Surviving DevOps

Coté, 2018

https://twitter.com/cote

I been out on them choppy waves
and it's hard to say where this land
begins and that water stops.

Foreword

In 2005, | was roaring along with my fifth startup. | had built a consultant company, composed of
30 of the world’s top engineers, working with the IBM product portfolio called Tivoli. Just for
comparison, IBM had over 10,000 consultants, yet we still had more Tivoli certifications. In fact,
at one point in the early 2000’s, we won an award for the most IBM Tivoli Enterprise Certified
consultants. To give you an example of how good we were, IBM’s global consulting services
would call us for training before they would call their own internal or commercial training classes.
In a 10 year period, | had trained over 10,000 Tivoli professionals. When the Department of
Defense Information Systems (DISA) called IBM needing a Tivoli trainer to teach classes for the
Navy’s Pacific fleet, specifically the NIPR/SIPR systems, | was the only person on the planet
that was certified in all the classes they needed from a trainer. | was the king of the world. At this
point, | had also co-authored 7 books on Tivoli. Needless to say, | was considered a
world-renowned expert on Tivoli.

| am telling you all this because, for reasons | won’t go into, only one year later, | was broke and
had to move my family into my brother-in-law's basement. It's the old cliché: whatever doesn’t
kill you, makes you feel really crappy, but eventually makes you stronger. Forced to bootstrap
myself again after 20 years in this industry, | started with one specific goal, to not meet the same
people on the way up as | did on the way down. In order to achieve my goal, | decided to look at
alternative tools to the Tivoli portfolio, eventually focusing on open source tool alternatives to the
Tivoli tools. | decided the best place to start was to create a blog. Having come from a world
where | worked exclusively with enterprise proprietary software, | found it easy to be cynical,
while also incredibly intrigued when making comparisons. Nagios and Puppet were easy targets
to start with. Sometimes | would make fun of, and other times, | would give serious comparative
analysis.

After a few months, | started getting some followers on my blog that seemed to have a similar
sense of humor as mine. Some of them would make comments, and a few would actually create
links or talk about my posts on their blog. One of these dudes was called Coté. Although,
whenever he quoted me, it sounded way cooler than my original wording. Mind you, in the
Tivoli-o-Sphere, there were no one-named people, so | decided to proceed with caution when
responding. When | asked another new follower and kindred soul, Mark Hinkle, “who the hell is
this Coté dude?” Mark pulled out his phone, called him, and made an introduction. Before long,
Coté and | became blood brothers and eventually ran a podcast together for around 5 years
called The IT Management Guys. Imagine the Car Talk guys but only we talked about open
source, cloud, and sometimes spending 15 minutes talking about the best hamburger we had
that week. Why? Because we could.

So before telling you my thoughts about Digital WTF, let me start by saying that having a
conversation with Michael Coté is a rare, intellectual, and witty treat. It’s kind of like when you're

3

reading a great book, and you start worrying because the ending is approaching and you enjoy
it so much. In other words, he is fun to listen to, and even more fun to read. It was no surprise to
me that when | was given an early copy of Digital WTF, | freaking loved it. Michael Coté
describes his Digital WTF as a paste-pot of interesting “Digital Transformation” stories, and with
that Coté signature style, he keeps you guessing whether he’s laughing with us or laughing at
us. Most likely both. At one point in my early career, | lived in Texas for five years, so when
Michael sneaks in his little Texan’isms like “cottoning on to new technologies,” | get a bonus
giggle. However, you don’t have to be from Texas to get a kick out some of his
non-colloquialisms like “hey, get off my back, tapered sweatpant milinums” referring to
Starbucks as a software company. If a chapter that includes phrases and names such as
meatware, devops, Kent Beck, Melvin Conway, The Mythical Man Month, and Google SRE all
peak your interest then this is definitely the book for you.

| often say when talking about my journey over the past 10 years, i.e., my post-Tivoli adventure,
| have had the privilege to get to know a handful of incredible people. | joke that | feel like |
should be paying them when | have conversations with them, and Coté is most definitely part of
this group. So let me leave you with this, if you still are not clear on how much | recommend this
book, | will be buying one of the first commercial copies of Digital WTF even though | was given
a free one for early review. Why? Because he’s Coté.

Botchagalupe
a.k.a John Willis

https://twitter.com/botchagalupe

Preface

| was reading a Mencken biography a while back, Disturber of the Peace. A book which is,
magically, available as an audio version: there’s something about hearing Anthony Heald’s
rendition of H.L. Mencken’s cigar chomping voice that's comforting. Mencken wrote an endless
stream of articles in-between editing his various newspapers and magazines. To make extra
money and compendiums of his articles for easier consumption, he’d often “get out the scissors
and paste-pot” to create a “book.”

As a side note, while Mencken is, no doubt, an important figure in American letters, each time |
try to read his material, | mentally file him away on that shelf | call “things to read when | have
nothing else to do.” This shelf, rests, no doubt, right next to my death-bed. I'm often stricken
with the claustrophobic fear that once | become bound in a nursing home, my body so frail and
sick that I'm reliant on my new family of nurses to accomplish the simple task of rolling over, that
my mind will eat itself alive because | won’t be able to read and consume information. Perhaps
all this voice-activated technology will pay off them: hopefully it'll respond to geriatric muttering.
“Alexa! TURN. THE. PAGE....TURN. THE. THE...NURSE!l!”

But, back to the present day, where | still have most of my faculties.

Times have advanced and we no longer need scissors or a paste-pot. We have computational
cut-n-paste! Many - perhaps too many - books are composed of blog posts munged together -
not unlike this one. | usually think of these books as rather like cheating, and, not very good.
Despite this, there are good ones, The Hard Thing About Hard Things stands out, and, from the
pre-Internet age numerous Hunter S. Thompson “books” which were themselves paste-pots.

Never one to shy-away from personal hypocrisy, that's exactly what this is, dear reader. A digital
paste-pot of blog posts, columns, and other “small things” I've written over the years. Somehow,
| ended up writing for a living, first programming and then more traditional forms, along with
podcasts. On the Internet all this writing gets lost and you’re never really afforded the chance to
see the ongoing narrative. Here, primarily to see that for myself, I've collected together some of
my pieces. They’re heavily weighted towards things I've typed up in recent years at The
Register. Some common themes have emerged: DevOps, programming, vendor-sports, and
enterprise software.

Anyhow, | loathe reading through front-matter when starting a book. Enjoy the typing!

-Coté, Amsterdam, Fall 2018.

http://amzn.to/2tsXWGQ
http://amzn.to/2u3L2R9
https://www.theregister.co.uk/Author/Michael-Cote/
https://www.theregister.co.uk/Author/Michael-Cote/

Digital Transformation: WTF?

At some point the phrase “digital transformation” must have meant something specific, even
pragmatically useful. Now, it means nothing in that it means everything new and helpful you’d do
with computers. | remember hearing the idea of a “system of engagement” back at an Adobe
analyst summit in 2008 or 2009. They even brought in Geoffrey Moore who’d just recently been
putting together the idea of leveraging (oh, pardon me - I've been eating a rich diet of
enterprise-speak recently) user-centric software to more closely know and sell to your
customers. Thanks to web applications, mobile apps, and something no one remembers called
Rich Internet Applications (RIA), you could monitor and analyze every single thing your
customers did and even tailor your sales offerings, pricing, and application features to them.

Much of the early work here fell under the idea of digital marketing: figuring how to use highly
targeted ads in Google, and later Facebook, to perfectly target promotions. With deep user
tracking on the back-end and even “big data” analysis, you could start to know your customers
like never before and sell to them more effectively, even stalking them across the Internet.

Seemingly overnight, all of the IT industry's efforts were dumped into “social” and “mobile” to
use these new tools to sell to customers. As Jeff Hammerbacher quipped back then, “the best
minds of my generation are thinking about how to make people click ads.” The idea of “Chief
Digital Officer” was born.

The dazzle wore off quickly. These tools were so easy and effective to use that everyone could
do it quickly. With this new, targeted and intimate channel to reach customers, existing brands
glommed onto selling candy and toilet paper in Facebook, new direct-to-consumer brands from
razors to bras thrived, and, as ever, Amazon was rocketing along like Leonard Smalls across
the desert highway.

Once the competitive advantage of digital marketing ossified - becoming just what you needed
to stay keep your head above water - “digital transformation” was adrift, searching for a tactical
meaning beyond better advertising. What | saw, and continue to see, is that digital
transformation now means using agile principles, cloud automation, and user-centric design to
improve your software capabilities. More than just incremental improvement in existing
capabilities, you do this transformation to improve your business.

These pieces discuss that new meaning and aspiration of “digital transformation.”

https://www.bloomberg.com/news/articles/2011-04-14/this-tech-bubble-is-different
https://blogs.gartner.com/andrew_white/2017/03/13/the-changing-face-and-scope-of-the-chief-digital-officer/
https://shift.newco.co/towards-a-bra-free-instagram-experience-3e43273b611f

Digital transformation?! Your boss's PowerPoint New Year
resolution, deconstructed

Hey, it's the new year. Time to let those annual planning slides shimmy over you, washing away
the dangling tickets of last year like a purifying clean install. Somewhere amid pictures of robots
shaking hands with meat-maws and millennials writing on glass walls will, no doubt, be the
details of your firm's "digital transformation".

At first, you may be shocked to hear that you're so analogue — weren't we up to our eyeballs in
digital last year when we updated all the desktops and finally enabled the CEQ's iPhone to
check email? Then, as Dear Leader flips through some eye-popping figures around Uber and
Tesla (all the money is in multi-sided platform businesses overflowing with customer data, now,
you now), you'll start to think: "Oh crap. They're serious. Erm. So, what exactly is 'digital
transformation'? (Should | be updating my LinkedIn?)"

As my writing during the past year attests, | spend much of my time surveying the kipple of
decaying digital transformation efforts. They always start with grandiose trend chasing — Al!
Blockchain! 1oT! The Gig Economy! Augmented Reality! Drones! — but they end up with
something more simple: just using software to automate previously manual-driven business
processes.

It's certainly not as sultry a strategy as asking Alexa to machine-learn her way into estimating
how many nappies you'll need to order fortnightly based real time feedback from nappy-can
sensors in your demographic...but more pedestrian applications of software will likely prove
better at generating cash for your business.

“Digitizing” is the new paperless & humanless

A project to “digitize” the green card replacement program in the US provides a good example
of the simple, pragmatic work IT departments should be curating for 2017. Before injecting
software into process it'd "cost about $400 per application, it took end user fees, it took about six
months, and by the end, your paper application had traveled the globe no less than six times.
Literally traveled the globe as we mailed the physical papers from processing center to
processing center.”

After discovering agile and cleaning up the absurd government contracting scoping (a seven
year project costing $1.2bn, before accounting for the inevitable schedule and budget overruns),
a team of five people successfully tackled this paper-driven, human process. It's easy to poke
fun at government institutions, but if you’'ve applied for a mortgage, life insurance, or even tried
to order take out food from the corner burger-hut, you’ll have encountered plenty of
human-driven processes that could easily be automated with software.

https://www.shutterstock.com/image-photo/business-human-robot-hands-handshake-artificial-267582539
https://www.shutterstock.com/image-photo/business-human-robot-hands-handshake-artificial-267582539
https://www.shutterstock.com/image-photo/two-concetrated-young-businessmen-talking-writing-529728970?src=8vl4c5BifEFO5-VDuoufHg-1-29
http://www.theregister.co.uk/Author/3107
http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/
https://backchannel.com/the-tiny-team-taking-on-a-massive-reform-of-government-it-b5f87b85e2dc#87b9

After talking with numerous large organizations about their IT challenges, to me, this kind of
example is what “digital transformation” should mostly about, not introducing brain-exploding,
Minority Report style innovation. And why not? McKinsey recently estimated that, at best, only
29% of a worker’s day-to-day requires creativity. Much of that remaining 71% is likely just
paid-for monotony that could be automated with some good software slotted into place.

Add robots here...

In retail and banking, digital tends to revolve around omni-channel programmes (selling our
products in more ways than just the till and online, like delivery), adding in more analytics (help
us find more paths to the customer's wallet), and cleaning up the crufty, slow-moving application
stacks of the past. The last one usually goes under the banner of "enable innovation", which
though vague and unhelpful usually just means "burn down the legacy stacks and slam in all
that cloud stuff so we can actually deliver software faster".

Others will summarize the goals of digital transformation as increasing an organisation's
intelligence, agility, and customer-centricity. But it all amounts to the same thing: spinning up the
IT Morlocks to actually get out there and provide new, software-driven capabilities to the
business folks. These dry-cleaned Eloi then direct their new toys to either cut costs by becoming
more efficient or grabbing more money by inventing new business models.

Interestingly, "mobile" is often further down the list; | suspect this is because mobile was the
craze years ago and companies have either finished out their programmes here, or became
exhausted trying. That said, I'd wager that most of these efforts were to simply reskin existing
web-based apps into native mobile apps. There's still plenty of room to introduce brain-dead
simple but clearly useful features like letting people turn off their credit cards when they think
there's monkey business afoot after their teenager scuttled off to the mall. Just unlocking your
hotel door with your phone ("the Internet of door-knobs") or glancing at your watch to see which
airline seat you'll be stuffing yourself into does wonders for making life suck less.

Further back, "digital" has clearly ceased to mean "the social" as it seemed to when the term
emerged years ago as companies were scrambling to figure out how many pictures of
sandwiches they should post a day on Instagram. Hopefully you've long figured out the right
times of the day to tweet about your upcoming deals on laundry detergent and your most recent
thought-leadership think-pieces on industrial-grade cement and ethically sourced goose down.

Go digital without going crazy.

When it comes to the Making My Life Less Tedious Department, it's encouraging that
companies are cottoning on to new technologies. 451 Research surveys have found that during
the past year, companies self-identifying as "early adopters" has doubled, up from a scant 9.5

http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/four-fundamentals-of-workplace-automation
http://www.theregister.co.uk/2016/04/12/land_the_legacy_big_fish/
http://www.theregister.co.uk/2016/05/20/continuous_lifecycle_review/
https://451research.com/report-short?entityId=90066&referrer=marketing
https://www.finextra.com/pressarticle/66251/first-national-bank-app-comes-with-debit-card-controls
https://twitter.com/dberkholz/status/819289676779503619

per cent to 17 per cent. This is still paltry when you look at all the opportunities to automate
those boring, low-value businesses processes, but at least it's progress in the right direction.

Still, that same outfit says that a whopping — but not unexpected — 75 per cent of organisations
are on their back-foot when it comes to planning out their digital transformation: they're just now
sorting out which slides to have in the back-up section of their digital transformation decks (I'd
suggest any involving people wearing a VR headset, but | don't want to tell you how to live your
life).

And if you're facepalming about how obvious and inane it all is, yes, folks: that's the point.

With all the breathless pixels spilled on Al, IoT, machine learning, my favorite darling "cloud",
and other haunting tales of "digital disruption", it's all too easy to whack through the digital
miasma and end up with a suite of future-shock ready "solutions" that have little to no bearing
on your daily operations.

When your well-heeled strategy navigators are done vellicating through their master 2017
strategy deck, try your best to pull their eye-holes closer towards the basics that, while boring,
will have a more profitable effect on your businesses and your customers' lives.

Originally published in The Register, January, 2017.

https://451research.com/report-short?entityId=90066&referrer=marketing
https://451research.com/report-short?entityId=90066&referrer=marketing
https://twitter.com/cote/status/813161318912053248
https://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/

You may not be a software company, but that isn't an excuse to
lame-out at computering

| don't begrudge organisations who want us to start calling them "software companies”.
People are free to do whatever they like with such trivial labels, | guess. But the tick of
such labelling has always been an annoyance to me.

No, you're a company that uses software effectively

Most companies saying "actually we're a software company" are anything but. They
very rarely sell software as their core business. Of course, I'd never shy from bombastic
overstatement (or too much redundancy). These companies are trying to make a
valuable point: they're now using custom-written software to do more than digitise
paper-driven, manual processes and customise their ERP systems into cement. They're
now able to program their business.

Everyone's favourite pizza provides a hot, steaming example. While Domino's boasts
that you can order pizzas from your wrist and Papa John's makes it lickity-split easy to
customise your pizza on an app (for some reason, you can't add anchovies except by
phone — file a ticket!), these two companies are still fundamentally, well, pizza
companies.

Starbucks has long been an example of a company comfortably creeping up the "digital
transformation" curve. Their software-driven orders have been so successful that mobile
orders have been known to clog their meat-space. Still, when | go there (hey, get off my
back, tapered sweatpant milinums! | just want some coffee!), I'm happy to find coffee in
my cup instead of a numbered stack of those mini CDs begging me to click on
"startup.exe".

Do you even computer?

In an era where Amazon and its three friends are trundling through everything, it's easy
to get wrapped up in the need to transform to a software company. That said, would you
even call Amazon a software company? Clearly, in their cloud business they are, but the
retail business is more about ruthlessly creating and using software to, well, sell stuff.
You can throw a "multi-sided platform" flashbang into the mix to befuddle this point, but
at the end of the day, Amazon's nickname, "the everything store", tells you exactly what
the company is.

10

https://www.theregister.co.uk/2017/03/03/pizza_roaches_and_java/
https://www.wired.com/2016/04/dominos-anyware-pizza/
https://www.geekwire.com/2017/starbucks-tech-company-coffee-giant-investing-heavily-digital-innovation/
http://fortune.com/2017/01/27/starbucks-mobile-orders-slowdown/
http://fortune.com/2017/01/27/starbucks-mobile-orders-slowdown/
https://www.ted.com/talks/scott_galloway_how_amazon_apple_facebook_and_google_manipulate_our_emotions

Finance has for a long time used software of all sorts — custom and off-the-shelf —
effectively and it's little wonder that they're one of the few industries to have quickly
staved off Fear of Silicon Valley Eating Your Lunch. While incumbent banks have been
slow to adopt mobile payments, they're now spinning heads at how quickly they're
catching up. Banks have a good track record of acquiring pesky finance startups and
they've been stuffing themselves to the gills with nerds. Recently, Goldman said that a
quarter of their employees are engineers, supporting over 1.5 billion lines of code. JP
Morgan Chase has somewhere in the region of 19,000 developers.

Banks have always understood IT well enough to gorge themselves on it; many an IT
vendor salesperson has filled their wrist with heavy watches and pegged out their
retirement accounts by going up and down Wall Street. Sure, I'll concede that you can
get all intellectually crafty and point out that money is, largely, just numbers in a
spreadsheet somewhere, but it'd be odd to call these banks "software companies".

Creating software is the art of failure...

The problem with calling yourself a software company — beyond the obvious fact that
you're not selling software — is that you must now think and act like a software company.
Software companies, especially young ones that are no longer just extracting
maintenance fees, are built around one of the core problems of innovation: failure.

Failure in the software startup world is enshrined in the idea of failing fast. Software
companies have an unnatural comfort with failure. They continually throw software at
the wall to see what sticks, observing how people use the software and tweaking it to
get the features just right. There are all sorts of fancy phrases like "product/market fit",
but at the end of the day it's plain old common sense: you rarely get it right the first, or
even 31st time.

Funding software is driven by the idea of failing — the more the better, even, so long as
it's quick. Venture capital's model spreads risk over numerous startups, hoping for that
one giant payoff. The creation of new software is an extremely risky business. While
figures like 90 per cent failure rates seem at first astounding, after a few decades of
anecdotes of startup failure across the industry (and at least two myself), that 10 per
cent success rate starts to look amazing.

Companies outside of the technology world are ill prepared for this kind of
gut-wrenching ride. Expectations are more incremental in business improvement rather
than transformative: if we put more cash into our existing business, perhaps making it
cheaper to run in addition to simply selling more of our product, we can increase our
return on spend. You throw together a business a case with the audacious notion that

11

https://cote.io/2017/05/07/banks-are-handling-disruption-well/
https://www.economist.com/news/special-report/21721505-relationship-between-banks-and-technology-companies-becoming-increasingly?frsc=dg%7Cc
https://www.americanbanker.com/news/unexpected-champion-of-public-clouds-jpmorgan-cio-dana-deasy
http://mailchi.mp/gothelf/x6mlwvrmob-1184849
http://www.theregister.co.uk/2016/09/13/return_on_investment_for_devops/

you know how much your new venture will make in the future and how much it will cost
to get there. Thus, you can figure out the return on investment, or "ROI", that snipe that
finance people make unsuspecting nerds hunt out in the Forest of Finance. A seasoned
software innovator would sniggle at the notion that you'd trust such figures: hurtling into
the unknown can't be put into a spreadsheet.

That all sounds daunting, but it's good to whiplash back to the fact that doing software
actually is core to succeeding and surviving in business. While "that's fine for Amazon"
may seem to apply to its profitless chewing up of every industry except mining and
cement manufacturing (so far), their business and others' prove both the value of
creating a programmable business, and that it's actually possible to do so. You just have
to know what you're getting into and structure your executive minds correctly.

... SO get started failing

Judging by surveys that show a still slow adoption of "digital transformation", there's
likely a good five or even 10-year window open in various industries to become the
"actually we're a software company" of your industry. Estimates vary, but surveys are
showing that something like a third of organisations are actually doing anything about
improving their software. The field is wide open for companies to make themselves
more programmable by fixing how they do software. Now is the chance to grasp at
some new innovation levers and actually do something different with your business.
Either that, or look into Big Cement.

Originally published in The Reqister, January 19th, 2018.

12

https://marketing.prophet.com/acton/media/33865/altimeter--the-2017-state-of-digital-transformation
http://www.theregister.co.uk/2018/01/19/digital_transformation_better_software_practices/

13

DevOps, Agile, & All the New Meatware

I've spent much of my career observing and commenting on how organizations (businesses and
governments) write, use, and care for custom written software. This is distinct from “packaged
software,” sometimes called “Commercial Off the Shelf Software” (COTS): that software you buy
and install. When you shop online at Amazon, get paint mixed at Home Depot, or sign-up for
insurance in an Allstate office, you’re interacting with software those organizations wrote and
run themselves.

In the “cloud” era, where the toil of running your own software in your data centers you can
easily shift your applications over to SaaS versions. While the costs may not always be cheaper,
the overall cost of ownership does lesson - you no longer need all those operations people to
care and feed all the hardware and ongoing updating of on-premises software. In theory, you
break the problem of slow upgrades as well: SaaS companies tend to release new software
multiple times and year and don’t let customers stay on old versions.

As those applications move to SaaS models, the question becomes “what value is IT to our
organization?” At one point, I'd bandy about the formula “IT - SaaS = what?” The answer, of
course, was writing your own software, as | wrote in a report 451 Research back in 2014:

We believe that application development is, indeed, a vital and valuable part of the
industry: our theory is that the majority of cloud spending originates with software
developers as the prime movers. Applying the formula 'IT - SaaS = what?' it increasingly
seems the case that the 'what?' is custom-written software for ISVs, SaaS and
increasingly companies like Nike and Starbucks that are relying on in-house software
development for new products such as the Fuelband and mobile payments. Starbucks,
for example, is estimated to have pulled in $1bn in sales from its mobile app.

So, you spend the bulk of your IT resources (money, time, and attention) on hordes of
developers, designers, and product managers in place to create “programmable businesses”:
finally delivering on the dream that how an organizational functions could be coded and
improved each week, if not day.

This mode of operating, of course, requires all sorts of changes in technology and people:
hardware, software, and meatware. For whatever reason, most of this kind of thinking goes
under the heading of “DevOps,” a curious mixture of agile software development, high scale
operations, and organizational process. The last is usually called “culture,” but | tend to think of
it as just “stopping doing dumb shit.”

The pieces here comment and counsel on the “what?” in that hokey equation of mine.

14

https://451research.com/report-short?entityId=80396

From dancing bears to blameless post-mortems - My History of
DevOps

“The talks get a little repetitive, don’t they?” she said as we were walking out of the elevator and
through the lobby, escaping the latest two-day DevOpsDays nerd fest. Unable to resist the urge
to mansplain, | meekly volunteered that most of the attendees are first timers, so, you know,
maybe it's new to them. Upstairs someone had said they’d like to see more technical talks, and
less, as they’re called, “culture” talks. Of course, | hadn’t attended any of the talks because, you
know, a thought lord like myself goes to many of these and has seen “all the talks.” Even I'm
sick of all this culture stuff!

Everything was going well until the people showed up

This emphasis on “culture” is well known to induce agenda and presentation nausea. For
example, the most fashionable architectural style of the moment starts with humans: one wants
to do microservices to take advantage of how humans can’t help but build systems that mimic
how they organize themselves and, thus, communicate with one another. It’s all people, the
latest microservices deck-flipper will say.

And then there’s handling failure: instead of (only) hardening systems so that they never fail,
accept that they’ll always fail, and rapidly learn from failure, even relishing and rewarding it.
Failure is learning, comrade! This push to improve by failing brings about the “blameless
post-mortem,” perhaps the most baffling concept for the sassy old-timers in the glasshouse.

In the tech industry, we’re never really sure which is more important: the tool, or how people use
the tool. There have always been at least two humans involved, the builders and the users. The
builders are the ones who create the software: developers, designers, operators, QA staff,
product managers. And, of course, there’s the people who actually use the software, the users,
sometimes called “the customer,” especially when it comes to consumer tech.

The Hyborian age of computing

Before the recorded time of the web, The Mythical Man Month emphasized the best way to
organize developers, namely in something analogous surgical teams - a sort of great man
theory. Getting the right builders in place was key to great software. Of course, much revived
now, there was Conway’s observation, drawn up into a “law” that (put slightly wrong) said
software architecture will model the structure of the organization that created it. Getting software
to work well and do a job was something of a dancing bear for a long time: the quality of the
bears dancing was not the axis of judgement, the fact that the bear could dance at all was the
point!

15

https://en.wikipedia.org/wiki/Conway%27s_law
https://en.wikipedia.org/wiki/Conway%27s_law
https://codeascraft.com/2012/05/22/blameless-postmortems/
https://codeascraft.com/2012/05/22/blameless-postmortems/

In response to this, you saw a hoard of “usability” experts descend on the land. Here there were
things like one way mirrors, user interaction testing festooned with cameras recording the user’s
every move. It was expensive, and slow. And in most cases, the results seemed trivial: this
button’s text should be bigger; no one understands this error message; the configuration wizard
should probably have less than 30 panels.

Nonetheless, the cat was out of the bag. The technology was now good enough that we could
pay attention to how well actual users - humans - can use this software to get things done.

Things get extreme

Around this time, in the ‘90s, early notions of agile software development formed. Any history of
agile is fraught with a parade of agile’splainers with talk of Boehmian spirals, roses, and wikis.
That'’s fine, and delightful over some snifters, but let's simplify it. In 1999, of Kent Beck’s
eXtreme Programming Explained described a method that integrated the builders and users
together in a novel, just crazy enough to work way. It crystallized while working on Chrysler’'s HR
system, so it certainly had “enterprise” chops: this wasn’t some pizza-based method for creating
new Space Quest episodes. It was for real jobby-jobs!

One of XP’s core insights is that we have no idea what our software should actually do, and
especially how it should be implemented, until we start trying. Rather than imaging the
requirements a priori, it's only through an ongoing conversation with the user that we’ll discover
the right features. To do this, you would slice down the release window to something like a week
incrementally co-innovating with the users, creating small pieces of functionality and asking
them “whatdya make of that?” You’d conquer the unknown by shipping, and changing your
approach as you learned more.

To do this, you had to do less each cycle, automate quality control with tests, and optimize the
labor of the developers with pair programming. Even more bonkers, you’d pluck someone from
“the business” - or even actual users! - to embed in the team, to be the voice of reason and fight
for the users, as they say.

These ideas ruffled the feathers of contemporary practitioners to no end, they’d scoff and call
agile people “cowboys” and other such derogatory grunts. “Agile” seemed bananas. Instead,
people trusted their ability to predict what the software should do, confident that they could
maximize requirements fidelity and quality far beyond than those absurd, agile short release
loops.

Converting cowboys to suburbanites

Nonetheless, as failures continued to rack-up with this “big-up-front” approach, people kept
returning to those tales of success from deep in the wild-west of agile. With a few revs and

splattering on some enterprise seasoning, the precepts of agile slowly became what everyone

16

https://www.linkedin.com/pulse/project-management-failures-standish-chaos-report-2015-dunbar
https://martinfowler.com/distributedComputing/thud.html
http://www.drdobbs.com/architecture-and-design/the-non-existent-software-crisis-debunki/240165910

was doing. At least, what people claimed they were doing, ongoing surveys on agile practices
actually in use continue to show slow adoption over 20 years later. Everyone’s agile in spirit!

Early on, in 2001, the agile manifesto codified a mantle of principals, all wonderful sounding and
terribly humane. For my money, the crowning achievement was the idea to value “responding to
change over following a plan.” In other words, as that hard-working, humble golden retriever put
it: | have no idea what I’'m doing.

Among many competing agile thought-technologies, Scrum won out. There are many possible
reasons why scrum was so widely and commercially successful: perhaps because of its highly
structured nature, perhaps its training and certification system, and maybe because it actually
worked! Many organizations still eagerly tell me how many certified scrum masters they have as
a metric of how improved they are.

Customers are people too

There’s an often forgotten milepost at this point, a strange little book called The Cluetrain
Manifesto from 1999. The cadre of authors posited that the web was rapidly breaking down any
geographic barriers and asymmetric strategies that enterprises used to retain and cajole
customers. Things like reviews in Amazon and using eBay to find anything you wanted across
the world broke down long cherished strategic controls companies relied on to maintain market
share. It was a sort of pulling back of the wool and empowering customers to be smarter than
the octopus global-nationals, as we called them back them.

Cluetrain concepts were much toyed with throughout the 2000s, with companies investing much
blood and treasure in capturing market-share in, ahead of monetizing.

Paying attention to what people were doing with your software and improving the software to
keep hold of their eyeballs longer was a popular business, and it still is. There’s an ever growing
pool of revenue in never-ending conversation markets. Last quarter alone, Facebook earned
$9.3bn in revenue with in $3.9bn profit.

In the land of eyeballs, the profitless win

Getting to those kind of eye-popping profits required new thinking when it came to both builders
and users. As companies like Google, Netflix, Facebook, Amazon, and humerous others who
lost to the buzz-saw of product/market fit built out their businesses, often their only success
metrics were user growth and retention. They had to create exceptional software.

To do this, these companies competed on features, on the exceptionalism of their software.
They had to start releasing software every week, if not every day to compete. As one of the
Agile Manifesto principles put it: “Deliver working software frequently.”

Of course, having the software actually work most of the time was important, as Twitter early on
showed, somehow surviving, perhaps as the world’s first example of the “move fast and break

17

https://www.slideshare.net/cote/july-10th-2017-not-actually-a-devops-talk-or-beyond-survival-is-not-mandatory/12
https://www.slideshare.net/cote/july-10th-2017-not-actually-a-devops-talk-or-beyond-survival-is-not-mandatory/12
http://knowyourmeme.com/memes/i-have-no-idea-what-im-doing
http://www.cluetrain.com/
http://www.cluetrain.com/
https://www.lrb.co.uk/v39/n16/john-lanchester/you-are-the-product
https://www.lrb.co.uk/v39/n16/john-lanchester/you-are-the-product
https://www.theregister.co.uk/2017/07/27/facebook_video_innovation/
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability/#4J_SascWcPq3

things” boast. Faced with the need to release software on demand, often daily, the enterprise
approach of doing monolithic, gut-wrenching releases wasn’t cutting it. The developers had to
start thinking about and how their software was managing in production.

Programmable infrastructure

A common story from this era is the fateful day one of the programmers is selected to “run the
servers.” Shifting over to “ops,” the programmer either goes mad, or starts doing what any

competent programmer does when faced with a new problem: procrastinating and drinking. A
few weeks later, they look at all that infrastructure as something to program, and start coding.

For me, a 2019 talk by Andrew Clay Shafer codified this thinking right around the time it was
codified into DevOps. To a room full of agile lords and ladies, he proposed something wild and
crazy: what if you were responsible for how your code ran in production? Perhaps you should
start to understand, embrace, and improve that phase of your software’s life.

This implied focusing on the people in the software development process and how they work
together and behave. The people are just as much a part of the application as the software and
the hardware.

The idea of a “blameless post-mortem” is a good illustration: in innovation mode, things are
going to break and go wrong as you charge into the unknown. Systems will go down
catastrophically, but you can’t simply give up, and punishing people just takes you back to the
overly cautious state where software is released infrequently. So, as described by the Google
SRE book, you instead celebrate failure, even telling the entire company the harrowing tales of
what went wrong and, importantly, how you fixed it. Of course, once fixed, the key is
understanding the problem well enough to put new policies, practices, and technology in place
to prevent the problem from happening again.

Software Defined Meatware

As this type of navel gazing continued, organizations once again discovered that most of the
problems were caused by errors in the human systems they’d built, the meatware. Technology
was an issue, to be sure, and there’s a parallel story about how the evolution of what we now
call “cloud” provided an ongoing arsenal for all this, with exciting distractions along the way with
names like J2EE, rails, and WS-Deathstar.

People, thought, were still the consistent problem. They just seemed to keep screwing up all this
agile stuff, if they were actually doing it at all. Most still clung to the false comfort of big upfront
planning and its illusory promise of hitting The Date.

You'd see the effects of this backsliding in instances like the US’s rollout of healthcare (saved
by, ironically enough, by_a bunch of “cowboys” from out west. The private sector was, and is, no
slouch at resisting agile either: they're just good at hiding it. The difference between them and

18

http://mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability/#4J_SascWcPq3
https://www.youtube.com/watch?v=Y_u84PNrX9g
https://landing.google.com/sre/book/chapters/postmortem-culture.html
https://landing.google.com/sre/book/chapters/postmortem-culture.html
https://www.theregister.co.uk/2014/08/21/obamas_new_national_it_admin_says_no_suits_please_were_techies/

the government is that enterprises can change more quickly when they’re threatened. The
“culture” at enterprises is more hopeful, perhaps, at least once backed up into a corner.

Just as the goofy social companies of the 2000s had to compete on innovation, large
enterprises now feel the pinch from the numerous ankle-biting disruptors that are having a good
go at eating the incumbent's lunch.

You see this reflected in executive comments in numerous quarterly calls. Some of them toss-up
effortless word-salads of “digital” and “omni-channel,” but others have clearly considered their
strategies and are applying a software-first approach to business. While they may not know
exactly what to do, most executives know they need to start doing something. As JPMC’s CEO
said a few years back: “Silicon Valley is coming.”

So that’'s where we are now: from Chrysler’s HR system, to keeping Twitter up, streaming
videos and sharing pictures of cats, to the very real need of old school multinational, global
enterprises to compete based on software. Surveys show how shaken executives think the
situation is, with many doubts that IT’s not up to the task of transforming to the point where they
can reliably create, refine, and run software. They know from experience that outsourcing
doesn’t work, so they’re looking at their people, organizations, and technology. There’s early
indicators that it's working - tales of using this new software defined business approach to
insurance companies cutting the claims process from a week to less than a day and doubling
the industry sales average - but there’s a massive amount of work left. Hopefully, we won't
back-slide this time.

Originally published in The Register, October, 2017.

19

https://www.cnbc.com/2017/04/04/jamie-dimon-letter-jpmorgan-spent-9-5b-on-tech-last-year.html
https://www.cnbc.com/2017/04/04/jamie-dimon-letter-jpmorgan-spent-9-5b-on-tech-last-year.html
https://adtmag.com/articles/2017/07/27/kony-survey.aspx?m=1
https://www.horsesforsources.com/c-suite-therapy_013016
https://www.horsesforsources.com/c-suite-therapy_013016
http://www.theregister.co.uk/2017/10/13/devops_culture/

DevOps is actually a thing — and people are willing to pay for it

But you've got to untangle deployment wizards from the duct-tape cats

Is DevOps actually a thing, or just the latest funny way to case a word? At least there are
vowels in it. We finally know the proper casing, but is it actually something normals are doing?

Right after the cloud horses left the barn some years ago, this mysterious notion of "DevOps"
surfaced. DevOps started as a rallying cry around doing something with the combination of agile
software development, lean manufacturing theory, and using new automation technologies like
Puppet and Chef on top of cloud platforms.

The goal was to get "10+ releases a day". The famous Velocity 2009 presentation claimed this
was not only possible, but common practice in their shop.

The idea of releasing code to production more frequently is certainly appealing, and who
wouldn't want to do that in the age of constantly updating mobile apps? Since then, those
one-per-cent elite West Coast kids have dug into DevOps like worms into a pile of fresh trash.
Clearly, in the consumer space which sucks up most of the IT world oxygen, DevOps looks
valuable, but what about for the rest of us in the normal, enterprise space?

Using job postings tracked by Indeed.com as a crude yardstick, you can see a dramatic uptick
in hiring interest:

Job Trends from Indeed.com
- DenvDps

0.04 -

‘h"'"""“"‘-\—.......'._.l_

0.02 -

Fercentage of Matching Job Postings

Jan'06 Jan'07 Jan'0B Jan'09 Jan'l0 Janll Jan'l2 Jan'13

20

https://www.youtube.com/watch?v=LdOe18KhtT4
http://www.indeed.com/jobanalytics/jobtrends?q=DevOps&l=

What is DevOps?

Beyond this kind of crude measure, us prognosticators at 451 Research wanted to dig into the
mainstream DevOps market deeper. To that end, we just finished polishing up a survey of 200
DevOps and DevOps-minded individuals. This has given us a better sense of how immature the
DevOps market is. Don't get me wrong, there's certainly interest, and the field has clear value,
but a few of the chestnut theories of what DevOps is and how it's practiced are far from fully
baked and deployed. Indeed, there's a lot of room for improvement.

Whether perfectly accurate or not, our premise was that the primary driver of doing DevOps
would be to reduce cycle time: to get code into production sooner. On that point, the study
participants seemed to agree, and the industry is doing much better than we'd have expected.

48 per cent of study participants deployed software at least monthly, with 22 per cent deploying
weekly, and eight per cent deploying daily. With near half operating on a tight 30 day cycle, it's
not surprising that half of the group was satisfied with their release frequency, meaning that half
would like to get software out the door more frequently.

Why bother with this hassle, we asked? Mostly because of business demands — not just shiny
object syndrome or some cruel coder callisthenics.

21

What is the most significant driver of demand for reducing

release cycles?
[451Research com - March, 2014)

23.36%
12.43%

17.76%

14.02%
1d.15%
10.28% I

Competithoe pressures Business productivity Business revenue mproved functionality Delker new features Reduce development
demands demands to users cost

Our analysis of these results is that business demands rank first. Competitive pressure,
business productivity demands and revenue demands total 51 per cent of responses. Product
management demands — improving functionality and delivering new features to users — are a
good secondary driver, indicating close attention to end-user needs. These are, of course, great
goals for software to have: make money and delight users. Sign me up!

But you've got to untangle deployment wizards from the duct-tape cats

When you talk with DevOps cognoscenti, they like to pull out this giant hammer called "culture"
that they promptly use to bash out your brains if you try to talk about actual tools. "Tools are not
the issue, meet my hammer. | call it 'culture.™ They go on and on about culture, and process. It's
delightful and necessary, | suppose, but it belies the sense that there's a "DevOps toolchain" out
there: a common collection of tools and practices that teams use to get the job done. To that
end, we strapped on our best Bascinet and asked about the tools used. Here's where things
were less than utopic.

Spinning the vision dial way up, in the ideal DevOps toolchain it feels like you'd see at least two
things.

22

First, consistent use of modern model-driven automation tools like Puppet, Chef, Ansible, and
Salt throughout development, QA, and production to model, deploy, and manage the
application. You do this to reduce the amount of changes and manual work needed between
each stage as part of the process of reducing the "wall of confusion" between development and
operations. But when we asked our study participants what they used, home-grown processes
and golden image generation handily won:

When designing and writing your software, how do you model and specify how
the application should be deployed?

(45 Reseanch.com - Mareh, 2014]

hulld scripis

It's rare to come across a "build and installer team" that doesn't protect their growling,
home-grown ball of duct-taped cats like it was their own child, we know. But: really, that's
probably not something you should be doing on your own. Snowflakes, unique and special as
they are, tend to melt when the heat is turned up.

Second on the vision-questing, you'd expect DevOps teams to be using some sort of continuous
integration tool, a Jenkins-type system, if not Jenkins itself. Here, things are bit more cheery, but
that ball of cats pokes up as the winner again:

23

What build automation, or continuous integration (Cl) tools are you using?
(451Research.com - March, 2014)

That 28 per cent of respondents who aren't doing any sort of Cl is the most shocking. Surely
things would improve for that lot with a bit of CI.

One can be cynical at this point (hello, dear readers!) on all of this and write DevOps off as
sheer fantasy. On the other hand, after poring over our study and injecting it with a healthy dose
of our anecdotal “evidence,” it's more accurate to say that DevOps, as a mainstream concern, is
very early. There's clearly a desire there, but getting everyone on the same page, toolchain
wise, is far off.

As in software development, the good news is that people are willing to pay for these tools. In
the case of model-driven automation and ClI tools, well over half of respondents said they were
willing to consider putting their hand in their pockets, if they didn't already.

Free is nice, of course, but DevOps as a movement won't fund itself: untangling those build and
deployment wizards from all those duct-taped cats isn't going to be easy.

Originally published in The Register, June, 2014.

24

http://www.theregister.co.uk/2014/03/07/developers_tools_feature/
https://www.theregister.co.uk/2014/06/03/michael_cote_dev_ops/

You, yes you: DevOps' people problem

Chucking a copy of The Phoenix Project at the team ain't the answer

You've no doubt heard of DevOps. This is the process of getting developers and sysadmins
working together closely on the same team to support a company’s custom-written software.

I know, | know, Dear Reader: you’ve been doing this ever since operating that AS/400; no one
really needs weekly releases; and, of course, the favorite: “this is just the current way for
consultants to make money.”

All signs point towards DevOps being not only all those things, but actually A Thing on its own.
Ever since starting my career as a programmer, and through being an industry analyst,
strategist, and, now, marketer, I've been motivated by the quest of learning how to improve the
software development and delivery process. DevOps seems like the current, best method.

What has the IT department ever done for me?

The primary motivations for doing DevOps are to ensure application uptime (usually for mobile
and web apps) while at the same time ensuring that you can release new code to production,
basically, at will, usually weekly or daily. Presumably, a company would like these benefits to be
more competitive with its custom-written software, both with more features, but also by taking
advantage of short, user-interaction feedback loops to constantly tweak their apps to perfection.

Things are not too joyous when it comes to IT actually delivering on this dream of helping
companies innovate. When | want to gin up an excuse to drink heavily, one of my favorite charts
to look at is this one from the Cutter consortium:

25

https://www.cutter.com/stat-week-what-your-it-organizations-role-business-innovation

Mot an important focus for IT

Viewed as an impediment to business innovation

Reactive to husiness innovation initiatives

Key enabler for business innowvation

Leads in creating new opportunities
for business innovation

T%
12%

8%

3N% =013
3% w2014
3B% 2015

S56%

3%

6%
10%:

16%

When it comes to innovation, over 3 short years IT has plummeted in usefulness. To put it

bluntly: IT sucks.

As I've studied DevOps over the years I've found that DevOps is the “how” of solving this
problem: a process and mind-set. Continuous delivery is the “what”: the “tool” you put in place.
This is why | look to continuous delivery as a tracer for DevOps adoption.

You're doing CD? Yeah, sure...

Continuous Delivery (CD) is yet another one of those things that most people say they’ve done
since the days of mainframes ... but reality is usually different, as seen by one study:

26

http://www.theregister.co.uk/2014/06/03/michael_cote_dev_ops/

Use of CD is growing
(DZone studies)

50%
Believe doing CD

Doing textbook CD

B2015 ®2014

From DZone’s 2014 and 2015 studies

A fair number of people think they’re doing continuous delivery, but when compared to the
textbook definition, they’re more like dabblers, picking and choosing practices that are easiest
and leaving out the rest.

While these numbers are low, the growth year-over-year shows rapid change and progress.
There is a strong desire to improve, if only organizations can figure out how.

Rub Some DevOps On It

Beyond the tracer of continuous delivery, there’s some fresh industry survey data we can look at
to see if DevOps is actually a thing. Gartner fielded a survey last Autumn; while it's all too easy
to dismiss them as conservative and backward looking, isn’t that exactly the kind of thing you
want when asking if DevOps has gone mainstream?

27

While it doesn’t have the muscular impact of a year over year study, Gartner’s September 2015
survey of 383 respondents showed good momentum for the adoption of DevOps: 29 per cent
were actually doing something with DevOps, with 16 per cent taking a DevOps approach in
production and 13 per cent piloting it. While small, those are impressive numbers for something
as new as DevOps.

Trying is the first step to failing

While longer-running bodies of work like the always excellent, annual Puppet Labs DevOps
survey are showing that the ideas work, things are not so rosy when it comes to putting DevOps
in place. More often than not when I've worked with groups that want their software processes
with DevOps, they underestimate the amount of organizational change needed. They view
software more like building a Lego kit. Creating good software is more like inventing Lego all
over again, each time. Fostering that kind of continuous learning requires putting the process in
place that creates metaphoric “innovation factories.” DevOps thinking describes much of how
those “factories” run, which is often much different than the status quo.

What I've learned is that it's a meatware problem: people’s default to resist change is what holds
back transforming to a DevOps mind-set. This is why the DevOps cult leaders go on and on
about “culture.”

The problem starts with managers who often assume they can just throw a copy of The Phoenix
Project at their team and expect them to “do the DevOps.” Instead, managers need to change
incentives and behavior to lubricate change. But it's not just managers — staff needs to get with
the program too. You know, you might actually have to go talk to programmers! Or worse: sys
admins!

Originally published in The Register, January. 2016.

28

http://www.gartner.com/webinar/3165618/
http://www.gartner.com/webinar/3165618/
https://puppetlabs.com/2015-devops-report
https://puppetlabs.com/2015-devops-report
http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
https://www.theregister.co.uk/2016/01/15/devops_people_problem/

The Slow Ascension of Agile

After roughly 20 years, agile software development has wheedled its way into most every
developer's mind as The Way Good Software Is Done. Like flossing, while we can all agree
agile is a good idea, we're not quite up to snuff on keeping all our teeth in our heads, so to
speak.

A recent Gartner survey had 37 per cent of respondents saying they were doing agile, while 45
per cent preferred to float along with the traditional "waterfall" approach (the remaining said they

were doing "lean," "iterative," or the always delightful "other"). While this isn't world domination,
a 2015 report put waterfall at 56 per cent.

Survey data like this can be dicey, and it's best to treat them more like a wet finger in the wind
than as rigorous science. That said, the wind seems to be blowing in agile's direction.

"l think from a tactics perspective, Agile is increasingly a 'solved problem'," said Forrester's
Jeffrey Hammond when asked about agile adoption in the industry.

"We know many practices that work, and that have been well proven in the field," he added.

Proven as those techniques may be, once again, loose meatware is catching in the gears of
progress. As Jeffrey adds, "from an adoption standpoint, Agile is a 'work in progress' mainly
because Agile is as much about cultural transformation as it is tactics." Cultural transformation:
it'll get you every time.

Indeed, looking back at that 2016 survey, you see that while easier practices like unit testing are
widely practiced, onerous practices like continuous delivery and pair programming are mostly
ignored by the buffet agilists. Agile is taking its time along the innovation curve, but one gets the
feeling that the down-slope folks are methodically being routed, if only through the
slow-but-steady siege tactic of retirement.

Beyond The War of the Story Cards

Early on in agile, there were some vicious battles around defining The One True Agile,
especially as Scrum rose in popularity. For the most part, these battles were case studies of the
narcissism of small differences, though mentioning "agile in the large" practices like SAFe can
still be relied on to pop a true believing agilista's neck veins.

Several schools have descended from agile, primarily in the form of "lean" and "DevOps." In
practice, these schools should be thought of as types of agile — at most, extensions — rather
than so philosophically different as to be called distinct. They're nothing to start a holy war over.

"Lean," as its name would imply, comes from Lean Manufacturing, the continuous learning and
"waste" removal process invented and perfected by Toyota. When you put lean Software

29

http://www.gartner.com/webinar/3169117
http://www.theregister.co.uk/2016/06/07/problems_for_agile/
http://www.theregister.co.uk/2016/06/07/problems_for_agile/
http://www.slideshare.net/sogrady/meet-redmonk-analytics/13
http://www.theregister.co.uk/2016/01/15/devops_people_problem/
http://www.theregister.co.uk/2016/01/15/devops_people_problem/
http://www.slideshare.net/cote/agile-methodology-indepth-review-government-edition/29
http://www.ou.edu/deptcomm/dodjcc/groups/99A2/theories.htm
http://www.scaledagileframework.com/

Development practices in front of Lean Manufacturing people, they react similarly to how |
imagine the French would react when presented a baguette a la Pigaly Wiggly. The same idea
is there, but it's been transmogrified by a new set of hands. In practice, lean software
development focuses on putting a small batch approach in place, releasing software as
frequently as possible to limit work in progress, and using an end-to-end mindset to discover
and eliminate waste.

The idea of "waste" is perhaps the most intriguing and novel part of lean software development:
unless an activity adds value for the customer, it's eliminated (mas o menos). Once you start
asking: "Will this help the customer?" many of the tasks in the so-called SLDC melt away like
chicken fat under high heat. A notable variant of lean is the Lean Startup method, which seeks
to discover the market/product fit for any given piece of software. This is the school of "pivots"
where you continually evolve your software, observing how it's used until you figure out
something that people will pay for, or at least use.

Enter the two pizza team

El Reg commenters' favorite, "DevOps," is the last descendant of agile, building from lean along
with a dollop of its own special sauce. A canonical version of DevOps isn't a fully "solved
problem" yet, but we're getting close. Originally, what became known as DevOps was solving for
two things: enabling frequent deployment of software (many times a day) and maximum uptime.
For most people, the idea of deploying software daily is the gut-proven opposite of "maximum
uptime." However, the disciplined, small batch mentality practices of DevOps have been
showing that the two can be done in tandem.

One of the key components DevOps adds to agile is the idea of a small, cross-functional team
rather than "silo'ed" teams. Agile-minded developers |and-grabbed QA early on, but mostly
stopped there. In contrast, DevOps looks to gobble all the roles, from developers, to operations,
to designers, product managers, and whatever other role is needed to make sure you can ship
useful features frequently and keep the stuff up and running.

Though there are numerous roles, the teams are small. As Ben Terrett, former head of the UK
Government Digital Service, put it: "[T]he best way to do this stuff is to get a multi-disciplinary
team of people in house — designer, user researcher, developer, content person — you're talking
a team of about twelve people." In Amazon terms: no team should be so large that it needs
more than two pizzas for dinner.

Admit it: you have no idea what's going on

Recently, I've been asked several times to address when waterfall is a good choice. The answer
to that question is good insight into agile's trick. Waterfall is fantastic if you know exactly what
you want to build, up front. What a wonderful project that'd be to work on!

30

http://www.shopthepig.com/
http://www.theregister.co.uk/2016/02/04/think_small_not_big/
http://www.theregister.co.uk/2016/06/15/one_it_so_many_modes/
http://redmonk.com/cote/2011/02/16/the-developer-landgrab-another-way-to-look-at-devops/
https://govinsider.asia/smart-gov/why-britain-banned-mobile-apps/

As most of the people who develop software find, however, very few people know exactly what
needs to be built ahead of time, least of all the actual users and customers.

Agile, instead, builds its thinking and processes around the assumption that we can't know what
the software should be until we start deploying it to actual users. Doing so isn't easy, and while
adoption has been slower than you'd expect, as was said long ago: if you are made to wait, it is
to serve you better, and to please you.

Originally published in The Reqister, July, 2016, with a more salacious title.

31

https://www.theregister.co.uk/2016/07/27/agile_slow_ascent/

Software devs' new mantra: Zen dogs dream of small-sized
bones

One of the primary principles of DevOps is moving from large software releases to a series of
small batches.

What do we mean by “large”? Six-to-12-month (or longer) projects that follow the infamous
“‘water-scrum-fall” model. While development teams may create builds weekly, the code isn’t
deployed to production and used by actual users each iteration.

“Large” has strong appeal. It optimises the planning, development, and deployment phases of
software. Planning teams want time to gather all the requirements and detail them out in
exquisite documents, making The Boss feel like they’ll get exactly what they want.

Developers and QA nowadays tend to like working in an iterative manner, chunking their work
into one- to two-week increments. However, operations feels that the highest chance of failure
comes when you deploy, so why not minimise deployments? Each group creates the process
that makes them feel like they’re doing their job well.

Despite the warm and fuzzy feeling you get from a well planned, staged out process, taking a
small batch approach is showing more success. As one IT manager at a large organisation puts
it: “We did an analysis of hundreds of projects over a multi-year period. The ones that delivered
in less than a quarter succeeded about 80 per cent of the time, while the ones that lasted more
than a year failed at about the same rate.”

If that's “large”, what do | mean by “small”? Here, it's reducing that entire cycle down from six to
12 months to a week - or even a day. And yes, you back there with your hand up: this means
deploying a lot less code each time, hopefully just a handful of changes, or even just one.

Focusing on smaller batches is mostly about reducing key areas of software risk. Those risks
being:

1. Bug swarms: If | have a week’s worth of code vs half a year’s worth of code, and
something goes wrong in production, there’s a much smaller set of code to diagnose and
fix. This also speeds up your ability to deploy security patches.

2. Useless software: The biggest risk in software is creating software that users don’t find
valuable but that’s otherwise perfect. With small batches, because you deploy each
iteration to users, you can easily figure out if they find the software useful. And even
when you get it wrong you've only “lost” a week (though, I'd argue you’ve “won” in
gaining valuable learnings about what does not work).

32

3. Stymied innovation: Coming up with new ideas can take a very long time if you have to
wait six months to try out new ideas and see how your users react. Instead, if you deploy
a series of small batches, you can experiment and explore each week, hopefully getting
into a virtuous cycle of steadily discovering new ways to delight users.

4. Budget overruns: A small batch mentality avoids “big-bang bets” that require a massive
capital outlay at first and then a white-knuckling 12-24 months of waiting before shipping
the code. If you're only focused on the next few releases, finance can adjust funding
either up or down as needed. The existence of government IT projects going over
budget serve as an example here (though, | assure you, private industry can be just as
bad: they’re just better at hiding failure).

5. Schedule elongation: Projects that don’t force shipping can often find themselves forever
stuck with just “a few more weeks” left before shipping. There’s always new features to
add, more hardening to do, and then it’s the holidays all the sudden, and you've got a
good month of downtime, which is just long enough to think of still more new features to
add. Without an emphasis on shipping every week you eventually slow down.

Small batches let you improve the quality and usefulness of your software by creating an
ongoing feature experimentation process. Small batches mean greater control over the
budgetary and planning aspects because you can spot problems early on and act accordingly,
theoretically — at least — after each weekly release.

Overall, The Business feels like it has more opportunity to manage, conferring upon those in
charge a sense of empowerment and control. No more nasty shocks from IT.

But, and here’s the problem: small tends to cause a loud clunking noise in the minds of The
Business and of The Boss. These folks are not always comfortable moving beyond that big
stack of promises. “What, Henderson? You want me to do small?! At Waddleforce &co, we’re all
about BIG!”

How do we in IT circumvent this and sell the merits of “small”? | suggest discussing small
batches in terms of risk management and the “optionality” that the approach creates, something
that business-heads usually understand and value.

As IT proves out the small batches approach, then the code crowd might have something to
teach the suits.

Originally published in The Reqister, February 2016.

33

https://www.theregister.co.uk/2016/02/04/think_small_not_big/

So you're 'agile’, huh? | do not think it means what you think it
means

What if | were to tell you that we knew all the best practices for software development?

That they've been proven by actual industry use over the past 25 years? But that, oddly,
these practices are not widely done? Well, if you read these pages, you'd probably say:
"Sound about right."

Agile is much spoken of, but not as broadly practiced as you may think. It's as if we all
knew that the best way to cook a fine T-bone is to first let it come to room temperature —
perhaps with a healthy handful of the de Camargue — but instead we just regularly yank
it out of the fridge and throw it on a cold pan.

O rly? You've been doing agile since AS/400s?

When | talk with large organisations, all too often they legitimise themselves by telling
me how many certified Scrum Masters they have. From the hundreds | hear about,
they've setup some kind of factory that's just rolling them off the line. Now, there's
nothing wrong with scrum or certification, but it is an odd thing to use as a marker for
agility. What matters more, of course, is if the developer teams are actually doing it.

Commenting on his team's experience doing agile, Lt Col Enrique Oti explained the
situation this way: "Agile'. That word should not be used in the government. It's used
everywhere. Everyone in the government now does agile training. Every organisation |
go to [claims to do] agile development. | went to an organisation recently who'd been
working on a project for six years doing agile. They had a Scrum Master! And | said:
'When does your user ever see your code?' and their answer was: 'Never."

Although he's talking about the US government and military, in my experience his
statement applies many large organisations.

Surveys back this up as well, such as Gartner's annual agile survey. What's astonishing
about this survey is how honest respondents apparently are: looking over the results
you quickly get a picture that just about half of the organisations surveyed are agile.
Summing it up this past June, Mike West points out that 41 per cent of respondents
were doing agile with 41 per cent more doing waterfall, and the rest doing other
methodologies.

Perhaps it's the $1,295 price tag on these 15 pages of astounding findings from our
friends in Stamford, but a shockingly low amount managers seem to be sandbagging on
finally moving to agile after a quarter of a century. (Of course, for the cheap, the

34

https://www.facebook.com/defenseinnovationunitX/videos/1105014259600458/
https://www.facebook.com/defenseinnovationunitX/videos/1105014259600458/
https://www.gartner.com/doc/3739117/survey-analysis-agile-tipping-point
https://www.slideshare.net/cote/not-a-devops-talk-nov-2017/12

DevOps Reports can get you a free version of these findings, plus a wonderful selection
of Portland hipster visages.)

In general, then, it's wise to be sceptical of any claims about an organisation being
agile.

Wagilefall

Even when development teams have nailed agile, pumping out builds weekly gleefully
(or, monthly for the languid), as Oti points out above, they often are not able to actually
deploy their code to production.

In cases like this, as venerable agile expert Israel Gat told me: "Organisations learned
how to fake agile. Many of the agile implementations | withess are actually waterfall on
top of agile, waterfall using agile terms." The teams are speedily working through things,
seemingly moving fast, and that's what agile's all about, right? They're an agile dynamo
trapped in a decadent waterfall process: wagilefall.

Mismatches like this are widespread and, to my mind, are a massive reason why
DevOps is so attractive to those who dare enter that labyrinth of definitional confusion.
It's been illustrative to think about this divide between fast-moving developers and
never-wanting-to-deploy ops teams as a "wall": developers throw the build over this all
to release management, walking away dusting off their hands as if everything is done.

Rather than bricks, this wall seems to be built out of help desk tickets. Filing away those
requests to set up staging and production environments, let alone even the simplest
resources like a licence for an IDE. And when it comes to actually deploying a build to
production, file all the tickets you want, bub, you'd better schedule up some meetings if
you want something that ground-shaking.

But think of all those 'nice gates'”’!

Resistance to change is, of course, not a new occurrence when it comes to IT. That
said, again, the memos have been circulating for a good 25 years. Despite this, it's wise
to be empathetic to staff who see going agile as simply more busy work for them.
Donna Fitzgerald quoted one of her clients as saying: "It meant throwing away
everything | spent years building. All my nice gates and all my vast number of required
documents. It meant changing out the tools we use. It also meant that we needed to
change our mindset about what was important and what the organisation actually
wanted us to do."

35

https://www.theregister.co.uk/2017/06/06/state_of_devops_low_performers_are_fast_but_ignore_quality/
https://twitter.com/agile_exec
https://www.slideshare.net/cote/not-a-devops-talk-nov-2017/23
https://www.theregister.co.uk/2017/10/13/devops_culture/
https://www.theregister.co.uk/2017/10/13/devops_culture/
https://www.rundeck.com/blog/whats-a-silo-and-why-they-ruin-everything
http://www.theregister.co.uk/2016/05/06/no_escaping_review_boards/
https://www.theregister.co.uk/2017/11/17/do_the_devops_not_here_no_thank_you/
https://blogs.gartner.com/donna_fitzgerald/2016/07/06/redefining-agility-in-the-digital-age/

Yes, indeed, there's much work to be done after the old artefacts of comfort are thrown
out. | recently had a conversation with a similarly beset person in a large organisation.
There were so many agile methodologies in practices, along with the existing "waterfall"
processes, that a team had been put together to map and rationalise this rat's nest of
processes into a unified handbook of sorts. You can imagine how that project was
turning out.

Blame management

As ever, one of my core theories about improving how software is done is that, more
than likely, management is largely at fault for previously hollow victories. In addition to
the numerous reasons for staff resistance, management is often unwilling to follow
through on the changes needed to bust through a wagilefall.

Do the infrastructure Morlocks hide behind a wall of tickets? Well, the developers aren't
going to be able to change that: they'll need management to come in and burn down
that wall. Are you getting ensnared in compliance and enterprise architect dead-ends?
Again: management.

There are plenty of enlightened managers, but you'd be wise to figure out if you're
working for them whether you're on some sort of path to agile awesomeness. If you find
them wanting in vim, perhaps they're kind enough to take suggestions — if you're lucky.

Sure, it'll get worse before it gets better

When | talk to people who have reached the other side of going agile, they tend to find
that they're accomplishing the same goals of quality software, even with the same
benefits of governance and discipline. They're just able to do those tasks more
efficiently. Instead of doing audits after the fact, staying up late into the night and
working through the holidays, compliance people can automate much of the raw
information collection and leave work on time. With smaller chunks of code in each
cycles, operations staff realises that diagnosing any errors in deploys is more
straightforward. Project managers, previously beset with putting together complex
status reports that no one seems to ever actually read, find much more meaning in their
work.

Somewhere in there, you'd hope, there's also an improvement to the actual software
and the end user's experience, which usually trundles along for the ride. The studies
tend to bear this out. As West put it commenting on the agile survey: "Successful agile
organisations show significantly higher use of unit testing, DevOps, continuous delivery,

36

continuous integration, test-driven development and refactoring, when compared with
unsuccessful organisations."

More importantly: please, let the T-bone rest for a while before cooking it. Otherwise,
you could have just gotten by with a much cheaper flank steak.

Originally published in The Reaqister, December 11th, 2017.

37

http://www.theregister.co.uk/2017/12/11/you_say_you_are_doing_devops/

Pair programming: Oooo, oooo, that smell...

Of all the agile practices out there, “pair programming” is the one that elicits the most heckles,
confusion, and head-scratching. The idea is that rather than having one person sitting at a
screen, coding, you have two programming together. Those who practice it speak of it like most
people do of their first time at Burning Man, while those who have never had the “experience”
just can’t see what the big deal is.

While finding them are hard, over the years studies of pair programming have consistently
shown that it's an effective way to keep bugs out, write code faster, manage the risk of
developer churn, and actually raise morale.

But — really? Looking at surveys, I'd estimate that somewhere south of 20 per cent of people do
pair programming. If pair programming was so great, why do people find it so odious? | mean,
who wants to work so close to someone that you can smell the effects of coding?

And as if it wasn’t enough to keep that foetidly in the developer cubes, it's been wafting into the
server room despite those cyclopean fans in there: operators are starting to pair as well.

Four eyes are half the productivity as two?

The theory behind pair programming is straightforward. Programming is difficult and error prone:
It's much better to have a buddy helping along. In addition to actually coding together, it
sometimes means having one developer write code and the other write tests right next to each
other, in co-ordination. With two heads together, the thinking is that you write less bugs and get
better test coverage.

Indeed pairs in studies over the past 20+ years have consistently written higher quality code and
written it faster than solo coders. So, while it feels like there’s a “halving” of developers by
pairing them up, as one of the original pair programming studies put it: “The defect removal
savings should more than offset the development cost increase.”

Safer coder killing

If the pairs rotate frequently, the theory says you'll get better diffusion of knowledge across the
team: no one person builds up a fief of knowledge around, say, builds, or how the “Print Invoice”
function works. This means there’s a lower “bus factor.” helping protect against team churn and
brain-drain.

38

http://www.slideshare.net/cote/devops-for-normals-springone-platform-2016/22
http://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF
http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF
https://en.wikipedia.org/wiki/Bus_factor

Large organisations | talk with - who're all trying to figure out the footwork for that “digital
transformation” dance - use rotating pairing as a way to spread new technical knowledge, but
also change that oh so mysterious “culture” in their organisation.

People actually like it

Much like alcohol and black coffee, pairing tastes awful at first... until you start imbibing of it
repeatedly. In most of the studies, and the feedback | hear from organisations doing it
nowadays, pairing practitioners end up liking it after just a few weeks. At first, true, the usually
solitary programmer has to, you know, talk to someone else. They even have to get used
someone else corrected them — horrors of all horrors!

But, with a rigorous enough schedule that allows for breaks and bounds the programming time
to normal 9-to-5 schedules, most people end up liking pairing after a while. It only takes a few
pints to dedicate your life to it.

I's hard to say why people like it more, but | suspect it has something to do with the fact that
humans, fundamentally, like being social, so long as it feels safe. Also, most programmers and
operations people take pride in their craft: they want to do good work (despite what those
overflowing tickets queues are doing to them). If pair programming increased code quality,
there’s more to be proud of.

Managers of these programmers should also like the quality, speed, and predictability of pairing.

That predictability comes from an interesting side effect of how exhausting pair programming is.
For one, it's harder to goof off — er, “research” — and attend meetings when you’re pair
programming. As the man from downtown said: “Always Be Coding.”

And, on that kind of schedule, developers are straight up pudding-headed after seven or eight
hours of pair programming. As one practitioner put it: “This makes pair programming intense,
especially at the beginning. At the end of the first day, | couldn't go home. Before | could face
humans again, | put my phone on airplane mode, ignored my usual online accounts, and went
to the gym for two hours of self-imposed isolation.”

Developers can only pair so long. They have to stop, so you just close up shop at 5. No more
playing Doom until 10pm and then coding — er, | mean “working late".

It can come off as sounding a bit like nanny-management, but pair programming seems to
induce developers to actually do the work.

39

http://www.theregister.co.uk/2016/01/15/devops_people_problem/
https://www.youtube.com/watch?v=AO_t7GtXO6w
http://www.informationweek.com/devops/project-management/adventures-in-pair-programming/a/d-id/1325577

Yeah, but... no

While the research is sparse (and, really, when it's “n=whatever students enrolled in my CS
class,” it's a little fishy), from where | sit and what people keep telling me, pair programming
works. Should you be doing it all the time, though?

I've heard practitioners say that you should at least do it for complex, difficult tasks. If it's some
routine coding or operations tasks, then pairing may not be the nitro-charge you're expecting.
Indeed, one of the studies suggests that pairing is the most beneficial for “challenging
programming problems".

Put another way, if the task is “boring,” maybe it’s better to solo it. Still, | can’t help but think that
it'll be the boring tasks that end up biting you, especially when it comes to pair sysadmining.
After all, how many systems have come down because of the boredom of DNS configurations?

Originally published in The Register, October, 2016.

40

http://www.cs.utexas.edu/users/mckinley/305j/pair-hcs-2006.pdf
https://www.theregister.co.uk/2016/10/18/pairing_programming_youll_never_guess_what_happens_next/

Why largile's for management crybabies

There's a stink growing out there in agile land: a debate over how to scale up agile in large
organisations. Should we put frameworks like SAFe or the most awesomely named DAD in
place to scale it? How about we do LeSS?

These "agile in the large" frameworks have been on the ascent in recent years. A 2015 Gartner
survey found that DAD, SAFe, and LeSS had been adopted by 10-12 per cent of organisations.
SAFe was driving the most interest with 34 per cent of respondents checking it out.

As ever when the adoption of agile matures, there's much gnashing over whether things are
being done properly. On the one side are the agile poets and on the other are the agile
formalists. The poets like the emergent, dynamic, small-batch nature of agile and don't want to
bind teams to locked-down rules and requirements to "align" with the rest of the organisation.
The formalists want to put in place and document processes that ensure that thousands of
people can work in lockstep on software.

The infantilism of management

Compared to staid, friendly discussion, there's a particularly vitriolic conversation going on about
SAFe now. Words like "infantile" are being thrown around! The fear is that SAFe focuses too
much on keeping existing IT bureaucracies in place for the sake, you might say, of giving
management something to do. Instead, the agile poets say the focus should be dramatically
changing how the organisation works as a whole, not keeping all the separate groups in place
that need constant "alignment."

It's this notion of "alignment" that acts as good dipstick for the discussion. If there are hundreds,
thousands of people working on a unified portfolio of software, there's the chance for lot of
coordination. As an example, in his recent book on scaling up DevOps, Gary Gruver uses the
example of putting omnichannel retail in place, a seemingly simple, but very complex system
spanning multiple back ends, shipping, and in-store systems, not to mention the mobile and web
apps buyers use.

The alignment anti-pattern

"Alignment" then is the need for groups to come together and plan out how their
sub-components interact together to create the entire system. Next thing you know, you're
scheduling meetings, writing Word docs, and spending weeks integrating various systems
together. A typical straw-person nightmare of slow software development.

41

http://scaledagileframework.com/
http://www.disciplinedagiledelivery.com/
http://less.works/
http://www.theregister.co.uk/2016/02/04/think_small_not_big/
http://cognitive-edge.com/blog/safe-the-infantilism-of-management/
http://www.netobjectives.com/blogs/safe---good-bad-and-ugly
http://www.netobjectives.com/blogs/safe---good-bad-and-ugly
http://ronjeffries.com/xprog/articles/issues-with-safe/
https://thenewstack.io/review-understanding-devops-putting-place-even-scale/

The critics of "largile" are worried that this focus on alignment should instead be on removing
the need to coordinate and align groups, at least manually. At a technical level, this means
removing as many dependencies as possible and, usually, giving each team more responsibility.
The whole idea of DevOps is an example of dependency erasing at the process level: by
collapsing together the roles of development and operations, you strip out the time and hand-off
errors that occur when you throw the application "over the wall" of the operations. The fear is
that you end up with exactly the same process as you had before. Renew those Word and
PowerPoint EULAS!

Requirements cathedrals

A few anecdotes from my flaneuring about in the enterprise world illustrate this alignment
anti-pattern. | spoke to the people at a large, US health insurance company recently trying "the
new way" of developing software. They started the project with several hundred pages of
requirements that business analysts had built up like a perfect cathedral. After throwing this pile
of paper to a unified, balanced "two-pizza team" who walked through the user problems and
how to start the discovery cycle for solving them with weekly builds, most of the cathedral was
dismantled and ignored.

Once this team started deploying software weekly and studying how the user interacted with the
software, they learned what was actually needed and changed the requirements appropriately.
The team removed the need to "align" with others in their organisation. Sure, there were
external systems to cope with, but removing the need to coordinate and take ongoing input from
parts of the organisation that weren't close to the actual users speed up the schedule
tremendously, delivering months ahead of time.

Taking a similar approach, a large bank scoped down the coordination needed across
organisation by pushing responsibility down to the team level. They were able to speed up their
delivery by 57 per cent (so precise!). At a micro-level, the act of pair programming removes the
need to "align" with code reviews as they happen while the pair codes.

The hope of much of the container and cloud crew nowadays is that cloud automation removes
a huge amount of infrastructure, networking and security functionality, removing the need to
align on those glide paths. Looking at Gruver's recent book again, the idea of standardizing on
CI/CD pipelines is another tool to automate alignment, removing the need to align in the meat
ware levels.

Time and time again, the goal of the agile poets to “remove” the need to align, not facilitate it. As
one large European bank put it:

When we were doing big design upfront, downstream changes had to go through a rigid
change control process. We wound up being busy with our own process rather than
delivering value, and either we didn't deliver or we delivered late.

42

https://twitter.com/cote/status/799273327940485125
http://dev2ops.org/2009/09/qa-lee-thompson-former-chief-technologist-of-etrade-financial/
http://www.theregister.co.uk/2016/07/27/agile_slow_ascent/
https://www.youtube.com/watch?v=xS_P4GblPDQ
http://www.theregister.co.uk/2016/10/18/pairing_programming_youll_never_guess_what_happens_next/
https://www.forrester.com/report/Best+Practices+For+AgilePlusArchitecture/-/E-RES120863

Don't pave the cowpaths

Now, | don't think proponents of largile practices would say any of this is their intention. Indeed, |
wouldn't be surprised if agile in the large practices didn’t marble my own examples above. The
agile poets would argue that, regardless of intention, the effect is to once again prove out
Larman's Law: the bureaucracy will be in place, just with new words describing the infinite
process gates and alignment drones.

I'm not convinced perfectly either way. As usual, someone's probably spun the dichotomic dial
so hard it's busted off. I've spent recent years studying the seemingly impossible task of scaling
agile techniques up to large organisations. As the DevOps Reports have found, organisations
with 10,000+ employees are 40 per cent less likely to be high performing than organisations
with 500 or less employees.

Clearly, it's hard for large companies to improve how they do software. There are real needs to
align and coordinate between organisations. Thinking back to that omnichannel example, one
team of four to 12 people can't build and maintain all parts of the system. The goals of
(buzzword alert!) "microservices" try to address this alignment problem at an architectural level,
but that school of thought is relatively new.

This is still uncharted territory for many, and | suspect it'll be the usual situational problem: how
you scale agile will depend on your organisation peccadilloes. A recent Gartner study found that
a meagre 27 per cent of surveyed organizations are using agile approaches for "most or all" of
their projects, a shockingly low number. Before these organisations even worry about doing
agile at scale, there's plenty of work to be done at the team level.

One thing is for certain: you don't want to simply keep doing the same thing. If you find that the
org chart, the flows of information and — gasp! — approval processes are exactly the same as
before your largile transformation, you're probably doing it wrong.

Originally published in The Regqister, November, 2016.

43

http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
http://www.slideshare.net/realgenekim/2014-state-of-devops-findings-velocity-conference/29
https://www.gartner.com/doc/3263417/survey-analysis-agile-enterprise-stumbles
http://www.theregister.co.uk/2016/07/27/agile_slow_ascent/
https://www.theregister.co.uk/2016/11/21/largile_for_management_babies/

What drives organisations to change their ways? What's the match that lights the
powder keg of actually doing something new and different in IT? That's the question |
usually get from organisations that want their approach to software to be more "agile",
who want to go through "digital transformation", and, yes, "do DevOps".

Despite glee about cleansing themselves with the buzzword of the week, they feel like
they can't get their organisation to go along with it. While upper management might be
pounding the table, shipping in crate after crate of DevOps Handbooks, the rest of the
organisation languidly keeps to their old waterfall ways of doing software — maybe
wagilefall, if you're lucky.

How do organisations that "go agile" actually motivate themselves to get out of bed in
the morning?

Kick them in the pants

It's common to trickle down blame to individual staff and the so called "frozen middle"
who keep existing processes in place. Higher level executives, though, aren't much
better according to a recent Altimeter study. Of the 500 executives surveyed, only 37
per cent said their organisation was proactively investing in "digital transformation” (let's
just assume that means "improving how we do IT around here to help run the business
better"). Put another way, 63 per cent seemed content with their IT.

In my experience, most organisations who are looking to improve their software
capabilities are motivated by a sudden, unexpected, often fierce competitor. Many
insurance companies, for example, were spooked by Google's foray into car insurance.
Fear motivated them understand what it would mean to have their market changed by
companies like Google.

While the search giant decided to shut down the experiment after about a year,
responding to this digital apocalypse premonition left several insurance companies with
new capabilities and agile aspirations. They'd been given a kick in the pants that woke
them up from their "if it ain't broke, don't fix it" stupor.

For most businesses, this kind of external threat is required to start any type of IT
improvement plans, let alone something as high-falutin' as "digital transformation" or
even DevOps with all its needs to radically change corporate culture. Without that well
understood, and felt threat from outside, driving change can be too difficult for more
organisations.

44

http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
http://www2.prophet.com/2017-state-digital-transformation
https://www.theregister.co.uk/2015/03/06/google_are_doing_car_insurance/
https://www.insurancejournal.com/news/national/2016/02/23/399632.htm

We fear change

Of course, simply kicking in a pair of well pressed slacks will only get you so far. There's
the entire rest of the company that needs to put on their big boy and girl pants and find
the will to change as well.

Below the higher levels of management, a more risk-averse culture thrives.
Middle-management's job is to keep things stable, to keep the building from burning
down. Which is all pretty easy if things never change, hence, "frozen middle". When
looking at new ways of running IT, middle-management often sees only the possible
downsides. Never mind all this "blameless post-mortem" stuff, I'm the one who'll get
blamed and punished, they quickly realise.

Worse, in organisations that desperately do need to change from a large, multi-year
delivery cycle for software (read: "waterfall"), the risks actually are huge. While big bang
projects may seem like a gallant steed at first, with such long release cycle - on the
order of years - these projects can easily blow up: they're liking using older
infrastructure and application layer stacks and will also succumb to the trap of delivering
perfectly the software that was specified three years ago and is no longer relevant
today.

In such big batch projects, as one "change agent" put it: "A mistake could cost $100m,
likely ending the career of anyone associated with that decision."

We can all agree that ending your career at middle-management wages is no good;
unlike with executives, there’s no metallurgically coloured parachutes that land you
safely in a lovely little chalet while the plane hurdles into the mountains.

Below that managerial permafrost, staff are full of anxiety as well. A recent survey of
1,000 managers in UK found that 49 per cent per cent of employees quake in their
boots when “digital transformation” is mentioned. It’s little wonder given all the claims of
how new technologies are going "optimise" staffing needs in IT, let alone how radically
different all this new free-loving agile stuff is going to be.

As | mentioned a while ago, managers | talk with say anywhere between 30 to 70 per
cent of staff "don't make it" to newly transformed organisations.

Stop hitting yourself

Based on the recent bevy of large orgs actually improving how they do software, clearly,
there's hope for getting over all this trepidation. There are enough examples of large
organisations switching over to a more agile, even "DevOps-y" approach to software.

45

https://landing.google.com/sre/book/chapters/postmortem-culture.html
http://cdn.defenseone.com/a/defenseone/interstitial.html?v=7.12.0&rf=http%3A%2F%2Fwww.defenseone.com%2Fideas%2F2017%2F10%2Fhow-us-air-force-made-its-isr-network-cheaper-run-and-easier-upgrade%2F141806%2F
https://enterprise.microsoft.com/en-gb/articles/digital-transformation/creating-the-right-company-culture-for-digital-transformation/
http://www.theregister.co.uk/2017/04/26/ah_i_love_the_smell_of_skunkworks_in_the_morning/

What's clear is that in the best cases, senior management champions the change, often
assigning an executive as "Chief Trouble Maker", as one executive described himself.
These organisations also focus on creating safe spaces for innovation and change in
process, usually over the course of several years. It's tempting to think that you'll figure
out all this transformation overnight, but with a large org, it's better to temper
expectations to reality. A misstep on managing the expectations of how long it'll take
could easily kill moral and nuke your plans early on.

It's important to actually pay attention to winning the hearts, minds, and KPlIs of actual
individuals. As that fear of change and sense of nothing but downside shows, people
need to build up trust in a new process. External cases and decrees of The Good
DevOps News aren't going to help much. The most successful persuasion is building up
a string of internal success stories — those skunk works teams that can then be
marketed as "look — see — it does work here!"

Staffing those teams is tricky. On the one hand, as Brian Gregory fold meback when he
was heading up the switch to agile and DevOps at Express Script, you have to choose a
team of mavericks who want nothing more than to try new things and take risks. On the
other hand, if you create too much of a "10x developer" team, everyone will look at them
and think "well, that’s fine for them, but I'm a normal." As a manager at an insurance
company told me more recently, "when you get to the end of the pilot, you want
co-workers to look at your team and see someone they can relate to."

Get ready to battle your own doubts

Finally, you, who'll be, let's face it, the "change agent", are going to go through some
rough patches. You've got to line up some trusted peers and mentors who you can call
to pick your sad-sack staff up off the ground when things go poorly. There's going to be
more meetings with more smiling jerks than you've ever encountered. Few people will
fight for you out of the good of their hearts and many will be looking for the right
opportunity to slip a knife into your ideas. There's only so much of that annual bonus
pool to go around, after all.

It'll feel like everything and everyone is against you. "You're in that valley of despair," as
Opal Perry at Allstate told me earlier this year. Things seem dire, but with plodding
success, she added, "then you start to come out". If you plan for the resistance to
change, deploy some mind-hacking tricks, and start building up some proof of success
from within your own business, well: if that doesn't work, there's always bimodal.

46

http://www.cote.show/guests/briangregory
https://soundcloud.com/pivotalconversations/the-management-perspective-on-transforming-allstate-with-opal-perry
http://www.theregister.co.uk/2016/06/15/one_it_so_many_modes/

Originally published in The Register, November 17th, 2017.

47

http://www.theregister.co.uk/2017/11/17/do_the_devops_not_here_no_thank_you/

DevOps isn't just about the new: It's about cleaning up the old, too

As one of my coworkers used to say when confronted with The Latest Development
Improvement Methodology: “Why don’t you come down here and chum this stuff?” — except he
used the language of a sailor.

In trying to implement the latest breakfast cereal agenda, DevOps, one of the primary
chumming tasks is dealing with all your “pre-DevOps” software and services.

We call this “legacy” and it's more or less the result of too much unaddressed “technical debt.”

The techniques for dealing with legacy never leave you feeling good: just like eating a box of
cereal, over the kitchen sink, all the way down to the green leprechaun dust. But, there are
some pragmatic ways of making sure legacy doesn'’t totally wreck your DevOps efforts to create
more resilient, more productive software.

|dentifying legacy

First, if you're starting from scratch, with no existing software, with the crisp scent of Expo white
board markers still lingering in the air, you have no legacy problems. Enjoy your tasks of
creating legacy code for the future you! However, in most large organizations, you’ll have plenty
of legacy code and systems.

| use two tests to identify legacy code:

1. It's running the current business. The code is keeping the lights on, running however
many decades of existing business process has gotten your company to where it is. For
example, people often (factually) joke that the IRS is still running systems from the
Kennedy era.

2. You're afraid to change it, mostly likely because it is poorly understood and has poor test
coverage. This is compounded by Michael Feather’s legacy code dilemma: to add unit
tests, you must change the code. To change the code, you need unit tests to show how
safe your change was.

For those lucky few who don’t need to evolve their software (and their cursed users), dealing
with legacy code isn’t an issue. But the rest of us need techniques to manage the risk of working
with legacy code.

Quarantine the slow movers

As in dealing with any pack of zombies, the first thing you want to do is identify and then isolate
as many of your legacy applications as possible so that you can ignore them, freeing up time to

48

https://www.youtube.com/watch?v=PpG3-hLJTwU
http://www.theregister.co.uk/2016/03/07/free_me_from_marketing_and_devops/?page=2
http://www.finance.senate.gov/imo/media/doc/2015%20JAK%20testimony%20SFC020315%20-%20FINAL.pdf

focus on the feisty ones. In enterprise architecture management, this means doing some basic
portfolio analysis. And, sure, | bet you have whole teams of people who do this already... right?

They know all the applications you're running, the amount of money they bring in (“business
value”), their expected life-span and end-of-life plans, have identified key stakeholders and
developers who know not only the software but the business it supports forward-and-backward.

Yup, we all have that functioning at 110 per cent ‘cause we’re “enterprise” And yet...somehow
we can’t do anything because of all these legacy systems pulling us down... Now then, ready to
actually put some portfolio management into place?

First, figure out which of the 1,000’s of applications you have are low value and not worth
spending time on. Figure out how to stop worrying about them. The second wave of
quarantining is to find applications that haven’t been fully virtualized yet. With minimal changes,
you can squeeze some resource savings (time, money, and attention) out of applications by
virtualizing them.

After this, you're left with smaller set of applications that you care about. To some extent, you’re
admitting defeat with these un-quarantinedable applications. On the other hand, you now have
plenty of work for all those change resistant folks you have who aren’t feeling the DevOps
breakfast cereal vibe, if that's a concern of yours. Now, that you've cleared out some
underbrush, what do you do with the trees that are left over?

Fork-lifting, strangling, and re-writing

The most common methods | see for dealing with the leftover legacy applications are to either
attempt to move them to your new platforms and methodologies, introduce an API facade in
front of them and slowly let them rot out as new code builds up behind the facade, or to start
re-writing them.

“Fork-lifting” the application into a full on DevOps-driven, continuous delivery approach can work
if the application was written to be, generally, self-contained and didn’t depend on
vendor-proprietary services or things like network file shares.

These are usually simple applications, and you’re usually not lucky enough to have them live
through the initial quarantine filter. This is often known as the “lift-and-shift” approach, and, as
Forrester’s John Rymer points out, this approach looks the easiest but has the worst long-term
payoff. This is because simply changing how you manage the lifecycle of the application without
changing the application itself can limit the benefits of a DevOps-driven approach, namely, the
ability to quickly add new features while maintaining a high level of availability in production.

In those instances where your new applications must use legacy software and services, you can
use the “strangler pattern” to lessen the annoyance of legacy. While you may wish this pattern
was named after the psychopath, it's named after the plant that slowly takes over trees.

49

https://www.forrester.com/report/Brief+Systems+Of+Record+Projects+Are+Poised+To+Drive+New+Cloud+Growth/-/E-RES129257
https://www.forrester.com/report/Brief+Systems+Of+Record+Projects+Are+Poised+To+Drive+New+Cloud+Growth/-/E-RES129257

The first step is to introduce a new layer of abstraction — an API or set thereof — that fronts the
legacy services. Instead of calling back to that big database or ERP system directly, you call to
your own facade on-top of it. That part is easy enough, and standard, the hard part is planning
for the eventual rot-out of the old system. Judiciously, you start replacing capabilities in the
legacy system with new code that’'s more aligned with your new approach to software
development, using some mild routing intelligence behind the facade to figure out when to call
the legacy code versus the new code. Eventually, as with the strangler vine, only new growth is
left.

Finally, you often have to bite the bullet and just re-write it. While this is the most time intensive,
and, if done slapdash, risk-laden choice, if done properly it gets you the frequent change
benefits of continuous delivery driven by a DevOps approach to process.

With legacy code, there are no easy outs, or secrets. The most important thing is to be aware of
that and not be bamboozled by people who are happy to sell you a perfect solution to your
legacy “problems.”

Often, the right answer is to carefully do nothing and instead to focus on your net-new software
without letting your legacy software and processes drag you down.

This way of ensuring that neither the old or new approaches to software rocks the boat for the
other is more of how | think of “bi-modal IT”: decoupling those two parts of your portfolio so that
they can independently evolve without negatively affecting the other.

Originally published in The Reqister, April, 2016.

50

https://www.theregister.co.uk/2016/04/12/land_the_legacy_big_fish/

Change review boards are probably a no-op, at best

One of the more wickedly astonishing findings from the current DevOps Report is that change
review or advisory boards have little effect on a company’s performance. In fact CABs — as they
are called — tend to slow down IT’s ability to release software quickly and regularly, negatively
affecting organisational performance.

| don’t think many people would say they like or even believe in change review boards — except
the architects on them ... well, at least some of them, hopefully.

Nonetheless, if continued existence demonstrates faith in a concept, we in the IT industry seem
to believe fervently in review boards: | encounter them at almost every organisation | speak to.
When IT moved more slowly and we were delighting ourselves with ITIL and other PRINCEs of
process, review boards seemed like a good idea. After all, not too long ago we’d just emerged
from the switch-over to the “distributed computer” (read: Wintel boxes) whose conclusion felt like
finally bringing law and civility to the Wild West.

That huge mess of new hardware and software spawned entire clean-up crew industries in
systems management, breathing new life into aging mainframe management companies once
they had acquired the rascally newcomers like Tivoli. We certainly didn’t want some runaway IT
projects built by a bunch of cowboys who'’d leave us city-folks behind to clean up the mess. We
needed a process to assure our future selves' sanity and which would allow us to get home in
time to watch Seinfeld.

In recent times, though, the need to ship software more frequently has created a new set of
expectations for IT and, thus has been a driver for innovation in the software release cycle. For
many, IT’s goal is now to ship software weekly, if not daily, giving their organisations the
capabilities to operate like software companies. So a review board that itself meets monthly to
look over a huge pile of changes becomes a massive road-block... and if they don’t seem to be
effective, why have them?

There’s no escaping reviewing

Of course, the trick is that “reviewing” is still occurring, but since everyone started following the
Toyota Way principle of "lean thinking", the reviewing is now done closer to the actual work.
Instead of relying on change review boards, the application teams themselves do peer review
with some even going as extreme as doing paired programming. There are many practices and
technologies that help accomplish the original goals of those review boards too.

Standardized testing is also done more and more by the actual application team and also has
become highly automated. It's not like these fast-moving DevOps people are just shipping code
gleefully, they’re testing and reviewing at almost a nauseating level for old timers who enjoyed
throwing the testing tasks over the wall to QA. A recent Gartner study on agile practices in

51

https://www.youtube.com/watch?v=cJVUtbSmXaM&feature=youtu.be&t=23m49s
http://www.slideshare.net/cote/better-ways-of-developing-software/11

enterprises found that 75 per cent of organisations were doing unit tests and a third had
automated acceptance testing. That said, pair programming was only in place 23 per cent of the
time: that’'s apparently still a weird meal for most to swallow despite the praises its practitioners
sing.

To be a bit hand-wavy about it, the way we write and run applications is picking up much of the
review board’s work as well. The actual cloud platforms used to run applications are creating
much more resilient software that with things like the ability to roll-back problems and isolating
poorly behaving services. Meanwhile architectural practices like microservices and 12 factor app
principles are describing how to design and write software that’s designed for this resilience and
speed of delivery.

So what’s an enterprise architect to do?

The role of the enterprise architect seems to be evolving as work is pushed down to the actual
software teams and as staff on those teams become more “balanced” with all the roles needed
on the team beyond just developers. There’s a certain kind of architecture needed to sustain
independently operating applications teams, and it looks like “architects” are well situated to be
those enablers. This, of course, is in subtle but important contrast to being the change review
“approvers”.

This all reminds me of an old anecdote from the lean manufacturing world. At one US car
factory that was going lean, trying to “catch up” with the Japanese, one of the senior presidents
observed that the factory engineers were always very busy in their offices, doing some sort of
work. “ do not think the problems are in that office,” he told the factory general manager, “I think
they are on the factory floor.”

The implication for us in IT, of course, is that problems are not solved, nor software created in
change review board meetings, but by the teams who are creating and struggling with the
software every day. Findings from studies like the DevOps report are now showing this, and it's
large companies that seem to suffer the most.

When that same study sliced up the findings by company size, it found that organisations with
more than 10,000 people were 40 per cent less likely to be high performers than 500-people
outfits. There are many other factors causing that friction; if you’re one of those large
organisations, it's worth revisiting CABs.

Originally published in The Reqister, May, 2016.

52

http://continuouslifecycle.london/sessions/applying-the-12-factors-principles-to-teams-as-well-as-apps/
http://continuouslifecycle.london/sessions/applying-the-12-factors-principles-to-teams-as-well-as-apps/
http://www.slideshare.net/cote/better-ways-of-developing-software/31
https://www.theregister.co.uk/2016/05/06/no_escaping_review_boards/

The developers vs enterprise architects showdown: You shall
know us by our trail of diagrams

One of the more wizened roles in ITis the enterprise architect, or, “EA” for those in a hurry. Now,
those cowpokes over in the wide open office plans of DevOps country have little regard for
these EA types. It's a bit of a “what have you done for me lately” situation: last we checked in,
these EAs were saying no to cloud and before that they’d put in place something called “SOA”
which turned into a clever, if unintentional, ruse to fly in the WS-Deathstar.

As | loaf around the DevOps circuit, the future of enterprise architects has become my top,
unsolved mystery: what role do they have in this fully autonomous, heavily automated DevOps
world?

You shall know us by our trail of diagrams

EAs have a poor history of improving the lot of developers. Their focus has been on driving out
duplication, mandating all too often baroque services and frameworks, and rounding up any
rogue technologists who are trying new things, er, non-approved technologies. They certainly
seem to show up to meetings, especially recurring ones with vague agenda like “review project
status.” (Whether EAs are “good” at meetings is left as an exercise to the reader.)

Usually they’re armed with all sorts of diagrams, slides, and digital three ring binders. Just
binders, and binders full of diagrams and six deep nested sections titles.

Those diagrams are like the primary totem of EAs: | once met with an airline EA who had an
entire wall covered with a giant collage of boxes and lines describing how the entire company
was wired together. “Now, tell me how | make a ‘cloud strategy’ out of that!” they demanded as
we were sitting at their deluxe, intra-office mini round-table, the sign of real big wheel at an
enterprise.

To be fair, these diagrams are intended to be helpful and, if you stared at them long enough,
would actually be so. Someone has to keep up with what the overall big picture is, how it fits
together, and as our mini round-table baring friend was suffering through, keeping everything up
to date, all flexible and crouched down ready for the next industry curveball. “What are we
gonna do about AR?!”

And while it takes a lot of skill to toil to aligning those boxes and arrows up correctly - have you
ever noticed how “snap-to” grid points just have no aesthetic when it comes to arrow-ended
lines? - EAs are infamous for not having touched a line of code since, well, that time way back
when they did all this DevOps stuff on mini-computers but didn’t call it “DevOps.”

53

https://www.theregister.co.uk/2017/06/08/apple_arkit/

This malady presents in two extreme forms, First, the diffusion of innovation suffers: EA's who
recommend fantastically new technologies at a mile a minute (they’re probably saying
“serverless” now, but hungering for some new word to chew up like a pack of sunflower seeds
on a tee-ball pitcher’s mound). Second, the laggards who in a voice that | can only hear in the
sound Droopy say things like “hhhmmm, let’s put it on the ESB.”

The DevOps work release program

Still, that idea of making sure everything fits together well and that IT is actually helping the
business side achieve their goals seems like something you’d want to keep. Take, for example,
the scale of JP Morgan Chase with it's 19.000 odd developers. Even the most skeptical of us
likely feel like there’s some role in centralized governance at such scale. I've been talking with
EA types at DevOps-minded organizations for most of the summer and there’s a few recurring
roles for reformed enterprise architects that keep coming up.

Demilitarizing the EA police

One such EA at a financial company described the shift in their thinking as moving from
“policing to partnering.” Several years ago, an EA came in and put in place a traditional
enterprise architecture, set of governance, and all the great diagrams. It didn’t work out.

Here, we have the traditional “policing” mode of doing EA which is often more about
enforcement than, if you’ll pardon the use of vacuous terms for alliteration, enablement. After
the policing debacle, that team now takes more of a “partnering” stance with the rest of IT. The
goal is more to make doing the right thing easy rather than making the hard thing punishable by
reprimand-by-meeting.

Blinking cursors over spinning slide transitions

This also means scouting out and verifying new technologies to use, while also keeping an eye
on standardizing on technologies like platforms and build pipelines. A standardized build
pipeline provides, in fact, a hidden control point for governance. Just as failing tests won'’t let a
build through, using unapproved runtimes and frameworks can halt a build. Similarly, with a
good platform (the new, vague soupy word to use for “all that PaaS and container orchestration
stuff’) in place you can control which languages, libraries, and even ports are open and network
connections are made.

Most all of that governance about healthy and sound development and architectural practices
can be baked into your infrastructure. You can see some intriguing work being done here in
projects like InSpec from Chef and in the upper levels of the ever evolving container
orchestration stacks. As any lazy parent knows, deflecting blame to some soulless enforcer like
an egg timer is a much more effective way of getting children to comply with your wishes then
just playing off your parental authority. So it goes with EAs and developers as well.

54

https://www.americanbanker.com/news/unexpected-champion-of-public-clouds-jpmorgan-cio-dana-deasy

Your microservices Gordian knot is adorable.

Planning out and managing microservices seems like another area where EAs have a strong
role for both initial leadership and ongoing governance. Sure, you want to try your best to adopt
this hype-y practice of modularizing all those little services your organization uses, but sooner or
later you'll end up with a ball or services that might be duplicative to the point of being
confusing.

It's all well and good for developer teams to have more freedoms on defining the the services
they use and which one they choose to use, but you probably don’t want, for example, to have
five different ways to do single sign-on. Each individual team likely shouldn’t be relied on to do
this cross-portfolio hygiene work and would benefit from an EA like role instead minding the big
ball of microservices strong.

More of the same, just done differently

Though we’d like to think that the whiz-bang, new-fangled hotness of DevOps would erase the
need for enterprise architects, as with agile, it seems to be more changing how EAs go about
their jobs than getting rid of EA.

Some functions - like policing governance - can and should be automated, but still based on
policy the EAs create and continually evolve. Also, who’s going to pay attention to policing if all
those DevOps teams are actually doing a good job?

The relationship between developers and EAs has always been terrible, so it’s little wonder that
individual contributor movements like DevOps are sick and tired of EAs. Nonetheless, especially
in large organizations that don’t have the liberty of dealing with just five or ten applications that
help users graft party hats onto pictures of towering tempeh sandwiches, scaling up DevOps in
enterprises likely needs much of what an EA does.

On the other side of the coin, the EA should actually know what they’re doing, and know the
latest technology and processes that could help their business and developers. The EAs
mindset needs to change as well; those that create and run the actual applications have
supremacy in a DevOps-minded organization. Enterprise architects need to treat these teams
as customers, product managing their work appropriately. Maybe they could even work with
those teams occasionally to see how the grub down in the trench is working out.

If DevOps people scoff at the idea of working with EAs, the feeling is usually mutual. EAs
probably need to take the first step in mending the relationship. At worse, it'll keep EAs relevant.
After all: “good job filling out our TOGAF architecture library!” said no CIO ever at the annual
review.

55

Originally published in The Reaqister, September, 2076.

56

http://www.theregister.co.uk/2017/09/18/learning_to_live_with_enterprise_architects/

How many “modes” does this thing need?

There’s a debate going on right now about the best way to run IT: specifically, all those custom
applications and services inside organizations. Do we try new, agile approaches, or stick to the
old, methodical processes?

Gartner did much to start this discussion with their bi-modal concept:

Bimodal IT is the practice of managing two separate, coherent modes of IT delivery, one
focused on stability and the other on agility. Mode 1 is traditional and sequential, emphasizing
safety and accuracy. Mode 2 is exploratory and nonlinear, emphasizing agility and speed.

Mode 1 deals with predictable, well understood tasks, while mode 2 is for exploratory tasks, all
those known unknowns and unknown unknowns out there. Gartner even works Cynefin in there
for some complexity theory seasoning.

When you net it all out, much of how Gartner describes bimodal IT is pretty similar to the “slow
down and think more about how to solve your problems, and focus on outcomes over
processes” school of thought — aka the “stop doing dumb stuff’ vibe that you hear from the
DevOps world.

A key motivation for having two modes is to protect the new, agile teams from being clobbered
by the old, waterfall-y teams and their Big Process ways: it can be too hard to change culture
enough enough at scale to survive lift-off, and then you’re just stuck back in the muck.

Sad mode'’

Most people take all this to be sanctioning “old IT,” resulting not only in freezing the use of new
IT stacks (“cloud!”), but, also freezing any changes to the culture and process around those
“‘mode 1” applications. The opposing camp, then, tends to see the result of bimodal as
somewhat the opposite of Gartner’s goals of encouraging and creating organizational oxygen
for innovation.

As such, you can imagine that the “unimodal” (as we’ll call them, eh?) camp asks the question
“why wouldn’t you just run everything in awesome mode?” It's a good point: the way the debate
has been framed implies that some staff will be beset with operating in “sad mode” until the pink
slips rain down. Rather than fixing how all of IT runs, if it's left to fester, Jez Humble says, your
legacy IT will eventually eat you up from the inside:

' | originally heard this sad mode/happy mode framing from Bridget Kromhout, but, for some reason, did
not credit it here.

57

http://www.gartner.com/it-glossary/bimodal/
https://www.mindtools.com/pages/article/cynefin-framework.htm
https://continuousdelivery.com/2016/04/the-flaw-at-the-heart-of-bimodal-it/
https://twitter.com/bridgetkromhout

[L]eaders that fail to move beyond Gartner’s advice will end up falling further and further
behind the competition. They will continue to invest ever more money to maintain
systems that will become increasingly complex and fragile over time, while failing to gain
the expected return on investment from adopting agile methods.

Gartner rival Forrester has noted several times that the happy/sad mode approach can lead to
low morale and, thus, one would infer, less than ideal productivity. And as another dip-stick into
the sump of sentiment around this issue, the reaction to bimodal as a keynote topic at the recent
OpenStack Summit was along the lines of ‘| think | just threw up a little bit in my mouth”.

In defence of the counter-counterpoint, as it were, there are some systems in which failure can
be very expensive; thus, change carries more risk. Perhaps we should give those systems extra
time and attention, or leave them alone entirely. We have this notion that rapidly changing
software, though it may delight users with a weekly cornucopia of new features, will cause
downtime.

“Move fast and break things,” as the West Coast motivational posters put it. “Yeah, not so much
with my systems of record,” the ITIL-set would retort.

Of course, the promise of the new, DevOps-y way is that there’s ample testing and architectural
resilience to remove such fears. If you can deploy at will, you can also patch and even rollback
at will. Your operational maturity is a safety net. The DevOps set are interesting in proving out
that unimodal is the one true way and, as indicated by Humble, believe the evolving research
shows you can both move fast and avoid breaking things, if not make your software and staff
morale downright better.

Thus far, much of the commentary has come from analysts and consultants. They of course
imply that they’re channelling the voice of the customer, but it's always good to go to source
directly. In discussing how one of the US’s largest insurers, Allstate, has been revamping their
approach to IT department Matt Curry gave some advice on bimodal IT.

“It creates this dichotomy of competition and resistance,” in the IT department Curry says, “and
that’s not really what we’re trying to create.” What they’re trying to create is more collaboration
and understanding amongst staff to propel a unified IT department forward. Instead of going
together hand-and-hand, as Curry adds, “bimodal drives this wedge into your organization and
it's a terrible, terrible thing.”

('d be remiss if | didn’t point out another, delightful, response to bimodal: the so called “trimodal”
approach.)

Can’t we all, just get along?

| always get the sense that the two camps are, more or less, talking about the same thing:
giving IT the processes and culture needed to be more innovative and, thus, helping out the

58

https://www.forrester.com/report/The+False+Promise+Of+Bimodal+IT/-/E-RES131967
https://www.forrester.com/report/Quick+Take+Cloud+Foundry+Summit+Q2+2016/-/E-RES135421
http://www.theregister.co.uk/2016/05/04/speaking_in_tech_episode_209/
http://mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability/#wAWvHVkfLsqV
https://devops-research.com/research.html
https://devops-research.com/research.html
https://www.youtube.com/watch?v=YEAejTRoPSU&feature=youtu.be&t=30m20s
https://www.youtube.com/watch?v=YEAejTRoPSU&feature=youtu.be&t=38m36s
http://blog.gardeviance.org/2014/11/how-we-used-to-organise-stuff.html
http://blog.gardeviance.org/2014/11/how-we-used-to-organise-stuff.html

larger organization more. The two camps are just approaching them from different angles,
constraints, and symptoms they’re addressing. And, of course, with much of its content locked
behind an expensive paywall, we can’t expect many of the free-wheeling DevOps-set to be
reading up on bimodal.

Perhaps Gartner would do well to jump, rather than toe-tip, into the fray. These two camps
should sort out their differences and start talking with one voice. After all, we’d all benefit from
the software at large enterprises and governments sucking less, and that’'s what both of these
camps are after.

Originally published in The Reqister, June, 2016.

59

https://www.theregister.co.uk/2016/06/15/one_it_so_many_modes/

Victory! The smell of skunkworks in your office in the morning

While it's easy to start up a few, flashy new DevOps teams, releasing to production each week
and flaunting the ball-and-chain of enterprise governance, scaling that change to your
organisation will always be challenging, if not crushingly impossible.

When it comes to scaling the skunk-works, I'm reminded of a conversation with a struggling
enterprise architect. | often use the company’s mobile app and it's updated frequently, integrated
well with iOS, and provides an overall very pleasant experience. Such results are normally
unexpected from this type of aged, highly regulated, lumbering enterprise. As this enterprise
architect was masterfully telling me why their organisation was doomed, | piped in: “but the
mobile app is pretty good - excellent even!”

“Oh. Well. | mean sure. But that’'s the mobile team,” the EA said in an almost: “You kids today
and your: ‘I've-got-it-all-figured-out attitude - these olds’!” tone, “They’re different.”

My first thought was: “Er, well, maybe you should go figure out what they’re doing right.” More
broadly, this situation pointed to the too-common anti-pattern of letting successful skunk-works
teams live in isolation too long. There are two approaches I've seen for airing out the skunks
and spreading change wider.

The smiling knife roll

Changing an organization from within is extremely difficult. Most staff were hired to do a specific
job and if they’ve achieved seniority, they’'ve mastered their daily tasks and figured out how to
max out their performance reviews. Few people are excited to change such a comfortable statis.
And in larger organisations outsourcing contracts often act like concrete poured atop bleached
coral.

In these circumstances, brute force and fear is often the fastest way to scale up the team of
skunks. This starts with a tops-down mandate from executives who are deathly afraid of being
“disrupted” by the dog-under-desk startups. Once vendors and consultants with their slides of
startup logo-doom circle through, these executives get that “sense of urgency.” Focused, annual
freaking out is common, but what'’s key is that the executives actually round up budget and
corporate attention to spend on this change.

More than likely, the next move will be to hire an outside maverick who carries a well-cared-for
roll of knives who immediately engages in bureaucratic knife fighting. Internal champions can
work as well and in some more staid, closed cultures may be all that’s possible.

60

http://www.theregister.co.uk/2016/01/15/devops_people_problem/
http://www.theregister.co.uk/2016/05/06/no_escaping_review_boards/
http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/

Either way, what'’s key is slicing away the organisation mould and focusing on building up new
staff and teams who are amenable to change. Otherwise, as so many tales of cowed mavericks
show, nothing happens and you all too soon hear the soft clanking of those knives being rolled
up and shown to the door.

As the new leader builds up their posse, they must also start the hard job of internally marketing
how fantastic this new DevOps stuff is by highlighting the success of relevant projects. A well
planned series of small projects can build momentum and build up the internal folk-lore of
success. Coupled with that, internal conferences with staff from the new teams are often used to
convince the coral encrusted that following new methods might just be a good idea, and even
make their lives better.

Hearing tales of success and, it's hoped, an easier work-life from peers is often the only way to
convince staff. After all, management has always been going on about “change,” and look
where we are now - changing again!

There are uncountable micro-level tactics to discover and fix. Management must discover and
iteratively try to fix these issues rather than relying on teams to heal-thy-self. Cajoling senior
developers to pair program is a good example. Often, senior developers are threatened by the
prospect of sitting at a desk with “junior” developers. Pairing seems to threaten their status as
The Canny Guru who’s grey-beard status is often relied on, for example, to solve Sphinx-level
COBOL riddles.

But here’s the incentive our knife-roll cuts with: in theory, by nature of being a senior developer,
The Canny Guru actually enjoys writing code. At home, they’ve likely Python’ed up some sort of
Raspberry Pi contraption to mist their iguana when the terrarium hygrometer comes up foul.
Instead of being in meetings all day to dispense sage-insights, when the senior developer pairs,
they find that they’re back to writing code most of the day. They return to their old joy. And, if
attending meetings and putting together well spaced out diagrams is their new love, well, it's
clearly time for them to be, er, “promoted” to management.

Organisations are immutable

There’s a handful of case studies from financial companies and government agencies following
the principal | like to call “organisations are immutable.” For those not up on their nerd talk, this
means you can’t change an organisation once it is set up. The sunny side of this, is that you can
still create new ones.

In this method of introducing a new approach to software, like DevOps, a brand new group is
created that operates under the new bureaucratic norms, slowing adding new projects to the
new group. High-level management blesses this new organisation to sweep its arm across a
messy governance table of half drank ticket queues and droning CABs, starting with a tabula
rasa.

61

http://www.theregister.co.uk/2016/10/18/pairing_programming_youll_never_guess_what_happens_next/
http://www.investopedia.com/terms/p/peter-principle.asp

The existing - now “legacy” - organisation continues to operate as needed, but slowly, projects
and people are moved to the new organisation. Service dependencies from new to old are
mediated and hidden behind APIs and facades, trying to decouple the two into a sort of
reverse-quarantine: the old organisation is blocked off from infecting the new group.

The new organisation follows all the new-fangled notions, from the pedestrian practice of free
lunches and massages, to paired programming, to fully automated build pipelines... all enabling
the magic of small batches that result in better software.

The magic of this method is that it avoids having to unfreeze the glacier, namely, the people who
don’t want to work in a new way. Instead of doing the hard work of changing the old
organisation, management slowly moves over willing people, reassembling them into new
teams and reporting structures. The old organisation, though perhaps de-peopled, is left to
follow its waterfall wont.

Publicly, companies have said that something around 30 per cent of people won’t “make it” to
the new organisation. When | talk to executives in less than public forums - for some reason,
always in poorly lit places like bars and parking garages - they say the number can end up
being close to 70 per cent.

The “digital services” agencies created by various governments in recent years are some of the
most documented examples here. Several large corporations have applied this pattern as well,

often calling the new organisations “Labs.” The entirety of the old glacier is far from melted, but
the rate of liquefaction is having actual, real business effect. Who among us, after all, can resist
ordering pizza through a watch?

Success is the best deodorant

Either approach is still difficult and takes time. Based on what I've seen the first year will yield

anything from 10 to, perhaps, 50 applications managed in the new fashion. It could be more if
you're blessed with people and software that is easily massaged into your new process. In the
second year you can expect to up that rate much more.

Changing how a large, 50-plus-year-old organisation with thousands of applications is much
harder than failing to success with all those hats-on-cats applications you see from the the
ramen-fed, high-hemmed skinny jeans set. Once you build up a streak solid wins, though,
introducing DevOps is easier to ripple through the organisation... so long as management
actually does their job of, well, managing.

Originally published in The Reqister, April, 2017.

62

https://www.theregister.co.uk/2016/04/12/land_the_legacy_big_fish/
https://www.theregister.co.uk/2016/04/12/land_the_legacy_big_fish/
https://www.wired.com/2016/04/dominos-anyware-pizza/
https://www.wired.com/2016/04/dominos-anyware-pizza/
https://www.theregister.co.uk/2016/10/07/gds_hand_signals_silliness/
https://www.theregister.co.uk/2017/04/26/ah_i_love_the_smell_of_skunkworks_in_the_morning/

ROl Smoke Bombs and Diversions

At this point in the innovation curve for something like DevOps it's fashionable to start asking
“Where's the Return On Investment?”

Answering that question is always tedious. For the hopeful, starry-eyed practitioner, spitting up
the ROI figures is akin to the irrelevant water-carrying and wood-chopping trials imposed by a
kung-fu master. Except instead of cold rice with snow-white topknots, it's dreary spreadsheets
with pearly toothed finance flacks.

If you’re lucky, your organisation will be dead-set on taking on that “survival is not mandatory”
mindset, ignoring questions like ROI. But, most everyone else has to fill cell range C45:G60 with
all that water and wood.

First, go drink

Your first inclination will be to crack jokes about flossing and Blockbuster. “What’s the ROI on
flossing, you ask? Well, do you like having teeth?” You’ll follow up with erudite commentary on
all the Blockbusters out there who were rearranging the deckchairs on the RMS ROI as it
descended into the icy depths.

This is not helpful. Find yourself some colleagues, get a few pints, and have a laugh play-acting
this out. Once you're back from second breakfast, try some more helpful approaches.

What is this “ROI” you speak of?

When finance and management interrogators ask about “ROI” and “business cases,” | find that
they’re mostly asking three questions:

1. Will this fit in the budget?
2. Are we paying too much?
3. Will this change actually work?

Sometimes they’re asking all three questions, sometimes just the first two. Sometimes they’re
using you to practise their Cenobite impersonation with implements scrounged up from about
the cube-farm. More likely, they’re asking at least one of these three questions.

Will this fit in the budget?

Of all the ROI questions, this is the easiest to answer. If you know the budget, you just need to
figure out how you’ll meet or come under it. When looking at DevOps, this means you'll first
establish the baseline cost of following the “old” way, like staff’s pay, tooling, and the expected

63

http://www.theregister.co.uk/2016/08/24/devops_salary_survey/

cost of fixing screw-ups. Then model how DevOps concepts such as "two pizza teams" and
"reducing release cycles" will lower your costs.

If your teams spend less time communicating with other teams, there’s less time in meetings,
clicking up presentations, and coordinating what to do after the meetings. Communication is
more effective and efficient if you’re all on one, small team.

You want your product teams spending 90 per cent plus of their time on product, but they’re
probably spending more like 20 to 30 per cent. Fewer, silo’ed teams will result in fewer errors
caused by handoffs between teams. Meanwhile, DevOps’ smaller batches of code and weekly
release cycles will increase the resilience of your applications (faster time to recover) and the
productivity of your software (as you iteratively release, observe the use of, and improve your
software’s usability).

Cost-cutting? It's possible...

If you want to pull out the trimmers, also look at staff reductions. Several large organisations I've
spoken with have drastically reduced their operations and QA staff after modernising their
software development and delivery approaches.

You can dress this up by saying those “resources” will be re-allocated to “more high value
activities,” but if you’re slotting in a huge amount of automation and pushing routine testing to
the product team you may find yourself with a sizable thumb-twiddlers' budget.

When fitting into an assigned budget, your ROI answer is on the subject of “doing more with
less.”

Are you paying too much?

We all like a good deal, and can agree that getting fleeced is a poor outcome. You'd like to know
you’re not overpaying. With a process change like DevOps, the tough question is “paying for
what?” There are costs associated with modernising your software approach like buying new
tools and hiring consultants (or “coaches”) to help change your organisation.

When it comes to tools - which usually means software, SaaSifed or otherwise - you're talking
procurement negotiating and producing a proof of concept. There’ll be alternatives for your
development toolchain, for where you run your software (public cloud or on-premises), fees for
middleware you use, and support and maintenance costs.

There are no easy answers, just models and competitor matrixes to work over. The raw tools
here are standard technical tests to prove out the alternatives and the track records of other
users, good and bad.

64

http://www.techrepublic.com/article/how-allstate-boosted-developer-productivity-by-350-with-the-cloud/
https://www.youtube.com/watch?v=VUoj5hNfJ3Y

You might also ask if an outsourcer can do it more cheaply than your organization. Answering
this question requires more of an assessment of the your organisation’s willingness to change,
and not only the staff, but management as well. The change is not easy; executives I've spoken
with estimate that anywhere from 30 to 70 per cent of people “won’t make it”.

Will this actually work?

You've crafted up numbers for a business case, horse-traded your way to a good deal, and
ensured that your people can pull it off. And seemingly, true to Larman’s Law, people keep
insisting on more justification.

Other than table-flipping your way into a new job, I've found three useful tactics here:

1. Other people’s success, first hand - doubt about success tends to revolve more around
“‘we already do that, we're just OG enough to not call it DevOps” and “we’re not good
enough.” Occasionally (and always in comments from you, dear E/ Reg readers) there’s
the cry of “it's an Augean Stables’ worth of offal.” While there’s no end of success stories
when it comes to DevOps, rather than sending an email full of links that'll never be read,
arrange actual meetings between your doubters and credible people from other
organizations who've been successful with DevOps.

2. Hide - creating a “skunk works” is a tried and true method to bootstrap a new process,
ignoring the haters in dry-clean creased dark denim. If you fail, there’s massive risk. But
if you succeed, you've demonstrated that the new way is effective and to be trusted.
Someone might even thank you.

3. Start small - do a series of small projects to prove out the new process. These can’t be
“science projects” and instead need to be something that's small, yet important to your
organization. In doing these little projects, you’re building up credibility for the new
process and also learning how to do it.

What's the ROl on ROI?

Finally, you should assess your own return on your time spent on cleaning out the stables. Will it
be worth your time, personally and professionally, go to all these meetings and hustle up
justifications for all the naysayers? Ideally, the answer is yes, of course, that’'s my job even! But
carefully look at your situation, the political climate in the office, your chance of success, and the
pay off you'll get. If you’re on the wrong side of that Deming quote, it's best to enjoy the deck-top
orchestra while you elbow your way into a lifeboat.

Originally published in The Register, September, 2016.

65

https://vimeo.com/105840087
https://vimeo.com/105840087
http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
http://www.theregister.co.uk/2016/06/23/state_of_devops_survey/
https://www.theregister.co.uk/2016/09/13/return_on_investment_for_devops/

Go DevOps before your bosses force you to. It'll be easier that
way

Some people are making very bold claims about what DevOps can deliver. Here’s one:
“High-performing IT organizations deploy 30x more frequently with 200x shorter lead times; they
have 60x fewer failures and recover 168x faster,” according to the first bullet point of the 2015
annual Puppet Labs State of DevOps report.

With claims like those, managers in all sorts of organizations are starting to sit up and evaluate
“doing the DevOps.” And it’s time to worry.

That’s because, inevitably, those considering and then mandating a new DevOps direction will
invariably have different interpretations of “what is DevOps”. The desired goals and ways of
getting there will be shaped by this understanding and follow from there. For better, or worse.

The problem is magnified because once a new idea has taken root and gained buy-in at
executive level, challenging it is nigh on impossible — until the inevitable train wreck happens.

If you are in an organization where DevOps is in the air it therefore behoves you to make sure
the management fully understands what DevOps entails, and especially understands that it's not
a quick win.

No quick win

Unlike virtualization, which became a quick way to save money with capacity management
optimization, DevOps is not simply a technology that one puts into place to optimize an existing
way of operating. DevOps — and the broader “cloud native” approach to custom written software
development and delivery — is about changing how your organization functions, often along with
which tools its uses, to drastically improve your software. You don’t get eye-popping results like
the Puppet Labs’ reports by simply twiddling some knobs in the stack.

So, before you embark on your DevOps quest, it's good to make sure your organization
understands what DevOps is and ensure that it is fully — nay, smartly — behind it. It's all too easy
to launch DevOps programs based on misconceptions. Let’s look at three of the more common
ones that are easy gut-checks.

66

https://puppetlabs.com/2015-devops-report
https://puppetlabs.com/2015-devops-report

DevOps is automation

The most common misconception is that “DevOps” means simply the use of Puppet, Chef,
Ansible, Salt, or one of the other new automation frameworks. While much of the early history of
DevOps is inextricably tied to these automation technologies, their use is, at most, merely
necessary but is not sufficient for full DevOps.

Instead of just automation, DevOps also includes a very evolved agile style to product
development. Software development is in the name. Without a mindful approach to improving
the actual software being developed, you're merely automating eventual failure — or, at best,
mediocrity.

The creation of a DevOps team

One of the more pernicious DevOps misconceptions is the need to create a separate DevOps
team. The counter-point, here, is that “DevOps” is an end-to-end approach to improving your

organization's software: from product management, to development, to QA, to deployment, to
operations.

One of the chief theories of DevOps is that separating out the roles — and, thus, people — in that
full process introduces more damage than “savings”: each role ends up locally optimizing and
losing site of the big picture. Hence, the constant barrage of “worked in dev, now ops' problem”
slides in DevOps presentations. These separate silos also introduce “waste” in the form of the
communication between teams as software moves through the various life-cycle “gates.” Adding
yet another team introduces even more waste.

The notion that a separate team, or person, handles all the DevOps related concerns belies a
misunderstanding of what DevOps is at it’s core: sweeping changes to how the organization
operates, end-to-end.

DevOps will save you money

Coming from a decade of near alchemical cost savings from virtualization, IT management is
conditioned to think first about cost savings. When it comes to new technology adoption
measuring savings is the easiest, most dramatic, and, thus, most addictive way to show ROI.

DevOps at first seems to have the trappings of a great cost savings initiative. The idea of having
“one team” feels like you're reducing head-count. When crossed with the idea of a “full-stack
developer” — those mythical beasts who can code and do systems management like some short
order cook whose skills range from flapjacks to foie gras — management can quickly start to
salivate at the ideas of getting more from less staff. Confusing DevOps with just automation can
add to the alluring mirage just over the horizon’s edge of quick-savings.

67

http://www.theregister.co.uk/2016/02/04/think_small_not_big/
http://www.theregister.co.uk/2016/02/04/think_small_not_big/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/

While | would argue that cost savings do result from a mature DevOps-driven organization, they
certainly won’t come in the short term, nor will they be easy to model up-front. The “savings” are
in things like quality of software and better uptime in production. These types of savings are all
about “sucking less,” which doesn’t exactly model well in a spreadsheet.

Be the baby, not the bathwater

We’'re very close, if not right at, the apex of DevOps’s “inflated expectations.” This year and
next, I'd expect almost every organization to start asking the question: “How can we benefit from
DevOps?” and putting “strategies” together to do so. The prognosticators at Gartner are
predicting DevOps project failures at a rate of 90 per cent by 2018.

If you are part of staff who's responsible for implementing management decrees, now is the time
to ensure your organisation doesn't get saddled with some misconceived implementation of
DevOps. You — and your organisation — want to be part of the 10 per cent, not the 90 per cent.
I's up to you to make sure that should any bathwater get thrown out, the baby of DevOps
doesn’t go with it.

Originally published in The Register, March 2016.

68

http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.gartner.com/newsroom/id/2999017
http://www.gartner.com/newsroom/id/2999017
https://www.theregister.co.uk/2016/03/09/making_sure_your_bosses_get_devops/

You can't find tech staff — wah, wah, wah.

In a recent survey, the number of executives worried about a skills gap in IT grew from 49% in
2016 to 60% this year. Other surveys shore up this finding as well: a Cloud Foundry Foundation
survey from late 2016 had 64% of their respondents worried about getting the skilled staff
needed.

“Is there a skills shortage? No question about it,” RedMonk’s James Governor told me late last
year, later adding “and we expect it to get worse.”

While the systemic problems that cause a skills gap in “Silicon Valley” are finally being
consternated over, in “the real world” outside of tech companies, the problem is likely even more
dire.

Some (*cough* Oracle *cough®) are of the opinion that you shouldn’t worry about skilled IT staff
(particularly developers) and should instead focus on, you know, managing the procurement of
more software. This opinion isn’t too well reflected in my Friedman’ing in-and-out of stuffy
conference rooms. Leadership tends to be more interested in improving their software
capabilities rather than outsourcing them (because, you know, outsourcing has worked out so
well in the past).

How might this “skills gap” be addressed?

Bucolic programming

Location is one of the first self-imposed constraints on the supply of IT talent. All too often,
companies like to hire in the big, hustle-bustle cities. There’s an initial logic to this: just like a
lumberjack goes to where the wood is, a tech company will go to where a it thinks a pool of
talented people are.

Fairly quickly, of course, this cements you into one locale which quickly becomes congested
with competitors looking to out-benefit and poach your hard won staff. “Well, our free coconut
water is organic! And we have three fridges full of craft beer!”

It turns out there’s there’s plenty of cities full of people who know how to computer. In the past
month I've been to London, Riga, Kansas City, and Auckland. While the first is certainly, you
know, a big deal of place, the last three wouldn’t commonly be thought of as “hotspots” for tech
talent. The locals said that, sure, hiring was hard, but not impossible. From what | could tell,
each city was overflowing with as many foul tasting, locally crafted IPAs as any recruit could

69

https://www.scribd.com/document/336827428/State-of-the-CIO-2017#fullscreen&from_embed
https://www.cloudfoundry.org/developer-gap-2016/
https://www.cloudfoundry.org/developer-gap-2016/
https://soundcloud.com/pivotalconversations/filling-the-developer-skills-gap-with-abby-kearns-and-james-governor
https://soundcloud.com/pivotalconversations/filling-the-developer-skills-gap-with-abby-kearns-and-james-governor
https://www.theregister.co.uk/2017/10/12/oracle_must_grow_up_on_open_source/
https://forums.theregister.co.uk/forum/1/2017/06/29/devops_hustlers/#c_3220617
https://forums.theregister.co.uk/forum/1/2017/06/29/devops_hustlers/#c_3220617
http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
https://www.horsesforsources.com/traditional-outsourcing-run-out-of-value_031917
https://www.horsesforsources.com/traditional-outsourcing-run-out-of-value_031917

want to orally ruminate over while they figure out how to install kubernetes from source late into
the night.

Pay more to drive supply

A popular to encourage supply growth, of course, is to offer higher prices. In the US. “normal”
developer pay seems to slide somewhere between $80,000 just over $100,000. That's already
a pretty lux price, but it reflects the high value of the work done. And, if people are hard to find,
perhaps the price isn’t lux enough.

If talent is short, perhaps organizations should pay more. Scarce talent demands high pay. After
all, companies seem happy to pay those elusive CEOs and VPs top dollar to attract the right
talent, eh?

But, let’s be a bit real: telling companies that they should be spending more probably isn’t going
to be well received.

Training

Instead of find just new staff, you could also increase the productivity of your existing “supply” by
better training your existing people. Management often believes they’re doing enough training,
while staff consistently believes the opposite.

Further up the staffing pipeline, coding "bootcamps” are promising. Early results are proving out
the theory that IT skills can be taught in a vocational setting, instead of needing the highly
vaulted, but high cost Computer Science degree.

For example, as she told me recently in a panel discussion, coming from the world of musicals,
Chloe Condon drank from the fire-hose of a 12 week boot-camp and now finds herself nicely
employed: “For people like myself, who, maybe have had a whole career before going into
computer science there are definitely ways to ramp people up.”

Widen the hiring pool to drive supply

Supply is also low because we’ve been narrowing our filters. There are, after all, only so many
male programmers in coffee stained Tiny Rick t-shirts, wobbling atop flip-flops, to go around.
With some tweaking on demographics, you'll find there’s of people who’d love stuffing
themselves into a too-old-for-that t-shirt to type up bash scripts and kotlin for you. (If you're
lucky, they might actually dress like an adult too - bonus!)

In addition to making sure your recruiting isn’t limited by biases, it'd be nice if people actually

wanted to work at your company because the culture was welcoming. As Governor put it, there
are plenty of people you could be recruiting, but “you’re not talking to them, in a way that is

70

https://www.glassdoor.com/Salaries/software-developer-salary-SRCH_KO0,18.htm
https://www.glassdoor.com/Salaries/software-developer-salary-SRCH_KO0,18.htm
http://blog.indeed.com/2017/05/02/what-employers-think-about-coding-bootcamp/
https://twitter.com/ChloeCondon
https://twitter.com/ChloeCondon
https://twitter.com/ChloeCondon

appealing. And you're not creating an organization that either encourages them to join or will
sustain them in enjoying the company when they arrive.”

As the past few years have shown, there’s still an offensive culture at too many companies that
can easily repel talented people whose skills were once considered so priceless.

“There is no talent shortage”

“I get frustrated having coming out of the job search as a junior engineer only about a year ago,
everyone’s always saying ‘where are these unicorn - this diverse talent out in the universe?”
Condon said of recruiting efforts that are too narrow, “A lot of places literally aren’t letting them
through the front door by requiring a CS degree” and the other trappings of a stereotypical
developer.

With the right mix of training and widening our recruiting filters, there’ll be plenty of people out
there to fill everything from our dreary cube-farms shaded by stacks of TPS reports to the
overly-lit open floor-plan offices smelling of leftover kombucha. The supply problem may never
be solved perfectly, but it can certainly be made better. The talent is out there.

Originally published in The Register, October, 2017.

71

http://www.theregister.co.uk/2017/10/19/it_staff_supply_problems/

Removing grumps from the DevOps punchbowl

My editor at The Register suggested changing “grumps” to “Robin” so as not to offend Register
readers too much, which | did for publication. That was probably a good idea. -Coté

You know the grumps. Here you are, doing the DevOps so hard you’ve broken the spine of your
DevOps Handbook and Robin won’t get with the whole culture thing. They sit in the stand-up
meeting, arms crossed, each morning mumbling “well, | wrote some code” and take that long,
loud sip of tea. A grump will sabotage your improvement dreams. Something must be done.

Maybe they’re right: change is exhausting

Perhaps your grump has it right. This round of transformation might be the same squiggly pit of
offal as the ones that came before. Throughout their career, they’ve been force marched
through several searches for excellence and are now ready to ensconce themselves in a lovely,
little cottage curating their model-train collection. Change is tiring, especially if every five you
have to change again because the old system didn’t work.

Sure, DevOps (and the broader meatware of agile and lean software) emphasize continuous
learning, change, and adaptation as part of the process. That might make you assume that past
improvement initiatives were static - as is often the positioning of The New Methodology. To be
sure, whatever the process du jour, an organization tends to calcify, cementing in tickets and
change advisory boards like rebar to keep the stable and static. However, it's not like anyone
who comes up with an IT methodology sets out to make a crappy one. ITIL doesn’t kill good
software, people do.

We are told by the high-performers of DevOps that empathy is an important tool. As much as it
hurts with grumps, let’s try. The grump likely had an incident, if not many, of transformation
betrayal and have since learned the proper way to ride the stack-ranked wave without drowning.
They have no reason to trust that it'll work this time and be worth the risks of trying something
new.

Using a trick from the ancient tome of transformation. Leading Change, look at the alignment of
your HR policy: “Performance appraisal. Compensation. Promotions. S