {

 cli(); // Disable interrupts

 while(mutex) {

 // Wait until mutex is available

 }

 mutex = 1;

 sei(); // Enable interrupts

}

void release_mutex() {

 cli(); // Disable interrupts

 mutex = 0;

 sei(); // Enable interrupts

}

int main() {

 acquire_mutex();

 // Critical section

 release_mutex();

 while(1) {

 // Main code

 }

 return 0;

}

This code demonstrates creating and using a simple mutex in an AVR microcontroller.

24. What Is The Purpose Of A Bootloader In Embedded Systems?

 A bootloader is a small program that initializes the microcontroller and loads the main

application from a storage device (e.g., flash memory, EEPROM). It enables firmware

updates without the need for a dedicated programmer.

25. Provide An Example Of A Bootloader Implementation In Embedded Systems.

// This is a simplified example of a bootloader.

// In a real-world scenario, bootloaders are more complex.

void bootloader() {

 // Check for firmware update

 if(check_for_update()) {

 // Load new firmware

 load_firmware();

 // Execute new firmware

 jump_to_firmware();

 } else {

 // Execute existing firmware

 execute_firmware();

 }

}

int main() {

 bootloader(); // Run the bootloader

 while(1) {

 // Main code

 }

 return 0;

}

This code demonstrates a simplified bootloader that checks for firmware updates and

loads the new firmware if available.

26. Explain The Purpose Of A Memory-Mapped I/O In Embedded Systems.

 Memory-mapped I/O allows the microcontroller to control external hardware by

reading from and writing to specific memory addresses. This enables direct interaction

with peripherals, making it efficient for I/O operations.

27. Provide An Example Of Memory-Mapped I/O In An Embedded System.

#define PORTB (*((volatile uint8_t*) 0x25))

int main() {

 // Set PB3 as output using memory-mapped I/O

 PORTB |= (1 << 3);

 while(1) {

 // Main code

 }

 return 0;

}

This code uses memory-mapped I/O to set PB3 as an output on an AVR microcontroller.

28. Explain What Is Meant By “Bit-Banding” In Embedded Systems.

 Bit-banding is a technique used to directly manipulate individual bits in memory. It

assigns a unique memory address to each bit, allowing for atomic operations on

individual bits, which can be useful in critical sections.

29. Provide An Example Of Using Bit-Banding In An Embedded System

#define BIT_BAND_ALIAS_BASE 0x42000000

#define BIT_BAND_PERIPH_BASE 0x40000000

#define ADDR_OFFSET 0x20

#define BIT_NUMBER 3

volatile uint32_t* bit_band_alias = (volatile uint32_t*)(BIT_BAND_ALIAS_BASE + \

 ((BIT_BAND_PERIPH_BASE + ADDR_OFFSET) * 32) + (BIT_NUMBER *

4));

int main() {

 // Set bit using bit-banding

 *bit_band_alias = 1;

 while(1) {

 // Main code

 }

 return 0;

}

This code demonstrates using bit-banding to set a specific bit in memory.

30. What Is A CAN Bus In Embedded Systems?

 CAN (Controller Area Network) bus is a robust and widely used serial communication

protocol in embedded systems. It’s designed for high-speed, reliable communication in

environments with high levels of electrical noise.

31. Provide An Example Of Using The CAN Bus In An Embedded System.

Example code for CAN bus communication can be complex and specific to the

microcontroller and CAN controller being used. A basic outline would involve initializing

the CAN controller, setting up message objects, and sending/receiving messages.

32. Explain The Purpose Of A State Machine In Embedded Systems.

 A state machine is a design pattern used to model the behavior of a system. It defines a

set of states, events, and transitions between states. In embedded systems, state

machines help manage the system’s behavior in a structured and predictable way.

33. Provide An Example Of Implementing A State Machine In An Embedded System.

typedef enum {

 STATE_INIT,

 STATE_RUNNING,

 STATE_ERROR

} State;

State current_state = STATE_INIT;

void state_machine() {

 switch(current_state) {

 case STATE_INIT

:

 // Initialize hardware and variables

 current_state = STATE_RUNNING;

 break;

 case STATE_RUNNING:

 // Main operation

 if(error_condition) {

 current_state = STATE_ERROR;

 }

 break;

 case STATE_ERROR:

 // Handle error condition

 break;

 }

}

int main() {

 while(1) {

 state_machine();

 }

 return 0;

}

This code outlines a basic state machine in an embedded system.

34. What Is Meant By “Polling” In Embedded Systems?

 Polling is a technique where the microcontroller continuously checks the status of a

condition or device until it reaches the desired state. It’s commonly used for simple

systems where immediate responsiveness is not critical.

35. Provide An Example Of Using Polling In An Embedded System.

#include <avr/io.h>

int main() {

 // Set PB0 as input and PB1 as output

 DDRB &= ~(1 << DDB0);

 DDRB |= (1 << DDB1);

 while(1) {

 if(PINB & (1 << PB0)) {

 // PB0 is high, set PB1 high

 PORTB |= (1 << PB1);

 } else {

 // PB0 is low, set PB1 low

 PORTB &= ~(1 << PB1);

 }

 }

 return 0;

}

This code continuously polls the state of PB0 and sets PB1 accordingly.

36. What Is Meant By “Interrupt-Driven” I/O In Embedded Systems?

 In interrupt-driven I/O, the microcontroller is configured to generate an interrupt when

a specific event occurs (e.g., data received). This allows the microcontroller to perform

other tasks while waiting for the event.

37. Provide An Example Of Interrupt-Driven I/O In An Embedded System.

#include <avr/io.h>

#include <avr/interrupt.h>

ISR(INT0_vect) {

 // Interrupt service routine for INT0

 // Handle the event

}

int main() {

 // Configure INT0

 EICRA |= (1 << ISC01); // Trigger on falling edge

 EIMSK |= (1 << INT0); // Enable INT0 interrupt

 sei(); // Enable global interrupts

 while(1) {

 // Main code (executed while waiting for the interrupt)

 }

 return 0;

}

This code sets up an interrupt on INT0 pin (PD2) on an AVR microcontroller.

38. Explain What Is Meant By “Deadlock” In Embedded Systems.

 A deadlock is a situation where two or more processes or threads are unable to

proceed because each is waiting for the other to release a resource, or more commonly,

because they are each waiting for a resource that the other process holds.

39. Provide An Example Scenario Where A Deadlock Can Occur In Embedded Systems.

 Suppose there are two tasks, TaskA and TaskB, both requiring access to two shared

resources, ResourceX and ResourceY. If TaskA locks ResourceX and TaskB locks

ResourceY at the same time, and then TaskA attempts to lock ResourceY while TaskB

attempts to lock ResourceX, a deadlock will occur.

40. What Is A Memory Leak In Embedded Systems?

 A memory leak occurs when a program dynamically allocates memory (e.g., using

malloc()), but fails to release it (using free()). Over time, this can lead to the exhaustion

of available memory, causing the system to fail.

41. Provide An Example Of A Memory Leak In An Embedded System.

void process_data() {

 int* data = (int*)malloc(sizeof(int) * 100); // Allocate memory

 // Process data, but forget to free(data) afterwards

}

int main() {

 while(1) {

 process_data(); // Memory leak occurs here

 }

 return 0;

}

In this code, memory is allocated for data but never freed, causing a memory leak on

each call to process_data().

42. What Is A Circular Buffer In Embedded Systems?

 A circular buffer (also known as a ring buffer) is a data structure that uses a fixed-size,

pre-allocated buffer as if it were connected end-to-end in a circle. It efficiently supports

both input and output operations without the need for memory reallocation.

43. Provide An Example Scenario Where A Circular Buffer Can Be Used In Embedded

Systems.

 A circular buffer can be used in scenarios where a continuous stream of data needs to

be processed in real-time, such as audio processing. It allows for efficient storage and

retrieval of data, even if the processing rate and data arrival rate vary.

44. Explain The Purpose Of A Real-Time Clock (RTC) In Embedded Systems.

 A Real-Time Clock (RTC) is a specialized clock circuit that keeps track of the current time

even when the system is powered off. It is crucial for applications that require accurate

timekeeping, such as logging events or scheduling tasks.

45. Provide An Example Of Using An RTC In An Embedded System.

 RTC modules typically come with their own libraries and protocols specific to the

microcontroller being used. It’s recommended to refer to the datasheet and library

documentation provided by the manufacturer for specific implementations.

46. What Is Meant By “Firmware” In Embedded Systems?

 Firmware refers to the permanent software programmed into a read-only memory

(ROM) or flash memory of an embedded system. It provides the low-level control for

the device’s specific hardware and is responsible for its operation.

47. Provide An Example Of Firmware Update Procedure In Embedded Systems.

 Firmware updates can vary greatly depending on the microcontroller, bootloader, and

storage medium being used. A general procedure involves:

Loading the new firmware onto the storage medium (e.g., flash memory).

Initiating the bootloader (if available) to write the new firmware.

Resetting the microcontroller to start running the updated firmware.

Specific steps and commands will be detailed in the microcontroller’s documentation.

48. Explain The Purpose Of A Digital Signal Processor (DSP) In Embedded Systems.

 A Digital Signal Processor (DSP) is a specialized microprocessor designed to efficiently

perform digital signal processing tasks. It excels at tasks like filtering, audio processing,

and other mathematical computations often required in embedded systems.

49. Provide An Example Scenario Where A DSP Can Be Used In Embedded Systems.

 DSPs are commonly used in applications such as audio processing (e.g., in headphones

for noise cancellation), image processing (e.g., in cameras for image enhancement), and

communication systems (e.g., for encoding/decoding signals).

50. What Is The Purpose Of A Finite State Machine (FSM) In Embedded Systems?

 A Finite State Machine (FSM) is a mathematical model used to represent and control

the behavior of a system. In embedded systems, it’s employed to manage complex logic

and decision-making processes by breaking them down into simpler states and

transitions.

51. Provide An Example Of Implementing A Finite State Machine In An Embedded

System.

typedef enum {

 STATE_IDLE,

 STATE_ACTIVE,

 STATE_ERROR

} State;

State current_state = STATE_IDLE;

void state_machine() {

 switch(current_state) {

 case STATE_IDLE:

 // Check conditions to transition to STATE_ACTIVE

 if(condition_met()) {

 current_state = STATE_ACTIVE;

 }

 break;

 case STATE_ACTIVE:

 // Perform actions in active state

 // Check conditions to transition to STATE_ERROR

 if(error_condition()) {

 current_state = STATE_ERROR;

 }

 break;

 case STATE_ERROR:

 // Handle error state

 break;

 }

}

int main() {

 while(1) {

 state_machine();

 }

 return 0;

}

This code demonstrates a simple FSM in an embedded system.

52. What Is The Purpose Of A Bootloader In Embedded Systems?

 A bootloader is a small program that initializes the microcontroller and loads the main

application from a storage device (e.g., flash memory, EEPROM). It enables firmware

updates without the need for a dedicated programmer.

53. Provide An Example Of A Bootloader Implementation In Embedded Systems.

// This is a simplified example of a bootloader.

// In a real-world scenario, bootloaders are more complex.

void bootloader() {

 // Check for firmware update

 if(check_for_update()) {

 // Load new firmware

 load_firmware();

 // Execute new firmware

 jump_to_firmware();

 } else {

 // Execute existing firmware

 execute_firmware();

 }

}

int main() {

 bootloader(); // Run the bootloader

 while(1) {

 // Main code

 }

 return 0;

}

This code demonstrates a simplified bootloader that checks for firmware updates and

loads the new firmware if available.

54. Explain The Purpose Of A Memory-Mapped I/O In Embedded Systems.

 Memory-mapped I/O allows the microcontroller to control external hardware by

reading from and writing to specific memory addresses. This enables direct interaction

with peripherals, making it efficient for I/O operations.

55. Provide An Example Of Memory-Mapped I/O In An Embedded System.

``` 

#define PORTB (*((volatile uint8_t*) 0x25)) 

 

int main() { 

    // Set PB3 as output using memory-mapped I/O 

    PORTB |= (1 << 3); 

 

    while(1) { 

        // Main code 

    } 

    return 0; 

} 

This code uses memory-mapped I/O to set PB3 as an output on an AVR microcontroller. 

 

56. Explain What Is Meant By “Bit-Banding” In Embedded Systems. 

 Bit-banding is a technique used to directly manipulate individual bits in memory. It 

assigns a unique memory address to each bit, allowing for atomic operations on 

individual bits, which can be useful in critical sections. 

 



 

 

57. Provide An Example Of Using Bit-Banding In An Embedded System. 

#define BIT_BAND_ALIAS_BASE 0x42000000 

#define BIT_BAND_PERIPH_BASE 0x40000000 

 

#define ADDR_OFFSET 0x20 

#define BIT_NUMBER 3 

 

volatile uint32_t* bit_band_alias = (volatile uint32_t*)(BIT_BAND_ALIAS_BASE + \ 

                              ((BIT_BAND_PERIPH_BASE + ADDR_OFFSET) * 32) + (BIT_NUMBER * 

4)); 

 

int main() { 

    // Set bit using bit-banding 

    *bit_band_alias = 1; 

 

    while(1) { 

        // Main code 

    } 

    return 0; 

} 

This code demonstrates using bit-banding to set a specific bit in memory. 

 

58. What Is A CAN Bus In Embedded Systems? 

 CAN (Controller Area Network) bus is a robust and widely used serial communication 

protocol in embedded systems. It’s designed for high-speed, reliable communication in 

environments with high levels of electrical noise. 

 

59. Provide An Example Of Using The CAN Bus In An Embedded System. 

 Example code for CAN bus communication can be complex and specific to the 

microcontroller and CAN controller being used. A basic outline would involve initializing 

the CAN controller, setting up message objects, and sending/receiving messages. 

 



 

 

60. Explain The Purpose Of A State Machine In Embedded Systems. 

 A state machine is a design pattern used to model the behavior of a system. It defines a 

set of states, events, and transitions between states. In embedded systems, state 

machines help manage the system’s behavior in a structured and predictable way. 

 

61. Provide An Example Of Implementing A State Machine In An Embedded System. 

typedef enum { 

    STATE_INIT, 

    STATE_RUNNING, 

    STATE_ERROR 

} State; 

State current_state = STATE_INIT; 

void state_machine() { 

    switch(current_state) { 

        case STATE_INIT: 

            // Initialize hardware and variables 

            current_state = STATE_RUNNING; 

            break; 

        case STATE_RUNNING: 

            // Main operation 

            if(error_condition) { 

                current_state = STATE_ERROR; 

            } 

            break; 

        case STATE_ERROR: 

            // Handle error condition 

            break; 

    } 

} 

 

int main() { 

 



 

    while(1) { 

        state_machine(); 

    } 

    return 0; 

} 

This code outlines a basic state machine in an embedded system. 

 

62. What Is Meant By “Polling” In Embedded Systems? 

 Polling is a technique where the microcontroller continuously checks the status of a 

condition or device until it reaches the desired state. It’s commonly used for simple 

systems where immediate responsiveness is not critical. 

 

63. Provide An Example Of Using Polling In An Embedded System. 

#include <avr/io.h> 

int main() { 

    // Set PB0 as input and PB1 as output 

    DDRB &= ~(1 << DDB0); 

    DDRB |= (1 << DDB1); 

 

    while(1) { 

        if(PINB & (1 << PB0)) { 

            // PB0 is high, set PB1 high 

            PORTB |= (1 << PB1); 

        } else { 

            // PB0 is low, set PB1 low 

            PORTB &= ~(1 << PB1); 

        } 

    } 

    return 0; 

} 

This code continuously polls the state of PB0 and sets PB1 accordingly. 

 

 



 

64. What Is Meant By “Interrupt-Driven” I/O In Embedded Systems? 

 In interrupt-driven I/O, the microcontroller is configured to generate an interrupt when 

a specific event occurs (e.g., data received). This allows the microcontroller to perform 

other tasks while waiting for the event. 

 

65. Provide An Example Of Interrupt-Driven I/O In An Embedded System. 

#include <avr/io.h> 

#include <avr/interrupt.h> 

 

ISR(INT0_vect) { 

    // Interrupt service routine for INT0 

    // Handle the event 

} 

 

int main() { 

    // Configure INT0 

    EICRA |= (1 << ISC01); // Trigger on falling edge 

    EIMSK |= (1 << INT0);  // Enable INT0 interrupt 

 

    sei(); // Enable global interrupts 

 

    while(1) { 

        // Main code (executed while waiting for the interrupt) 

    } 

    return 0; 

} 

This code sets up an interrupt on INT0 pin (PD2) on an AVR microcontroller. 

 

66. Explain What Is Meant By “Deadlock” In Embedded Systems. 

 A deadlock is a situation where two or more processes or threads are unable to 

proceed because each is waiting for the other to release a resource, or more commonly 

because they are each waiting for a resource that the other process holds. 

 



 

 

67. Provide An Example Scenario Where A Deadlock Can Occur In Embedded Systems. 

 Suppose there are two tasks, TaskA and TaskB, both requiring access to two shared 

resources, ResourceX and ResourceY. If TaskA locks ResourceX and TaskB locks 

ResourceY simultaneously, and then TaskA attempts to lock ResourceY while TaskB 

attempts to lock ResourceX, a deadlock will occur. 

 

68. What Is A Memory Leak In Embedded Systems? 

 A memory leak occurs when a program dynamically allocates memory (e.g., using 

malloc()), but fails to release it (using free()). Over time, this can lead to the exhaustion 

of available memory, causing the system to fail. 

 

69. Provide An Example Of A Memory Leak In An Embedded System. 

void process_data() { 

    int* data = (int*)malloc(sizeof(int) * 100); // Allocate memory 

    // Process data, but forget to free(data) afterwards 

} 

int main() { 

    while(1) { 

        process_data(); // Memory leak occurs here 

    } 

    return 0; 

} 

In this code, memory is allocated for data but never freed, causing a memory leak on 

each call to process_data(). 

 

70. What Is A Circular Buffer In Embedded Systems? 

 A circular buffer (also known as a ring buffer) is a data structure that uses a fixed-size, 

pre-allocated buffer as if it were connected end-to-end in a circle. It efficiently supports 

both input and output operations without the need for memory reallocation. 

 

 



 

71. Provide An Example Scenario Where A Circular Buffer Can Be Used In Embedded 

Systems. 

 A circular buffer can be used in scenarios where a continuous stream of data needs to 

be processed in real-time, such as audio processing. It allows for efficient storage and 

retrieval of data, even if the processing rate and data arrival rate vary. 

 

72. Explain The Purpose Of A Real-Time Clock (RTC) In Embedded Systems. 

 A Real-Time Clock (RTC) is a specialized clock circuit that keeps track of the current time 

even when the system is powered off. It is crucial for applications that require accurate 

timekeeping, such as logging events or scheduling tasks. 

 

73. Provide An Example Of Using An RTC In An Embedded System. 

 RTC modules typically come with their own libraries and protocols specific to the 

microcontroller being used. It’s recommended to refer to the datasheet and library 

documentation provided by the manufacturer for specific implementations. 

 

74. What Is Meant By “Firmware” In Embedded Systems? 

 Firmware refers to the permanent software programmed into a read-only memory 

(ROM) or flash memory of an embedded system. It provides the low-level control for 

the device’s specific hardware and is responsible for its operation. 

 

75. Provide An Example Of Firmware Update Procedure In Embedded Systems. 

 Firmware updates can vary greatly depending on the microcontroller, bootloader, and 

storage medium being used. A general procedure involves: 

Loading the new firmware onto the storage medium (e.g., flash memory). 

Initiating the bootloader (if available) to write the new firmware. 

Resetting the microcontroller to start running the updated firmware. 

Specific steps and commands will be detailed in the microcontroller’s documentation. 

 

 

 

 

 



 

76. Explain The Purpose Of A Digital Signal Processor (DSP) In Embedded Systems. 

A Digital Signal Processor (DSP) is a specialized microprocessor designed to efficiently 

perform digital signal processing tasks. It excels at tasks like filtering, audio processing, 

and other mathematical computations often required in embedded systems. 

 

77. Provide An Example Scenario Where A DSP Can Be Used In Embedded Systems. 

 DSPs are commonly used in applications such as audio processing (e.g., in headphones 

for noise cancellation), image processing (e.g., in cameras for image enhancement), and 

communication systems (e.g., for encoding/decoding signals). 

 

78. What Is The Purpose Of A Finite State Machine (FSM) In Embedded Systems? 

 A Finite State Machine (FSM) is a mathematical model used to represent and control 

the behavior of a system. In embedded systems, it’s employed to manage complex logic 

and decision-making processes by breaking them down into simpler states and 

transitions. 

 

79. Provide An Example Of Implementing A Finite State Machine In An Embedded 

System. 

typedef enum { 

    STATE_IDLE, 

    STATE_ACTIVE, 

    STATE_ERROR 

} State; 

State current_state = STATE_IDLE; 

void state_machine() { 

    switch(current_state) { 

        case STATE_IDLE: 

            // Check conditions to transition to STATE_ACTIVE 

            if(condition_met()) { 

                current_state = STATE_ACTIVE; 

            } 

            break; 

 



 

        case STATE_ACTIVE: 

            // Perform actions in active state 

            // Check conditions to transition to STATE_ERROR 

            if(error_condition()) { 

                current_state = STATE_ERROR; 

            } 

            break; 

        case STATE_ERROR: 

            // Handle error state 

            break; 

    } 

} 

 

int main() { 

    while(1) { 

        state_machine(); 

    } 

    return 0; 

} 

This code demonstrates a simple FSM in an embedded system. 

 

80. What Is The Purpose Of A Bootloader In Embedded Systems? 

 A bootloader is a small program that initializes the microcontroller and loads the main 

application from a storage device (e.g., flash memory, EEPROM). It enables firmware 

updates without the need for a dedicated programmer. 

 

81. Provide An Example Of A Bootloader Implementation In Embedded Systems. 

// This is a simplified example of a bootloader. 

// In a real-world scenario, bootloaders are more complex. 

void bootloader() { 

    // Check for firmware update 

    if(check_for_update()) { 

 



 

        // Load new firmware 

        load_firmware(); 

        // Execute new firmware 

        jump_to_firmware(); 

    } else { 

        // Execute existing firmware 

        execute_firmware(); 

    } 

} 

 

int main() { 

    bootloader(); // Run the bootloader 

 

    while(1) { 

        // Main code 

    } 

    return 0; 

} 

This code demonstrates a simplified bootloader that checks for firmware updates and 

loads the new firmware if available. 

 

82. Explain The Purpose Of A Memory-Mapped I/O In Embedded Systems. 

 Memory-mapped I/O allows the microcontroller to control external hardware by 

reading from and writing to specific memory addresses. This enables direct interaction 

with peripherals, making it efficient for I/O operations. 

 

83. Provide An Example Of Memory-Mapped I/O In An Embedded System. 

#define PORTB (*((volatile uint8_t*) 0x25)) 

int main() { 

    // Set PB3 as output using memory-mapped I/O 

    PORTB |= (1 << 3); 

 

 



 

    while(1) { 

        // Main code 

    } 

    return 0; 

} 

This code uses memory-mapped I/O to set PB3 as an output on an AVR microcontroller. 

 

84. Explain What Is Meant By “Bit-Banding” In Embedded Systems. 

 Bit-banding is a technique used to directly manipulate individual bits in memory. It 

assigns a unique memory address to each bit, allowing for atomic operations on 

individual bits, which can be useful in critical sections. 

 

85. Provide An Example Of Using Bit-Banding In An Embedded System. 

#define BIT_BAND_ALIAS_BASE 0x42000000 

#define BIT_BAND_PERIPH_BASE 0x40000000 

#define ADDR_OFFSET 0x20 

#define BIT_NUMBER 3 

volatile uint32_t* bit_band_alias = (volatile uint32_t*)(BIT_BAND_ALIAS_BASE + \ 

                              ((BIT_BAND_PERIPH_BASE + ADDR_OFFSET) * 32) + (BIT_NUMBER * 

4)); 

int main() { 

    // Set bit using bit-banding 

    *bit_band_alias = 1; 

 

    while(1) { 

        // Main code 

    } 

    return 0; 

} 

This code demonstrates using bit-banding to set a specific bit in memory. 

 

 

 



 

86. What Is A CAN Bus In Embedded Systems? 

 CAN (Controller Area Network) bus is a robust and widely used serial communication 

protocol in embedded systems. It’s designed for high-speed, reliable communication in 

environments with high levels of electrical noise. 

 

87. Provide An Example Of Using The CAN Bus In An Embedded System. 

 Example code for CAN bus communication can be complex and specific to the 

microcontroller and CAN controller being used. A basic outline would involve initializing 

the CAN controller, setting up message objects, and sending/receiving messages. 

 

88. Explain The Purpose Of A State Machine In Embedded Systems. 

 A state machine is a design pattern used to model the behavior of a system. It defines a 

set of states, events, and transitions between states. In embedded systems, state 

machines help manage the system’s behavior in a structured and predictable way. 

 

89. Provide An Example Of Implementing A State Machine In An Embedded System. 

typedef enum { 

    STATE_INIT, 

    STATE_RUNNING, 

    STATE_ERROR 

} State; 

State current_state = STATE_INIT; 

void state_machine() { 

    switch(current_state) { 

        case STATE_INIT: 

            // Initialize hardware and variables 

            current_state = STATE_RUNNING; 

            break; 

        case STATE_RUNNING: 

            // Main operation 

            if(error_condition) { 

                current_state = STATE_ERROR; 

 



 

            } 

            break; 

        case STATE_ERROR: 

            // Handle error condition 

            break; 

    } 

} 

 

int main() { 

    while(1) { 

        state_machine(); 

    } 

    return 0; 

} 

This code outlines a basic state machine in an embedded system. 

 

90. What Is Meant By “Polling” In Embedded Systems? 

 Polling is a technique where the microcontroller continuously checks the status of a 

condition or device until it reaches the desired state. It’s commonly used for simple 

systems where immediate responsiveness is not critical. 

 

91. Provide An Example Of Using Polling In An Embedded System. 

#include <avr/io.h> 

 

int main() { 

    // Set PB0 as 

 

 input and PB1 as output 

    DDRB &= ~(1 << DDB0); 

    DDRB |= (1 << DDB1); 

 

    while(1) { 

 



 

        if(PINB & (1 << PB0)) { 

            // PB0 is high, set PB1 high 

            PORTB |= (1 << PB1); 

        } else { 

            // PB0 is low, set PB1 low 

            PORTB &= ~(1 << PB1); 

        } 

    } 

    return 0; 

} 

This code continuously polls the state of PB0 and sets PB1 accordingly. 

 

92. What Is Meant By “Interrupt-Driven” I/O In Embedded Systems? 

 In interrupt-driven I/O, the microcontroller is configured to generate an interrupt when 

a specific event occurs (e.g., data received). This allows the microcontroller to perform 

other tasks while waiting for the event. 

 

93. Provide An Example Of Interrupt-Driven I/O In An Embedded System. 

#include <avr/io.h> 

#include <avr/interrupt.h> 

 

ISR(INT0_vect) { 

    // Interrupt service routine for INT0 

    // Handle the event 

} 

 

int main() { 

    // Configure INT0 

    EICRA |= (1 << ISC01); // Trigger on falling edge 

    EIMSK |= (1 << INT0);  // Enable INT0 interrupt 

 

    sei(); // Enable global interrupts 

 



 

 

    while(1) { 

        // Main code (executed while waiting for the interrupt) 

    } 

    return 0; 

} 

This code sets up an interrupt on INT0 pin (PD2) on an AVR microcontroller. 

 

94. Explain What Is Meant By “Deadlock” In Embedded Systems. 

 A deadlock is a situation where two or more processes or threads are unable to 

proceed because each is waiting for the other to release a resource, or more commonly, 

because they are each waiting for a resource that the other process holds. 

 

95. Provide An Example Scenario Where A Deadlock Can Occur In Embedded Systems. 

 Suppose there are two tasks, TaskA and TaskB, both requiring access to two shared 

resources, ResourceX and ResourceY. If TaskA locks ResourceX and TaskB locks 

ResourceY at the same time, and then TaskA attempts to lock ResourceY while TaskB 

attempts to lock ResourceX, a deadlock will occur. 

 

96. What Is A Memory Leak In Embedded Systems? 

 A memory leak occurs when a program dynamically allocates memory (e.g., using 

malloc()), but fails to release it (using free()). Over time, this can lead to the exhaustion 

of available memory, causing the system to fail. 

 

97. Provide An Example Of A Memory Leak In An Embedded System. 

void process_data() { 

    int* data = (int*)malloc(sizeof(int) * 100); // Allocate memory 

    // Process data, but forget to free(data) afterwards 

} 

 

int main() { 

    while(1) { 

 



 

        process_data(); // Memory leak occurs here 

    } 

    return 0; 

} 

In this code, memory is allocated for data but never freed, causing a memory leak on 

each call to process_data(). 

 

98. What Is A Circular Buffer In Embedded Systems? 

 A circular buffer (also known as a ring buffer) is a data structure that uses a fixed-size, 

pre-allocated buffer as if it were connected end-to-end in a circle. It efficiently supports 

both input and output operations without the need for memory reallocation. 

 

99. Provide An Example Scenario Where A Circular Buffer Can Be Used In Embedded 

Systems. 

 A circular buffer can be used in scenarios where a continuous stream of data needs to 

be processed in real time, such as audio processing. It allows for efficient storage and 

retrieval of data, even if the processing rate and data arrival rate vary. 

 

100. Explain The Purpose Of A Real-Time Clock (RTC) In Embedded Systems. 

 A Real-Time Clock (RTC) is a specialized clock circuit that keeps track of the current time 

even when the system is powered off. It is crucial for applications that require accurate 

timekeeping, such as logging events or scheduling tasks. 

 

101.What is the Internet Of Things (IoT)? 

Internet of Things (IoT) is a network of physical objects or people called “things” that 

are embedded with software, electronics, network, and sensors that allow these objects 

to collect and exchange data. The goal of IoT is to extend to internet connectivity from 

standard devices like computer, mobile, tablet to relatively dumb devices like a toaster. 

 

 

 

 

 



 

 

102. Explain Raspberry Pi 

Raspberry Pi is a computer which is capable of doing all the operations like a 

conventional computer. It has other features such as onboard WiFi, GPIO pins, and 

Bluetooth in order to communicate with external things. 

 

103. How to run Raspberry pi in headless mode? 

Raspberry pi in headless mode can be run by using SSH. The latest operating system has 

an inbuilt VNC server that is installed for taking remote desktop on Raspberry Pi. 

 

104. What are the disadvantages of IoT? 

The disadvantages of IoT are: 

●​ Security: IoT technology creates an ecosystem of connected devices. However, 

during this process, the system may offer little authentication control despite 

sufficient cybersecurity measures. 

●​ Privacy: The use of IoT, exposes a substantial amount of personal data, in 

extreme detail, without the user’s active participation. This creates lots of 

privacy issues. 

●​ Flexibility: There is a huge concern regarding the flexibility of an IoT system. It is 

mainly regarding integrating with another system as there are many diverse 

systems involved in the process. 

●​ Complexity: The design of the IoT system is also quite complicated. Moreover, 

it’s deployment and maintenance also not very easy. 

●​ Compliance: IoT has its own set of rules and regulations. However, because of its 

complexity, the task of compliance is quite challenging. 

 

105. Define Arduino 

Arduino is a free electronics platform having easy to use hardware and software. It has a 

microcontroller capable of reading input from sensors to control the motors 

programmatically. 

 

 

 



 

106. List mostly used sensors types in IoT 

Mostly used sensor types in IoT are: 

●​ Smoke sensor 

●​ Temperature sensors 

●​ Pressure sensor 

●​ Motion detection sensors 

●​ Gas sensor 

●​ Proximity sensor 

●​ IR sensors 

 

107. Mention the basic difference between IoT and sensor businesses? 

A sensor business does not need an active internet connection to work. Internet of 

Things requires a control side to work. 

Key benefits of IoT technology are as follows: 

Technical Optimization: IoT technology helps a lot in improving techniques and making 

them better. For example, with IoT, a manufacturer is able to collect data from various 

car sensors. The manufacturer analyses them to improve its design and make them 

more efficient. 

Improved Data Collection: Traditional data collection has its limitations and its design 

for passive use. IoT facilitates immediate action on data. 

Reduced Waste: IoT offers real-time information leading to effective decision making & 

management of resources. For example, if a manufacturer finds an issue in multiple car 

engines, he can track the manufacturing plan of those engines and solves this issue with 

the manufacturing belt. 

Improved Customer Engagement: IoT allows you to improve customer experience by 

detecting problems and improving the process. 

 

108. What is Bluegiga APX4 protocol? 

The Bluegiga APX4 is a solution that supports both the WiFI and BLE platform, and it is 

based on a 450MHz ARM9 processor. 

 

 

 



 

109. What are the most common IoT applications? 

IoT 

The most common IoT applications are: 

Smart Thermostats: Helps you to save resources on heating bills by knowing your usage 

patterns. 

Connected Cars: IoT helps automobile companies handle billing, parking, insurance, and 

other related stuff automatically. 

Activity Trackers: Helps you to capture heart rate patterns, calorie expenditure, activity 

levels, and skin temperature on your wrist. 

Smart Outlets: Remotely turn any device on or off. It also allows you to track a device’s 

energy level and get custom notifications directly into your smartphone. 

Parking Sensors: IoT technology helps users to identify the real-time availability of 

parking spaces on their phones. 

Connect Health: The concept of a connected healthcare system facilitates real-time 

health monitoring and patient care. It helps in improved medical decision-making based 

on patient data. 

 

110. What is Pulse Width Modulation? 

PWM or Pulse Width Modulation is a variation of how much time the signal is high in an 

analog fashion. The signal can be high or low, and the user can even change the 

proportion of the time. 

 

111. Mention applications of PWM in IoT 

Applications of PWM in IoT are controlling the speed of DC motor, Controlling the 

direction of a servo moto, Dimming LED, etc. 

 

112. List available wireless communications boards available in Raspberry Pi? 

Wireless communications boards available in Raspberry Pi are 1) WiFi and 2) 

BLE/Bluetooth. 

 

 

 

 



 

113. What are the functions used to read analog and digital data from a sensor in 

Arduino? 

Functions used to read analog and digital data from a sensor in Arduino are: 

digitalRead() and digitalWrite(). 

 

114. What is Bluetooth Low Energy? 

Bluetooth Low Energy is a wireless PAN (Personal Area Network) technology. It uses less 

power to transmit long-distance over a short distance. 

 

115. Define MicroPython 

MicroPython is a Python implementation, which includes a small subset of its standard 

library. It can be optimized to run on the ModeMCU microcontroller. 

 

116. List available models in Raspberry Pi 

Models of Raspberry Pi are: 

Raspberry Pi 1 Model B 

Raspberry Pi 1 Model B+ 

Raspberry Pi 1 Model A 

Raspberry Pi Zero 

Raspberry Pi 3 Model B 

Raspberry Pi 1model A+ 

Raspberry Pi Zero W 

Raspberry Pi 2 

 

117.What are the challenges of IoT? 

Important challenges of IoT are: 

●​ Insufficient testing and updating 

●​ Concern regarding data security and privacy 

●​ Software complexity 

●​ Data volumes and interpretation 

●​ Integration with AI and automation 

●​ Devices require a constant power supply which is difficult 

 



 

●​ Interaction and short-range communication 

 

118. Mention some of the commonly used water sensors 

The commonly used water sensors are: 

●​ Turbidity sensor 

●​ Total organic carbon sensor 

●​ pH sensor 

●​ Conductivity sensor 

 

119.Differentiate between Arduino and Raspberry pi 

 

 Arduino Raspberry Pi 
 

Description Open, programmable USB 
microcontroller 

Credit card-sized computer 

Functionality Executes one program at a 
time 

Can run more than one 
program concurrently 

 

 

120. What are mostly used IoT protocols? 

The mostly used IoT protocols are: 

●​ XMPP 

●​ AMQP 

●​ Very Simple Control Protocol (VSCP) 

●​ Data Distribution Service (DDS) 

●​ MQTT protocol 

●​ WiFi 

●​ Simple Text Oriented Messaging Protocol(STOMP) 

●​ Zigbee 

 

 

 

 



 

121.What are IoT publishers? 

IoT Publishers are sensors that send real-time data to intermediate devices or 

middleware. 

 

122. What is a library in Arduino? 

Arduino library is a collection of code that is already written for controlling module or 

sensor. 

 

123.Mention some of the wearable Arduino boards 

Wearable Arduino boards are: 

●​ Lilypad Arduino main board 

●​ Lilypad Arduino simple 

●​ Lilypad Arduino simple snap 

●​ Lilypad Arduino USB 

 

124. What is replication? 

Replication is the act of syncing data between two or more servers. 

 

125. What is IoT Thingworx? 

Thingworx is a platform for the fast development and deployment of connected devices. 

It is a collection of integrated IoT development tools that support analysis, production, 

property, and alternative aspects of IoT development. 

 

126. What is Salesforce IoT Cloud? 

The Salesforce IoT Cloud is an online platform for storing and processing IoT 

information. 

It is an assortment of various application development elements, which are called 

lightning. 

This program gathers information from websites, devices, customers, and partners. It 

then triggers actions for period responses. 

 

 

 



 

127.  Explain IoT GE-PREDIX 

GE or General Electric Predix is a software for the information assortment from 

industrial instruments. It offers a PaaS which allows users performance management 

and operation optimization facility. It connects instrumentation, people, and 

information in an exceedingly conventional technique. 

 

128. List out Some popular companies are working on IoT 

Popular companies working on IoT are: 1) Philips, 2) LG, 3) Google, 4) Apple and 5) 

Samsung. 

 

129. What are various types are of CAN Frame? 

Various types of CAN frames are: 1) data frame, 2) request frame, 3) error frame, and 4) 

overload frame. 

 

130. What is the main difference between floating CPU and fixed-point CPU? 

Floating CPU can take floating value directly, whereas fixed CPU is converted to integer 

format. Thereby, it leads to the loss of some resolution. 

 

131. Define GPIO 

GPIO is a programmable pin that can be used to control input or output pins 

programmatically. 

 

132. Explain Android things 

Android things is an Android-based OS that is built for embedded devices. 

 

133. What is the aim of airflow sensors? 

The main aim of airflow sensors is to measure the air level in the soil. This sensor 

enables one to measure it dynamically, from one location, or multiple locations of the 

garden. 

 

134. Mention suitable databases for IoT 

Suitable databases for IoT are: 

 



 

●​ influx DB 

●​ Apache Cassandra 

●​ RethinkDB 

●​ MongoDB 

●​ Sqlite 

 

135. Why use the scheduler in RTOS? 

Scheduler in RTOS is used for switching one task to another. 

 

136. Mention real-time usage of Raspberry pi 

Home a 

Portable webserver 

manipulating the robots 

Internet radio 

 

137. Define IoT Contiki 

IoT Contiki is software that targets explicitly little devices connected with the Internet. It 

is used with process power bandwidth, power, and restricted memory. Contiki helps for 

the management of programs, resources, processes, communication, and memory. 

 

138. What is data in IoT? 

Data in IoT refers to the information that is collected by the installed devices at any 

building. 

 

139. List majorly used IoT controllers by industries 

Majorly used IoT controllers by industries are: 1) Siemens IoT 2020 and 2) Arduino. 

 

140. What is a crystal oscillator? 

A crystal oscillator is the main part of the microprocessor. It executes every single pulse 

one instruction in CPU. 

 

 

 



 

141. What is the importance of the Internet of Everything? 

Internet of Everything is important because: 

It brings together people, processes, things, and data to make network connections 

valuable and relevant. 

It converts the information into actions to create new capabilities and opportunities for 

businesses. 

 

142. What is WSN? 

The full form of WSN is Wireless Sensor Network. It is a network of notes, design to 

observe and to study physical parameters of the application. 

 

143. What is Zigbee? 

Zigbee is the same like Bluetooth. It used in a complex system for low power operation, 

robustness, and high security. 

 

144.What is Z-Wave? 

Z-Wave is an IoT technology that uses low power RF communication. It is designed for 

home automation products like lamp controllers and sensors. 

 

145. How to install a new library in Arduino? 

A new library in Arduino can be installed by selecting the library from the sketch option 

in Toolbar. 

 

146. What is MQTT? 

The full form of MQTT is Message Queue Telemetry Transport Protocol. It is a messaging 

protocol that is used for tracking devices in IoT. 

IoT Interview Questions and Answers for Experienced 

 

 

 

 

 

 



 

147. Name some important IoT hardware 

IoT hardware includes varieties of devices like router, bridge, sensor, etc. 

 

148. What are the operating systems supported by Pi? 

Operating systems supported by Pi are: 

Raspbian 

Open ELEC (Open Embedded Linux Entertainment center) 

RISC OS 

Lakka 

OSMC (Open Source Media Centre) 

Windows IoT Core 

 

147. How to reduce the size of the sketch? 

Reducing the size of the sketch is can be reduced by removing unwanted libraries from 

the code and make code short and simple. 

 

148. What are the various types of antennas designed for IoT devices? 

Various types of antennas designed for IoT devices are: 

Chip Antenna 

PCB Antenna 

Wire Antenna 

Proprietary Antenna 

Whip Antenna 

 

149. What are the features of influxDB? 

Features of influxDB are: 

Provides support of visualization tools 

Works with distributed time-series database 

It does not have any external dependencies 

 

 

 

 



 

150. How to program Arduino? 

Programmers can use the Arduino IDE in order to write an Arduino program. Developers 

can also use Node.js Johny five-module in order to control Arduino. 

 

151 What are IoT testing tools? 

IoT testing tools can be divided into hardware and software: 

IoT testing software: Tcpdump and Wireshark. 

Hardware for IoT testing: JTAG Dongle, Digital Storage Oscilloscope, and Software 

Defined Radio. 

 

152. How to store the high-volume file into Arduino? 

A specification called Gridfs can be used for storing high volume file into Arduino. 

 

153. Mention IoT software 

IoT software are: 1) Blockchain, 2) windows IoT, 3) Predix, 4) Microsoft Azure, 5) 

Bluemix, and 6) Node-RED. 

 

154. What is Shodan? 

Shodan is an IOT testing tool that can be used to discover which of your devices are 

connected to the Internet. It allows you to keep track of all the computers which are 

directly accessible from the Internet. 

 

155. What is a thing in IoT? 

IOT thing is an item having an embedded and connected computing device. 

 

156. What is Thermocouple? 

A Thermocouple is a device which consists of two different conductors joined together 

to form an electrical junction. 

 

157.Mention some examples of MEMS sensor 

MPU6050- Gyroscope 

ADXL345 

 



 

piezoelectric sensor 

Accelerometer 

 

158. What are IoT test approaches? 

IoT test approaches are: 1) Usability, 2) IoT Security, 3) Connectivity, 4) Performance, 5) 

Compatibility Testing, 6) Pilot Testing, 7) Regulatory Testing, and 8) Upgrade testing. 

 

159. What is sharding? 

Sharding is a method to split data into collections and stored in machines. 

 

160. List hardware prototypes used in IoT 

Hardware Prototypes used in IoT are 1) Raspberry Pi, 2) ARM Cortex Family, and 3) 

Arduino. 

 

161. What is IoT Testing? 

IoT testing is a type of testing to check IoT devices. Today there is an increasing need to 

deliver better and faster services. There is a huge demand to access, create, use, and 

share data from any device. The thrust is to provide greater insight and control over 

various interconnected IoT devices. Hence, the IoT testing framework is important. 

 

162. What are the types of IoT? 

There are two types of IoT: 

Internet of Things: It creates a business that uses a gadgets to perform a task. 

Industrial Internet of Things: It creates business in the industry like agriculture. 

 

163. What is Thingful? 

Thingful is a search engine for the Internet of Things. It allows secure interoperability 

between millions of IoT objects via the Internet. This IOT testing tool also to control how 

data is used and empowers to take more decisive and valuable decisions. 

 

 

 

 



 

164. What are interrupts in Arduino? 

Interrupts enable specific tasks to process in the background and are enabled by 

default. Its main job is to ensure the device processor responds fastly to essential 

events. 

 

165. What is Asset Tracking? 

Asset Tracking or Asset management is the process of keeping track of physical assets 

and information. 

 

166. What are the risks associated with the IOE Internet of Everything? 

Risks associated with IOE are 1) Privacy, 2) Security, 3) Network congestion, and 4) 

Electricity consumption at the peaks. 

 

167. What is the basic difference between the IoT network and Wireless Sensor 

Network? 

Wireless Sensor Network things connected to the wireless network and gather some 

monitoring environment or data. IoT contains a combination of: 

WSN 

Internet 

Cloud Storage 

web or mobile application 

 

168. What is the importance of the network in IoT? 

The network is the main part of the IoT. It is responsible for providing a practical and 

smart system that makes strong infrastructure. The network offers scalability to help 

devices coordinate with other lines with the Internet. 

 

169. What is the connection between IoT and sensors in the commercial enterprise? 

Sensors may be used in devices that are not net-connected, while devices need to be 

connected to the Net with IoT. Yet, sensing is a part of IoT, even if the device is not 

connected to the Net. 

 

 



 

170. Explain the types of testing in IoT? 

IoT 

IoT devises testing types are: 

Usability Testing: There are so many devices of different shape and form factors are 

used by the users. Moreover, the perception also varies from one user to others. That’s 

why checking the usability of the system is very important in IoT testing. 

●​ Compatibility Testing: There are lots of devices that can be connected through 

the IoT system. These devices have varied software and hardware configuration. 

Therefore, a possible combination is huge. As a result, checking the compatibility 

in the IoT system is important. 

●​ Reliability and Scalability Testing: Reliability and Scalability is important for 

building an IoT test environment which involves a simulation of sensors by 

utilizing virtualization tools and technologies. 

●​ Data Integrity Testing: It’s important to check the Data integrity in IoT testing as 

it requires a large amount of data and its application. 

●​ Security testing: In the IoT environment, many users are accessing a massive 

amount of data. Thus, it is important to validate user via authentication, have 

data privacy controls as part of security testing. 

●​ Performance Testing: Performance testing is important to create a strategic 

approach for developing and implementing a IoT testing plan. 

 


