
Surviving DevOps
Coté, 2018

1

https://twitter.com/cote

I been out on them choppy waves
and it's hard to say where this land
begins and that water stops.

2

Foreword
In 2005, I was roaring along with my fifth startup. I had built a consultant company, composed of
30 of the world’s top engineers, working with the IBM product portfolio called Tivoli. Just for
comparison, IBM had over 10,000 consultants, yet we still had more Tivoli certifications. In fact,
at one point in the early 2000’s, we won an award for the most IBM Tivoli Enterprise Certified
consultants. To give you an example of how good we were, IBM’s global consulting services
would call us for training before they would call their own internal or commercial training classes.
In a 10 year period, I had trained over 10,000 Tivoli professionals. When the Department of
Defense Information Systems (DISA) called IBM needing a Tivoli trainer to teach classes for the
Navy’s Pacific fleet, specifically the NIPR/SIPR systems, I was the only person on the planet
that was certified in all the classes they needed from a trainer. I was the king of the world. At this
point, I had also co-authored 7 books on Tivoli. Needless to say, I was considered a
world-renowned expert on Tivoli.

I am telling you all this because, for reasons I won’t go into, only one year later, I was broke and
had to move my family into my brother-in-law's basement. It’s the old cliché: whatever doesn’t
kill you, makes you feel really crappy, but eventually makes you stronger. Forced to bootstrap
myself again after 20 years in this industry, I started with one specific goal, to not meet the same
people on the way up as I did on the way down. In order to achieve my goal, I decided to look at
alternative tools to the Tivoli portfolio, eventually focusing on open source tool alternatives to the
Tivoli tools. I decided the best place to start was to create a blog. Having come from a world
where I worked exclusively with enterprise proprietary software, I found it easy to be cynical,
while also incredibly intrigued when making comparisons. Nagios and Puppet were easy targets
to start with. Sometimes I would make fun of, and other times, I would give serious comparative
analysis.

After a few months, I started getting some followers on my blog that seemed to have a similar
sense of humor as mine. Some of them would make comments, and a few would actually create
links or talk about my posts on their blog. One of these dudes was called Coté. Although,
whenever he quoted me, it sounded way cooler than my original wording. Mind you, in the
Tivoli-o-Sphere, there were no one-named people, so I decided to proceed with caution when
responding. When I asked another new follower and kindred soul, Mark Hinkle, “who the hell is
this Coté dude?” Mark pulled out his phone, called him, and made an introduction. Before long,
Coté and I became blood brothers and eventually ran a podcast together for around 5 years
called The IT Management Guys. Imagine the Car Talk guys but only we talked about open
source, cloud, and sometimes spending 15 minutes talking about the best hamburger we had
that week. Why? Because we could.

So before telling you my thoughts about Digital WTF, let me start by saying that having a
conversation with Michael Coté is a rare, intellectual, and witty treat. It’s kind of like when you’re

3

reading a great book, and you start worrying because the ending is approaching and you enjoy
it so much. In other words, he is fun to listen to, and even more fun to read. It was no surprise to
me that when I was given an early copy of Digital WTF, I freaking loved it. Michael Coté
describes his Digital WTF as a paste-pot of interesting “Digital Transformation” stories, and with
that Coté signature style, he keeps you guessing whether he’s laughing with us or laughing at
us. Most likely both. At one point in my early career, I lived in Texas for five years, so when
Michael sneaks in his little Texan’isms like “cottoning on to new technologies,” I get a bonus
giggle. However, you don’t have to be from Texas to get a kick out some of his
non-colloquialisms like “hey, get off my back, tapered sweatpant milinums” referring to
Starbucks as a software company. If a chapter that includes phrases and names such as
meatware, devops, Kent Beck, Melvin Conway, The Mythical Man Month, and Google SRE all
peak your interest then this is definitely the book for you.

I often say when talking about my journey over the past 10 years, i.e., my post-Tivoli adventure,
I have had the privilege to get to know a handful of incredible people. I joke that I feel like I
should be paying them when I have conversations with them, and Coté is most definitely part of
this group. So let me leave you with this, if you still are not clear on how much I recommend this
book, I will be buying one of the first commercial copies of Digital WTF even though I was given
a free one for early review. Why? Because he’s Coté.

Botchagalupe
a.k.a John Willis

4

https://twitter.com/botchagalupe

Preface
I was reading a Mencken biography a while back, Disturber of the Peace. A book which is,
magically, available as an audio version: there’s something about hearing Anthony Heald’s
rendition of H.L. Mencken’s cigar chomping voice that’s comforting. Mencken wrote an endless
stream of articles in-between editing his various newspapers and magazines. To make extra
money and compendiums of his articles for easier consumption, he’d often “get out the scissors
and paste-pot” to create a “book.”

As a side note, while Mencken is, no doubt, an important figure in American letters, each time I
try to read his material, I mentally file him away on that shelf I call “things to read when I have
nothing else to do.” This shelf, rests, no doubt, right next to my death-bed. I’m often stricken
with the claustrophobic fear that once I become bound in a nursing home, my body so frail and
sick that I’m reliant on my new family of nurses to accomplish the simple task of rolling over, that
my mind will eat itself alive because I won’t be able to read and consume information. Perhaps
all this voice-activated technology will pay off them: hopefully it’ll respond to geriatric muttering.
“Alexa! TURN. THE. PAGE….TURN. THE. THE...NURSE!!!”

But, back to the present day, where I still have most of my faculties.

Times have advanced and we no longer need scissors or a paste-pot. We have computational
cut-n-paste! Many - perhaps too many - books are composed of blog posts munged together -
not unlike this one. I usually think of these books as rather like cheating, and, not very good.
Despite this, there are good ones, The Hard Thing About Hard Things stands out, and, from the
pre-Internet age numerous Hunter S. Thompson “books” which were themselves paste-pots.

Never one to shy-away from personal hypocrisy, that’s exactly what this is, dear reader. A digital
paste-pot of blog posts, columns, and other “small things” I’ve written over the years. Somehow,
I ended up writing for a living, first programming and then more traditional forms, along with
podcasts. On the Internet all this writing gets lost and you’re never really afforded the chance to
see the ongoing narrative. Here, primarily to see that for myself, I’ve collected together some of
my pieces. They’re heavily weighted towards things I’ve typed up in recent years at The
Register. Some common themes have emerged: DevOps, programming, vendor-sports, and
enterprise software.

Anyhow, I loathe reading through front-matter when starting a book. Enjoy the typing!

-Coté, Amsterdam, Fall 2018.

5

http://amzn.to/2tsXWGQ
http://amzn.to/2u3L2R9
https://www.theregister.co.uk/Author/Michael-Cote/
https://www.theregister.co.uk/Author/Michael-Cote/

Digital Transformation: WTF?
At some point the phrase “digital transformation” must have meant something specific, even
pragmatically useful. Now, it means nothing in that it means everything new and helpful you’d do
with computers. I remember hearing the idea of a “system of engagement” back at an Adobe
analyst summit in 2008 or 2009. They even brought in Geoffrey Moore who’d just recently been
putting together the idea of leveraging (oh, pardon me - I’ve been eating a rich diet of
enterprise-speak recently) user-centric software to more closely know and sell to your
customers. Thanks to web applications, mobile apps, and something no one remembers called
Rich Internet Applications (RIA), you could monitor and analyze every single thing your
customers did and even tailor your sales offerings, pricing, and application features to them.

Much of the early work here fell under the idea of digital marketing: figuring how to use highly
targeted ads in Google, and later Facebook, to perfectly target promotions. With deep user
tracking on the back-end and even “big data” analysis, you could start to know your customers
like never before and sell to them more effectively, even stalking them across the Internet.

Seemingly overnight, all of the IT industry's efforts were dumped into “social” and “mobile” to
use these new tools to sell to customers. As Jeff Hammerbacher quipped back then, “the best
minds of my generation are thinking about how to make people click ads.” The idea of “Chief
Digital Officer” was born.

The dazzle wore off quickly. These tools were so easy and effective to use that everyone could
do it quickly. With this new, targeted and intimate channel to reach customers, existing brands
glommed onto selling candy and toilet paper in Facebook, new direct-to-consumer brands from
razors to bras thrived, and, as ever, Amazon was rocketing along like Leonard Smalls across
the desert highway.

Once the competitive advantage of digital marketing ossified - becoming just what you needed
to stay keep your head above water - “digital transformation” was adrift, searching for a tactical
meaning beyond better advertising. What I saw, and continue to see, is that digital
transformation now means using agile principles, cloud automation, and user-centric design to
improve your software capabilities. More than just incremental improvement in existing
capabilities, you do this transformation to improve your business.

These pieces discuss that new meaning and aspiration of “digital transformation.”

6

https://www.bloomberg.com/news/articles/2011-04-14/this-tech-bubble-is-different
https://blogs.gartner.com/andrew_white/2017/03/13/the-changing-face-and-scope-of-the-chief-digital-officer/
https://shift.newco.co/towards-a-bra-free-instagram-experience-3e43273b611f

Digital transformation?! Your boss's PowerPoint New Year
resolution, deconstructed

Hey, it's the new year. Time to let those annual planning slides shimmy over you, washing away
the dangling tickets of last year like a purifying clean install. Somewhere amid pictures of robots
shaking hands with meat-maws and millennials writing on glass walls will, no doubt, be the
details of your firm's "digital transformation".

At first, you may be shocked to hear that you're so analogue – weren't we up to our eyeballs in
digital last year when we updated all the desktops and finally enabled the CEO's iPhone to
check email? Then, as Dear Leader flips through some eye-popping figures around Uber and
Tesla (all the money is in multi-sided platform businesses overflowing with customer data, now,
you now), you'll start to think: "Oh crap. They're serious. Erm. So, what exactly is 'digital
transformation'? (Should I be updating my LinkedIn?)"

As my writing during the past year attests, I spend much of my time surveying the kipple of
decaying digital transformation efforts. They always start with grandiose trend chasing – AI!
Blockchain! IoT! The Gig Economy! Augmented Reality! Drones! – but they end up with
something more simple: just using software to automate previously manual-driven business
processes.

It's certainly not as sultry a strategy as asking Alexa to machine-learn her way into estimating
how many nappies you'll need to order fortnightly based real time feedback from nappy-can
sensors in your demographic...but more pedestrian applications of software will likely prove
better at generating cash for your business.

“Digitizing” is the new paperless & humanless
A project to “digitize” the green card replacement program in the US provides a good example
of the simple, pragmatic work IT departments should be curating for 2017. Before injecting
software into process it'd "cost about $400 per application, it took end user fees, it took about six
months, and by the end, your paper application had traveled the globe no less than six times.
Literally traveled the globe as we mailed the physical papers from processing center to
processing center.”

After discovering agile and cleaning up the absurd government contracting scoping (a seven
year project costing $1.2bn, before accounting for the inevitable schedule and budget overruns),
a team of five people successfully tackled this paper-driven, human process. It’s easy to poke
fun at government institutions, but if you’ve applied for a mortgage, life insurance, or even tried
to order take out food from the corner burger-hut, you’ll have encountered plenty of
human-driven processes that could easily be automated with software.

7

https://www.shutterstock.com/image-photo/business-human-robot-hands-handshake-artificial-267582539
https://www.shutterstock.com/image-photo/business-human-robot-hands-handshake-artificial-267582539
https://www.shutterstock.com/image-photo/two-concetrated-young-businessmen-talking-writing-529728970?src=8vl4c5BifEFO5-VDuoufHg-1-29
http://www.theregister.co.uk/Author/3107
http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/
https://backchannel.com/the-tiny-team-taking-on-a-massive-reform-of-government-it-b5f87b85e2dc#87b9

After talking with numerous large organizations about their IT challenges, to me, this kind of
example is what “digital transformation” should mostly about, not introducing brain-exploding,
Minority Report style innovation. And why not? McKinsey recently estimated that, at best, only
29% of a worker’s day-to-day requires creativity. Much of that remaining 71% is likely just
paid-for monotony that could be automated with some good software slotted into place.

Add robots here...

In retail and banking, digital tends to revolve around omni-channel programmes (selling our
products in more ways than just the till and online, like delivery), adding in more analytics (help
us find more paths to the customer's wallet), and cleaning up the crufty, slow-moving application
stacks of the past. The last one usually goes under the banner of "enable innovation", which
though vague and unhelpful usually just means "burn down the legacy stacks and slam in all
that cloud stuff so we can actually deliver software faster".

Others will summarize the goals of digital transformation as increasing an organisation's
intelligence, agility, and customer-centricity. But it all amounts to the same thing: spinning up the
IT Morlocks to actually get out there and provide new, software-driven capabilities to the
business folks. These dry-cleaned Eloi then direct their new toys to either cut costs by becoming
more efficient or grabbing more money by inventing new business models.

Interestingly, "mobile" is often further down the list; I suspect this is because mobile was the
craze years ago and companies have either finished out their programmes here, or became
exhausted trying. That said, I'd wager that most of these efforts were to simply reskin existing
web-based apps into native mobile apps. There's still plenty of room to introduce brain-dead
simple but clearly useful features like letting people turn off their credit cards when they think
there's monkey business afoot after their teenager scuttled off to the mall. Just unlocking your
hotel door with your phone ("the Internet of door-knobs") or glancing at your watch to see which
airline seat you'll be stuffing yourself into does wonders for making life suck less.

Further back, "digital" has clearly ceased to mean "the social" as it seemed to when the term
emerged years ago as companies were scrambling to figure out how many pictures of
sandwiches they should post a day on Instagram. Hopefully you've long figured out the right
times of the day to tweet about your upcoming deals on laundry detergent and your most recent
thought-leadership think-pieces on industrial-grade cement and ethically sourced goose down.

Go digital without going crazy.

When it comes to the Making My Life Less Tedious Department, it's encouraging that
companies are cottoning on to new technologies. 451 Research surveys have found that during
the past year, companies self-identifying as "early adopters" has doubled, up from a scant 9.5

8

http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/four-fundamentals-of-workplace-automation
http://www.theregister.co.uk/2016/04/12/land_the_legacy_big_fish/
http://www.theregister.co.uk/2016/05/20/continuous_lifecycle_review/
https://451research.com/report-short?entityId=90066&referrer=marketing
https://www.finextra.com/pressarticle/66251/first-national-bank-app-comes-with-debit-card-controls
https://twitter.com/dberkholz/status/819289676779503619

per cent to 17 per cent. This is still paltry when you look at all the opportunities to automate
those boring, low-value businesses processes, but at least it's progress in the right direction.

Still, that same outfit says that a whopping – but not unexpected – 75 per cent of organisations
are on their back-foot when it comes to planning out their digital transformation: they're just now
sorting out which slides to have in the back-up section of their digital transformation decks (I'd
suggest any involving people wearing a VR headset, but I don't want to tell you how to live your
life).

And if you're facepalming about how obvious and inane it all is, yes, folks: that's the point.

With all the breathless pixels spilled on AI, IoT, machine learning, my favorite darling "cloud",
and other haunting tales of "digital disruption", it's all too easy to whack through the digital
miasma and end up with a suite of future-shock ready "solutions" that have little to no bearing
on your daily operations.

When your well-heeled strategy navigators are done vellicating through their master 2017
strategy deck, try your best to pull their eye-holes closer towards the basics that, while boring,
will have a more profitable effect on your businesses and your customers' lives.

Originally published in The Register, January, 2017.

9

https://451research.com/report-short?entityId=90066&referrer=marketing
https://451research.com/report-short?entityId=90066&referrer=marketing
https://twitter.com/cote/status/813161318912053248
https://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/

You may not be a software company, but that isn't an excuse to
lame-out at computering

I don't begrudge organisations who want us to start calling them "software companies".
People are free to do whatever they like with such trivial labels, I guess. But the tick of
such labelling has always been an annoyance to me.

No, you're a company that uses software effectively
Most companies saying "actually we're a software company" are anything but. They
very rarely sell software as their core business. Of course, I'd never shy from bombastic
overstatement (or too much redundancy). These companies are trying to make a
valuable point: they're now using custom-written software to do more than digitise
paper-driven, manual processes and customise their ERP systems into cement. They're
now able to program their business.

Everyone's favourite pizza provides a hot, steaming example. While Domino's boasts
that you can order pizzas from your wrist and Papa John's makes it lickity-split easy to
customise your pizza on an app (for some reason, you can't add anchovies except by
phone – file a ticket!), these two companies are still fundamentally, well, pizza
companies.

Starbucks has long been an example of a company comfortably creeping up the "digital
transformation" curve. Their software-driven orders have been so successful that mobile
orders have been known to clog their meat-space. Still, when I go there (hey, get off my
back, tapered sweatpant milinums! I just want some coffee!), I'm happy to find coffee in
my cup instead of a numbered stack of those mini CDs begging me to click on
"startup.exe".

Do you even computer?
In an era where Amazon and its three friends are trundling through everything, it's easy
to get wrapped up in the need to transform to a software company. That said, would you
even call Amazon a software company? Clearly, in their cloud business they are, but the
retail business is more about ruthlessly creating and using software to, well, sell stuff.
You can throw a "multi-sided platform" flashbang into the mix to befuddle this point, but
at the end of the day, Amazon's nickname, "the everything store", tells you exactly what
the company is.

10

https://www.theregister.co.uk/2017/03/03/pizza_roaches_and_java/
https://www.wired.com/2016/04/dominos-anyware-pizza/
https://www.geekwire.com/2017/starbucks-tech-company-coffee-giant-investing-heavily-digital-innovation/
http://fortune.com/2017/01/27/starbucks-mobile-orders-slowdown/
http://fortune.com/2017/01/27/starbucks-mobile-orders-slowdown/
https://www.ted.com/talks/scott_galloway_how_amazon_apple_facebook_and_google_manipulate_our_emotions

Finance has for a long time used software of all sorts – custom and off-the-shelf –
effectively and it's little wonder that they're one of the few industries to have quickly
staved off Fear of Silicon Valley Eating Your Lunch. While incumbent banks have been
slow to adopt mobile payments, they're now spinning heads at how quickly they're
catching up. Banks have a good track record of acquiring pesky finance startups and
they've been stuffing themselves to the gills with nerds. Recently, Goldman said that a
quarter of their employees are engineers, supporting over 1.5 billion lines of code. JP
Morgan Chase has somewhere in the region of 19,000 developers.

Banks have always understood IT well enough to gorge themselves on it; many an IT
vendor salesperson has filled their wrist with heavy watches and pegged out their
retirement accounts by going up and down Wall Street. Sure, I'll concede that you can
get all intellectually crafty and point out that money is, largely, just numbers in a
spreadsheet somewhere, but it'd be odd to call these banks "software companies".

Creating software is the art of failure...
The problem with calling yourself a software company – beyond the obvious fact that
you're not selling software – is that you must now think and act like a software company.
Software companies, especially young ones that are no longer just extracting
maintenance fees, are built around one of the core problems of innovation: failure.

Failure in the software startup world is enshrined in the idea of failing fast. Software
companies have an unnatural comfort with failure. They continually throw software at
the wall to see what sticks, observing how people use the software and tweaking it to
get the features just right. There are all sorts of fancy phrases like "product/market fit",
but at the end of the day it's plain old common sense: you rarely get it right the first, or
even 31st time.

Funding software is driven by the idea of failing – the more the better, even, so long as
it's quick. Venture capital's model spreads risk over numerous startups, hoping for that
one giant payoff. The creation of new software is an extremely risky business. While
figures like 90 per cent failure rates seem at first astounding, after a few decades of
anecdotes of startup failure across the industry (and at least two myself), that 10 per
cent success rate starts to look amazing.

Companies outside of the technology world are ill prepared for this kind of
gut-wrenching ride. Expectations are more incremental in business improvement rather
than transformative: if we put more cash into our existing business, perhaps making it
cheaper to run in addition to simply selling more of our product, we can increase our
return on spend. You throw together a business a case with the audacious notion that

11

https://cote.io/2017/05/07/banks-are-handling-disruption-well/
https://www.economist.com/news/special-report/21721505-relationship-between-banks-and-technology-companies-becoming-increasingly?frsc=dg%7Cc
https://www.americanbanker.com/news/unexpected-champion-of-public-clouds-jpmorgan-cio-dana-deasy
http://mailchi.mp/gothelf/x6mlwvrmob-1184849
http://www.theregister.co.uk/2016/09/13/return_on_investment_for_devops/

you know how much your new venture will make in the future and how much it will cost
to get there. Thus, you can figure out the return on investment, or "ROI", that snipe that
finance people make unsuspecting nerds hunt out in the Forest of Finance. A seasoned
software innovator would sniggle at the notion that you'd trust such figures: hurtling into
the unknown can't be put into a spreadsheet.

That all sounds daunting, but it's good to whiplash back to the fact that doing software
actually is core to succeeding and surviving in business. While "that's fine for Amazon"
may seem to apply to its profitless chewing up of every industry except mining and
cement manufacturing (so far), their business and others' prove both the value of
creating a programmable business, and that it's actually possible to do so. You just have
to know what you're getting into and structure your executive minds correctly.

... so get started failing
Judging by surveys that show a still slow adoption of "digital transformation", there's
likely a good five or even 10-year window open in various industries to become the
"actually we're a software company" of your industry. Estimates vary, but surveys are
showing that something like a third of organisations are actually doing anything about
improving their software. The field is wide open for companies to make themselves
more programmable by fixing how they do software. Now is the chance to grasp at
some new innovation levers and actually do something different with your business.
Either that, or look into Big Cement.

Originally published in The Register, January 19th, 2018.

12

https://marketing.prophet.com/acton/media/33865/altimeter--the-2017-state-of-digital-transformation
http://www.theregister.co.uk/2018/01/19/digital_transformation_better_software_practices/

13

DevOps, Agile, & All the New Meatware
I’ve spent much of my career observing and commenting on how organizations (businesses and
governments) write, use, and care for custom written software. This is distinct from “packaged
software,” sometimes called “Commercial Off the Shelf Software” (COTS): that software you buy
and install. When you shop online at Amazon, get paint mixed at Home Depot, or sign-up for
insurance in an Allstate office, you’re interacting with software those organizations wrote and
run themselves.

In the “cloud” era, where the toil of running your own software in your data centers you can
easily shift your applications over to SaaS versions. While the costs may not always be cheaper,
the overall cost of ownership does lesson - you no longer need all those operations people to
care and feed all the hardware and ongoing updating of on-premises software. In theory, you
break the problem of slow upgrades as well: SaaS companies tend to release new software
multiple times and year and don’t let customers stay on old versions.

As those applications move to SaaS models, the question becomes “what value is IT to our
organization?” At one point, I’d bandy about the formula “IT - SaaS = what?” The answer, of
course, was writing your own software, as I wrote in a report 451 Research back in 2014:

We believe that application development is, indeed, a vital and valuable part of the
industry: our theory is that the majority of cloud spending originates with software
developers as the prime movers. Applying the formula 'IT - SaaS = what?' it increasingly
seems the case that the 'what?' is custom-written software for ISVs, SaaS and
increasingly companies like Nike and Starbucks that are relying on in-house software
development for new products such as the Fuelband and mobile payments. Starbucks,
for example, is estimated to have pulled in $1bn in sales from its mobile app.

So, you spend the bulk of your IT resources (money, time, and attention) on hordes of
developers, designers, and product managers in place to create “programmable businesses”:
finally delivering on the dream that how an organizational functions could be coded and
improved each week, if not day.

This mode of operating, of course, requires all sorts of changes in technology and people:
hardware, software, and meatware. For whatever reason, most of this kind of thinking goes
under the heading of “DevOps,” a curious mixture of agile software development, high scale
operations, and organizational process. The last is usually called “culture,” but I tend to think of
it as just “stopping doing dumb shit.”

The pieces here comment and counsel on the “what?” in that hokey equation of mine.

14

https://451research.com/report-short?entityId=80396

From dancing bears to blameless post-mortems - My History of
DevOps
“The talks get a little repetitive, don’t they?” she said as we were walking out of the elevator and
through the lobby, escaping the latest two-day DevOpsDays nerd fest. Unable to resist the urge
to mansplain, I meekly volunteered that most of the attendees are first timers, so, you know,
maybe it’s new to them. Upstairs someone had said they’d like to see more technical talks, and
less, as they’re called, “culture” talks. Of course, I hadn’t attended any of the talks because, you
know, a thought lord like myself goes to many of these and has seen “all the talks.” Even I’m
sick of all this culture stuff!

Everything was going well until the people showed up
This emphasis on “culture” is well known to induce agenda and presentation nausea. For
example, the most fashionable architectural style of the moment starts with humans: one wants
to do microservices to take advantage of how humans can’t help but build systems that mimic
how they organize themselves and, thus, communicate with one another. It’s all people, the
latest microservices deck-flipper will say.

And then there’s handling failure: instead of (only) hardening systems so that they never fail,
accept that they’ll always fail, and rapidly learn from failure, even relishing and rewarding it.
Failure is learning, comrade! This push to improve by failing brings about the “blameless
post-mortem,” perhaps the most baffling concept for the sassy old-timers in the glasshouse.

In the tech industry, we’re never really sure which is more important: the tool, or how people use
the tool. There have always been at least two humans involved, the builders and the users. The
builders are the ones who create the software: developers, designers, operators, QA staff,
product managers. And, of course, there’s the people who actually use the software, the users,
sometimes called “the customer,” especially when it comes to consumer tech.

The Hyborian age of computing
Before the recorded time of the web, The Mythical Man Month emphasized the best way to
organize developers, namely in something analogous surgical teams - a sort of great man
theory. Getting the right builders in place was key to great software. Of course, much revived
now, there was Conway’s observation, drawn up into a “law” that (put slightly wrong) said
software architecture will model the structure of the organization that created it. Getting software
to work well and do a job was something of a dancing bear for a long time: the quality of the
bears dancing was not the axis of judgement, the fact that the bear could dance at all was the
point!

15

https://en.wikipedia.org/wiki/Conway%27s_law
https://en.wikipedia.org/wiki/Conway%27s_law
https://codeascraft.com/2012/05/22/blameless-postmortems/
https://codeascraft.com/2012/05/22/blameless-postmortems/

In response to this, you saw a hoard of “usability” experts descend on the land. Here there were
things like one way mirrors, user interaction testing festooned with cameras recording the user’s
every move. It was expensive, and slow. And in most cases, the results seemed trivial: this
button’s text should be bigger; no one understands this error message; the configuration wizard
should probably have less than 30 panels.

Nonetheless, the cat was out of the bag. The technology was now good enough that we could
pay attention to how well actual users - humans - can use this software to get things done.

Things get extreme
Around this time, in the ‘90s, early notions of agile software development formed. Any history of
agile is fraught with a parade of agile’splainers with talk of Boehmian spirals, roses, and wikis.
That’s fine, and delightful over some snifters, but let’s simplify it. In 1999, of Kent Beck’s
eXtreme Programming Explained described a method that integrated the builders and users
together in a novel, just crazy enough to work way. It crystallized while working on Chrysler’s HR
system, so it certainly had “enterprise” chops: this wasn’t some pizza-based method for creating
new Space Quest episodes. It was for real jobby-jobs!

One of XP’s core insights is that we have no idea what our software should actually do, and
especially how it should be implemented, until we start trying. Rather than imaging the
requirements a priori, it’s only through an ongoing conversation with the user that we’ll discover
the right features. To do this, you would slice down the release window to something like a week
incrementally co-innovating with the users, creating small pieces of functionality and asking
them “whatdya make of that?” You’d conquer the unknown by shipping, and changing your
approach as you learned more.

To do this, you had to do less each cycle, automate quality control with tests, and optimize the
labor of the developers with pair programming. Even more bonkers, you’d pluck someone from
“the business” - or even actual users! - to embed in the team, to be the voice of reason and fight
for the users, as they say.

These ideas ruffled the feathers of contemporary practitioners to no end, they’d scoff and call
agile people “cowboys” and other such derogatory grunts. “Agile” seemed bananas. Instead,
people trusted their ability to predict what the software should do, confident that they could
maximize requirements fidelity and quality far beyond than those absurd, agile short release
loops.

Converting cowboys to suburbanites
Nonetheless, as failures continued to rack-up with this “big-up-front” approach, people kept
returning to those tales of success from deep in the wild-west of agile. With a few revs and
splattering on some enterprise seasoning, the precepts of agile slowly became what everyone

16

https://www.linkedin.com/pulse/project-management-failures-standish-chaos-report-2015-dunbar
https://martinfowler.com/distributedComputing/thud.html
http://www.drdobbs.com/architecture-and-design/the-non-existent-software-crisis-debunki/240165910

was doing. At least, what people claimed they were doing, ongoing surveys on agile practices
actually in use continue to show slow adoption over 20 years later. Everyone’s agile in spirit!

Early on, in 2001, the agile manifesto codified a mantle of principals, all wonderful sounding and
terribly humane. For my money, the crowning achievement was the idea to value “responding to
change over following a plan.” In other words, as that hard-working, humble golden retriever put
it: I have no idea what I’m doing.

Among many competing agile thought-technologies, Scrum won out. There are many possible
reasons why scrum was so widely and commercially successful: perhaps because of its highly
structured nature, perhaps its training and certification system, and maybe because it actually
worked! Many organizations still eagerly tell me how many certified scrum masters they have as
a metric of how improved they are.

Customers are people too
There’s an often forgotten milepost at this point, a strange little book called The Cluetrain
Manifesto from 1999. The cadre of authors posited that the web was rapidly breaking down any
geographic barriers and asymmetric strategies that enterprises used to retain and cajole
customers. Things like reviews in Amazon and using eBay to find anything you wanted across
the world broke down long cherished strategic controls companies relied on to maintain market
share. It was a sort of pulling back of the wool and empowering customers to be smarter than
the octopus global-nationals, as we called them back them.

Cluetrain concepts were much toyed with throughout the 2000s, with companies investing much
blood and treasure in capturing market-share in, ahead of monetizing.
Paying attention to what people were doing with your software and improving the software to
keep hold of their eyeballs longer was a popular business, and it still is. There’s an ever growing
pool of revenue in never-ending conversation markets. Last quarter alone, Facebook earned
$9.3bn in revenue with in $3.9bn profit.

In the land of eyeballs, the profitless win
Getting to those kind of eye-popping profits required new thinking when it came to both builders
and users. As companies like Google, Netflix, Facebook, Amazon, and numerous others who
lost to the buzz-saw of product/market fit built out their businesses, often their only success
metrics were user growth and retention. They had to create exceptional software.

To do this, these companies competed on features, on the exceptionalism of their software.
They had to start releasing software every week, if not every day to compete. As one of the
Agile Manifesto principles put it: “Deliver working software frequently.”

Of course, having the software actually work most of the time was important, as Twitter early on
showed, somehow surviving, perhaps as the world’s first example of the “move fast and break

17

https://www.slideshare.net/cote/july-10th-2017-not-actually-a-devops-talk-or-beyond-survival-is-not-mandatory/12
https://www.slideshare.net/cote/july-10th-2017-not-actually-a-devops-talk-or-beyond-survival-is-not-mandatory/12
http://knowyourmeme.com/memes/i-have-no-idea-what-im-doing
http://www.cluetrain.com/
http://www.cluetrain.com/
https://www.lrb.co.uk/v39/n16/john-lanchester/you-are-the-product
https://www.lrb.co.uk/v39/n16/john-lanchester/you-are-the-product
https://www.theregister.co.uk/2017/07/27/facebook_video_innovation/
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability/#4J_SascWcPq3

things” boast. Faced with the need to release software on demand, often daily, the enterprise
approach of doing monolithic, gut-wrenching releases wasn’t cutting it. The developers had to
start thinking about and how their software was managing in production.

Programmable infrastructure
A common story from this era is the fateful day one of the programmers is selected to “run the
servers.” Shifting over to “ops,” the programmer either goes mad, or starts doing what any
competent programmer does when faced with a new problem: procrastinating and drinking. A
few weeks later, they look at all that infrastructure as something to program, and start coding.

For me, a 2019 talk by Andrew Clay Shafer codified this thinking right around the time it was
codified into DevOps. To a room full of agile lords and ladies, he proposed something wild and
crazy: what if you were responsible for how your code ran in production? Perhaps you should
start to understand, embrace, and improve that phase of your software’s life.

This implied focusing on the people in the software development process and how they work
together and behave. The people are just as much a part of the application as the software and
the hardware.

The idea of a “blameless post-mortem” is a good illustration: in innovation mode, things are
going to break and go wrong as you charge into the unknown. Systems will go down
catastrophically, but you can’t simply give up, and punishing people just takes you back to the
overly cautious state where software is released infrequently. So, as described by the Google
SRE book, you instead celebrate failure, even telling the entire company the harrowing tales of
what went wrong and, importantly, how you fixed it. Of course, once fixed, the key is
understanding the problem well enough to put new policies, practices, and technology in place
to prevent the problem from happening again.

Software Defined Meatware
As this type of navel gazing continued, organizations once again discovered that most of the
problems were caused by errors in the human systems they’d built, the meatware. Technology
was an issue, to be sure, and there’s a parallel story about how the evolution of what we now
call “cloud” provided an ongoing arsenal for all this, with exciting distractions along the way with
names like J2EE, rails, and WS-Deathstar.

People, thought, were still the consistent problem. They just seemed to keep screwing up all this
agile stuff, if they were actually doing it at all. Most still clung to the false comfort of big upfront
planning and its illusory promise of hitting The Date.

You’d see the effects of this backsliding in instances like the US’s rollout of healthcare (saved
by, ironically enough, by a bunch of “cowboys” from out west. The private sector was, and is, no
slouch at resisting agile either: they’re just good at hiding it. The difference between them and

18

http://mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability/#4J_SascWcPq3
https://www.youtube.com/watch?v=Y_u84PNrX9g
https://landing.google.com/sre/book/chapters/postmortem-culture.html
https://landing.google.com/sre/book/chapters/postmortem-culture.html
https://www.theregister.co.uk/2014/08/21/obamas_new_national_it_admin_says_no_suits_please_were_techies/

the government is that enterprises can change more quickly when they’re threatened. The
“culture” at enterprises is more hopeful, perhaps, at least once backed up into a corner.

Just as the goofy social companies of the 2000s had to compete on innovation, large
enterprises now feel the pinch from the numerous ankle-biting disruptors that are having a good
go at eating the incumbent's lunch.

You see this reflected in executive comments in numerous quarterly calls. Some of them toss-up
effortless word-salads of “digital” and “omni-channel,” but others have clearly considered their
strategies and are applying a software-first approach to business. While they may not know
exactly what to do, most executives know they need to start doing something. As JPMC’s CEO
said a few years back: “Silicon Valley is coming.”

So that’s where we are now: from Chrysler’s HR system, to keeping Twitter up, streaming
videos and sharing pictures of cats, to the very real need of old school multinational, global
enterprises to compete based on software. Surveys show how shaken executives think the
situation is, with many doubts that IT’s not up to the task of transforming to the point where they
can reliably create, refine, and run software. They know from experience that outsourcing
doesn’t work, so they’re looking at their people, organizations, and technology. There’s early
indicators that it’s working - tales of using this new software defined business approach to
insurance companies cutting the claims process from a week to less than a day and doubling
the industry sales average - but there’s a massive amount of work left. Hopefully, we won’t
back-slide this time.

Originally published in The Register, October, 2017.

19

https://www.cnbc.com/2017/04/04/jamie-dimon-letter-jpmorgan-spent-9-5b-on-tech-last-year.html
https://www.cnbc.com/2017/04/04/jamie-dimon-letter-jpmorgan-spent-9-5b-on-tech-last-year.html
https://adtmag.com/articles/2017/07/27/kony-survey.aspx?m=1
https://www.horsesforsources.com/c-suite-therapy_013016
https://www.horsesforsources.com/c-suite-therapy_013016
http://www.theregister.co.uk/2017/10/13/devops_culture/

DevOps is actually a thing – and people are willing to pay for it

But you've got to untangle deployment wizards from the duct-tape cats

Is DevOps actually a thing, or just the latest funny way to case a word? At least there are
vowels in it. We finally know the proper casing, but is it actually something normals are doing?

Right after the cloud horses left the barn some years ago, this mysterious notion of "DevOps"
surfaced. DevOps started as a rallying cry around doing something with the combination of agile
software development, lean manufacturing theory, and using new automation technologies like
Puppet and Chef on top of cloud platforms.

The goal was to get "10+ releases a day". The famous Velocity 2009 presentation claimed this
was not only possible, but common practice in their shop.

The idea of releasing code to production more frequently is certainly appealing, and who
wouldn't want to do that in the age of constantly updating mobile apps? Since then, those
one-per-cent elite West Coast kids have dug into DevOps like worms into a pile of fresh trash.
Clearly, in the consumer space which sucks up most of the IT world oxygen, DevOps looks
valuable, but what about for the rest of us in the normal, enterprise space?

Using job postings tracked by Indeed.com as a crude yardstick, you can see a dramatic uptick
in hiring interest:

20

https://www.youtube.com/watch?v=LdOe18KhtT4
http://www.indeed.com/jobanalytics/jobtrends?q=DevOps&l=

What is DevOps?

Beyond this kind of crude measure, us prognosticators at 451 Research wanted to dig into the
mainstream DevOps market deeper. To that end, we just finished polishing up a survey of 200
DevOps and DevOps-minded individuals. This has given us a better sense of how immature the
DevOps market is. Don't get me wrong, there's certainly interest, and the field has clear value,
but a few of the chestnut theories of what DevOps is and how it's practiced are far from fully
baked and deployed. Indeed, there's a lot of room for improvement.

Whether perfectly accurate or not, our premise was that the primary driver of doing DevOps
would be to reduce cycle time: to get code into production sooner. On that point, the study
participants seemed to agree, and the industry is doing much better than we'd have expected.

48 per cent of study participants deployed software at least monthly, with 22 per cent deploying
weekly, and eight per cent deploying daily. With near half operating on a tight 30 day cycle, it's
not surprising that half of the group was satisfied with their release frequency, meaning that half
would like to get software out the door more frequently.

Why bother with this hassle, we asked? Mostly because of business demands – not just shiny
object syndrome or some cruel coder callisthenics.

21

Our analysis of these results is that business demands rank first. Competitive pressure,
business productivity demands and revenue demands total 51 per cent of responses. Product
management demands – improving functionality and delivering new features to users – are a
good secondary driver, indicating close attention to end-user needs. These are, of course, great
goals for software to have: make money and delight users. Sign me up!

But you've got to untangle deployment wizards from the duct-tape cats

When you talk with DevOps cognoscenti, they like to pull out this giant hammer called "culture"
that they promptly use to bash out your brains if you try to talk about actual tools. "Tools are not
the issue, meet my hammer. I call it 'culture.'" They go on and on about culture, and process. It's
delightful and necessary, I suppose, but it belies the sense that there's a "DevOps toolchain" out
there: a common collection of tools and practices that teams use to get the job done. To that
end, we strapped on our best Bascinet and asked about the tools used. Here's where things
were less than utopic.

Spinning the vision dial way up, in the ideal DevOps toolchain it feels like you'd see at least two
things.

22

First, consistent use of modern model-driven automation tools like Puppet, Chef, Ansible, and
Salt throughout development, QA, and production to model, deploy, and manage the
application. You do this to reduce the amount of changes and manual work needed between
each stage as part of the process of reducing the "wall of confusion" between development and
operations. But when we asked our study participants what they used, home-grown processes
and golden image generation handily won:

It's rare to come across a "build and installer team" that doesn't protect their growling,
home-grown ball of duct-taped cats like it was their own child, we know. But: really, that's
probably not something you should be doing on your own. Snowflakes, unique and special as
they are, tend to melt when the heat is turned up.

Second on the vision-questing, you'd expect DevOps teams to be using some sort of continuous
integration tool, a Jenkins-type system, if not Jenkins itself. Here, things are bit more cheery, but
that ball of cats pokes up as the winner again:

23

That 28 per cent of respondents who aren't doing any sort of CI is the most shocking. Surely
things would improve for that lot with a bit of CI.

One can be cynical at this point (hello, dear readers!) on all of this and write DevOps off as
sheer fantasy. On the other hand, after poring over our study and injecting it with a healthy dose
of our anecdotal “evidence,” it's more accurate to say that DevOps, as a mainstream concern, is
very early. There's clearly a desire there, but getting everyone on the same page, toolchain
wise, is far off.

As in software development, the good news is that people are willing to pay for these tools. In
the case of model-driven automation and CI tools, well over half of respondents said they were
willing to consider putting their hand in their pockets, if they didn't already.

Free is nice, of course, but DevOps as a movement won't fund itself: untangling those build and
deployment wizards from all those duct-taped cats isn't going to be easy.

Originally published in The Register, June, 2014.

24

http://www.theregister.co.uk/2014/03/07/developers_tools_feature/
https://www.theregister.co.uk/2014/06/03/michael_cote_dev_ops/

You, yes you: DevOps' people problem
Chucking a copy of The Phoenix Project at the team ain't the answer

You’ve no doubt heard of DevOps. This is the process of getting developers and sysadmins
working together closely on the same team to support a company’s custom-written software.

I know, I know, Dear Reader: you’ve been doing this ever since operating that AS/400; no one
really needs weekly releases; and, of course, the favorite: “this is just the current way for
consultants to make money.”

All signs point towards DevOps being not only all those things, but actually A Thing on its own.
Ever since starting my career as a programmer, and through being an industry analyst,
strategist, and, now, marketer, I’ve been motivated by the quest of learning how to improve the
software development and delivery process. DevOps seems like the current, best method.

What has the IT department ever done for me?

The primary motivations for doing DevOps are to ensure application uptime (usually for mobile
and web apps) while at the same time ensuring that you can release new code to production,
basically, at will, usually weekly or daily. Presumably, a company would like these benefits to be
more competitive with its custom-written software, both with more features, but also by taking
advantage of short, user-interaction feedback loops to constantly tweak their apps to perfection.

Things are not too joyous when it comes to IT actually delivering on this dream of helping
companies innovate. When I want to gin up an excuse to drink heavily, one of my favorite charts
to look at is this one from the Cutter consortium:

25

https://www.cutter.com/stat-week-what-your-it-organizations-role-business-innovation

When it comes to innovation, over 3 short years IT has plummeted in usefulness. To put it
bluntly: IT sucks.

As I’ve studied DevOps over the years I’ve found that DevOps is the “how” of solving this
problem: a process and mind-set. Continuous delivery is the “what”: the “tool” you put in place.
This is why I look to continuous delivery as a tracer for DevOps adoption.

You’re doing CD? Yeah, sure...

Continuous Delivery (CD) is yet another one of those things that most people say they’ve done
since the days of mainframes ... but reality is usually different, as seen by one study:

26

http://www.theregister.co.uk/2014/06/03/michael_cote_dev_ops/

From DZone’s 2014 and 2015 studies

A fair number of people think they’re doing continuous delivery, but when compared to the
textbook definition, they’re more like dabblers, picking and choosing practices that are easiest
and leaving out the rest.

While these numbers are low, the growth year-over-year shows rapid change and progress.
There is a strong desire to improve, if only organizations can figure out how.

Rub Some DevOps On It

Beyond the tracer of continuous delivery, there’s some fresh industry survey data we can look at
to see if DevOps is actually a thing. Gartner fielded a survey last Autumn; while it’s all too easy
to dismiss them as conservative and backward looking, isn’t that exactly the kind of thing you
want when asking if DevOps has gone mainstream?

27

While it doesn’t have the muscular impact of a year over year study, Gartner’s September 2015
survey of 383 respondents showed good momentum for the adoption of DevOps: 29 per cent
were actually doing something with DevOps, with 16 per cent taking a DevOps approach in
production and 13 per cent piloting it. While small, those are impressive numbers for something
as new as DevOps.

Trying is the first step to failing

While longer-running bodies of work like the always excellent, annual Puppet Labs DevOps
survey are showing that the ideas work, things are not so rosy when it comes to putting DevOps
in place. More often than not when I’ve worked with groups that want their software processes
with DevOps, they underestimate the amount of organizational change needed. They view
software more like building a Lego kit. Creating good software is more like inventing Lego all
over again, each time. Fostering that kind of continuous learning requires putting the process in
place that creates metaphoric “innovation factories.” DevOps thinking describes much of how
those “factories” run, which is often much different than the status quo.

What I’ve learned is that it’s a meatware problem: people’s default to resist change is what holds
back transforming to a DevOps mind-set. This is why the DevOps cult leaders go on and on
about “culture.”

The problem starts with managers who often assume they can just throw a copy of The Phoenix
Project at their team and expect them to “do the DevOps.” Instead, managers need to change
incentives and behavior to lubricate change. But it’s not just managers – staff needs to get with
the program too. You know, you might actually have to go talk to programmers! Or worse: sys
admins!

Originally published in The Register, January, 2016.

28

http://www.gartner.com/webinar/3165618/
http://www.gartner.com/webinar/3165618/
https://puppetlabs.com/2015-devops-report
https://puppetlabs.com/2015-devops-report
http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
https://www.theregister.co.uk/2016/01/15/devops_people_problem/

The Slow Ascension of Agile

After roughly 20 years, agile software development has wheedled its way into most every
developer's mind as The Way Good Software Is Done. Like flossing, while we can all agree
agile is a good idea, we're not quite up to snuff on keeping all our teeth in our heads, so to
speak.

A recent Gartner survey had 37 per cent of respondents saying they were doing agile, while 45
per cent preferred to float along with the traditional "waterfall" approach (the remaining said they
were doing "lean," "iterative," or the always delightful "other"). While this isn't world domination,
a 2015 report put waterfall at 56 per cent.

Survey data like this can be dicey, and it's best to treat them more like a wet finger in the wind
than as rigorous science. That said, the wind seems to be blowing in agile's direction.

"I think from a tactics perspective, Agile is increasingly a 'solved problem'," said Forrester's
Jeffrey Hammond when asked about agile adoption in the industry.

"We know many practices that work, and that have been well proven in the field," he added.

Proven as those techniques may be, once again, loose meatware is catching in the gears of
progress. As Jeffrey adds, "from an adoption standpoint, Agile is a 'work in progress' mainly
because Agile is as much about cultural transformation as it is tactics." Cultural transformation:
it'll get you every time.

Indeed, looking back at that 2016 survey, you see that while easier practices like unit testing are
widely practiced, onerous practices like continuous delivery and pair programming are mostly
ignored by the buffet agilists. Agile is taking its time along the innovation curve, but one gets the
feeling that the down-slope folks are methodically being routed, if only through the
slow-but-steady siege tactic of retirement.

Beyond The War of the Story Cards

Early on in agile, there were some vicious battles around defining The One True Agile,
especially as Scrum rose in popularity. For the most part, these battles were case studies of the
narcissism of small differences, though mentioning "agile in the large" practices like SAFe can
still be relied on to pop a true believing agilista's neck veins.

Several schools have descended from agile, primarily in the form of "lean" and "DevOps." In
practice, these schools should be thought of as types of agile – at most, extensions – rather
than so philosophically different as to be called distinct. They're nothing to start a holy war over.

"Lean," as its name would imply, comes from Lean Manufacturing, the continuous learning and
"waste" removal process invented and perfected by Toyota. When you put lean Software

29

http://www.gartner.com/webinar/3169117
http://www.theregister.co.uk/2016/06/07/problems_for_agile/
http://www.theregister.co.uk/2016/06/07/problems_for_agile/
http://www.slideshare.net/sogrady/meet-redmonk-analytics/13
http://www.theregister.co.uk/2016/01/15/devops_people_problem/
http://www.theregister.co.uk/2016/01/15/devops_people_problem/
http://www.slideshare.net/cote/agile-methodology-indepth-review-government-edition/29
http://www.ou.edu/deptcomm/dodjcc/groups/99A2/theories.htm
http://www.scaledagileframework.com/

Development practices in front of Lean Manufacturing people, they react similarly to how I
imagine the French would react when presented a baguette à la Piggly Wiggly. The same idea
is there, but it's been transmogrified by a new set of hands. In practice, lean software
development focuses on putting a small batch approach in place, releasing software as
frequently as possible to limit work in progress, and using an end-to-end mindset to discover
and eliminate waste.

The idea of "waste" is perhaps the most intriguing and novel part of lean software development:
unless an activity adds value for the customer, it's eliminated (más o menos). Once you start
asking: "Will this help the customer?" many of the tasks in the so-called SLDC melt away like
chicken fat under high heat. A notable variant of lean is the Lean Startup method, which seeks
to discover the market/product fit for any given piece of software. This is the school of "pivots"
where you continually evolve your software, observing how it's used until you figure out
something that people will pay for, or at least use.

Enter the two pizza team

El Reg commenters' favorite, "DevOps," is the last descendant of agile, building from lean along
with a dollop of its own special sauce. A canonical version of DevOps isn't a fully "solved
problem" yet, but we're getting close. Originally, what became known as DevOps was solving for
two things: enabling frequent deployment of software (many times a day) and maximum uptime.
For most people, the idea of deploying software daily is the gut-proven opposite of "maximum
uptime." However, the disciplined, small batch mentality practices of DevOps have been
showing that the two can be done in tandem.

One of the key components DevOps adds to agile is the idea of a small, cross-functional team
rather than "silo'ed" teams. Agile-minded developers land-grabbed QA early on, but mostly
stopped there. In contrast, DevOps looks to gobble all the roles, from developers, to operations,
to designers, product managers, and whatever other role is needed to make sure you can ship
useful features frequently and keep the stuff up and running.

Though there are numerous roles, the teams are small. As Ben Terrett, former head of the UK
Government Digital Service, put it: "[T]he best way to do this stuff is to get a multi-disciplinary
team of people in house – designer, user researcher, developer, content person – you're talking
a team of about twelve people." In Amazon terms: no team should be so large that it needs
more than two pizzas for dinner.

Admit it: you have no idea what's going on

Recently, I've been asked several times to address when waterfall is a good choice. The answer
to that question is good insight into agile's trick. Waterfall is fantastic if you know exactly what
you want to build, up front. What a wonderful project that'd be to work on!

30

http://www.shopthepig.com/
http://www.theregister.co.uk/2016/02/04/think_small_not_big/
http://www.theregister.co.uk/2016/06/15/one_it_so_many_modes/
http://redmonk.com/cote/2011/02/16/the-developer-landgrab-another-way-to-look-at-devops/
https://govinsider.asia/smart-gov/why-britain-banned-mobile-apps/

As most of the people who develop software find, however, very few people know exactly what
needs to be built ahead of time, least of all the actual users and customers.

Agile, instead, builds its thinking and processes around the assumption that we can't know what
the software should be until we start deploying it to actual users. Doing so isn't easy, and while
adoption has been slower than you'd expect, as was said long ago: if you are made to wait, it is
to serve you better, and to please you.

Originally published in The Register, July, 2016, with a more salacious title.

31

https://www.theregister.co.uk/2016/07/27/agile_slow_ascent/

Software devs' new mantra: Zen dogs dream of small-sized
bones

One of the primary principles of DevOps is moving from large software releases to a series of
small batches.

What do we mean by “large”? Six-to-12-month (or longer) projects that follow the infamous
“water-scrum-fall” model. While development teams may create builds weekly, the code isn’t
deployed to production and used by actual users each iteration.

“Large” has strong appeal. It optimises the planning, development, and deployment phases of
software. Planning teams want time to gather all the requirements and detail them out in
exquisite documents, making The Boss feel like they’ll get exactly what they want.

Developers and QA nowadays tend to like working in an iterative manner, chunking their work
into one- to two-week increments. However, operations feels that the highest chance of failure
comes when you deploy, so why not minimise deployments? Each group creates the process
that makes them feel like they’re doing their job well.

Despite the warm and fuzzy feeling you get from a well planned, staged out process, taking a
small batch approach is showing more success. As one IT manager at a large organisation puts
it: “We did an analysis of hundreds of projects over a multi-year period. The ones that delivered
in less than a quarter succeeded about 80 per cent of the time, while the ones that lasted more
than a year failed at about the same rate.”

If that’s “large”, what do I mean by “small”? Here, it’s reducing that entire cycle down from six to
12 months to a week - or even a day. And yes, you back there with your hand up: this means
deploying a lot less code each time, hopefully just a handful of changes, or even just one.

Focusing on smaller batches is mostly about reducing key areas of software risk. Those risks
being:

1. Bug swarms: If I have a week’s worth of code vs half a year’s worth of code, and
something goes wrong in production, there’s a much smaller set of code to diagnose and
fix. This also speeds up your ability to deploy security patches.

2. Useless software: The biggest risk in software is creating software that users don’t find
valuable but that’s otherwise perfect. With small batches, because you deploy each
iteration to users, you can easily figure out if they find the software useful. And even
when you get it wrong you’ve only “lost” a week (though, I’d argue you’ve “won” in
gaining valuable learnings about what does not work).

32

3. Stymied innovation: Coming up with new ideas can take a very long time if you have to
wait six months to try out new ideas and see how your users react. Instead, if you deploy
a series of small batches, you can experiment and explore each week, hopefully getting
into a virtuous cycle of steadily discovering new ways to delight users.

4. Budget overruns: A small batch mentality avoids “big-bang bets” that require a massive
capital outlay at first and then a white-knuckling 12-24 months of waiting before shipping
the code. If you’re only focused on the next few releases, finance can adjust funding
either up or down as needed. The existence of government IT projects going over
budget serve as an example here (though, I assure you, private industry can be just as
bad: they’re just better at hiding failure).

5. Schedule elongation: Projects that don’t force shipping can often find themselves forever
stuck with just “a few more weeks” left before shipping. There’s always new features to
add, more hardening to do, and then it’s the holidays all the sudden, and you’ve got a
good month of downtime, which is just long enough to think of still more new features to
add. Without an emphasis on shipping every week you eventually slow down.

Small batches let you improve the quality and usefulness of your software by creating an
ongoing feature experimentation process. Small batches mean greater control over the
budgetary and planning aspects because you can spot problems early on and act accordingly,
theoretically – at least – after each weekly release.

Overall, The Business feels like it has more opportunity to manage, conferring upon those in
charge a sense of empowerment and control. No more nasty shocks from IT.

But, and here’s the problem: small tends to cause a loud clunking noise in the minds of The
Business and of The Boss. These folks are not always comfortable moving beyond that big
stack of promises. “What, Henderson? You want me to do small?! At Waddleforce &co, we’re all
about BIG!”

How do we in IT circumvent this and sell the merits of “small”? I suggest discussing small
batches in terms of risk management and the “optionality” that the approach creates, something
that business-heads usually understand and value.

As IT proves out the small batches approach, then the code crowd might have something to
teach the suits.

Originally published in The Register, February 2016.

33

https://www.theregister.co.uk/2016/02/04/think_small_not_big/

So you're 'agile', huh? I do not think it means what you think it
means

What if I were to tell you that we knew all the best practices for software development?
That they've been proven by actual industry use over the past 25 years? But that, oddly,
these practices are not widely done? Well, if you read these pages, you'd probably say:
"Sound about right."

Agile is much spoken of, but not as broadly practiced as you may think. It's as if we all
knew that the best way to cook a fine T-bone is to first let it come to room temperature –
perhaps with a healthy handful of the de Camargue – but instead we just regularly yank
it out of the fridge and throw it on a cold pan.

O rly? You've been doing agile since AS/400s?
When I talk with large organisations, all too often they legitimise themselves by telling
me how many certified Scrum Masters they have. From the hundreds I hear about,
they've setup some kind of factory that's just rolling them off the line. Now, there's
nothing wrong with scrum or certification, but it is an odd thing to use as a marker for
agility. What matters more, of course, is if the developer teams are actually doing it.

Commenting on his team's experience doing agile, Lt Col Enrique Oti explained the
situation this way: "'Agile'. That word should not be used in the government. It's used
everywhere. Everyone in the government now does agile training. Every organisation I
go to [claims to do] agile development. I went to an organisation recently who'd been
working on a project for six years doing agile. They had a Scrum Master! And I said:
'When does your user ever see your code?' and their answer was: 'Never.'"

Although he's talking about the US government and military, in my experience his
statement applies many large organisations.

Surveys back this up as well, such as Gartner's annual agile survey. What's astonishing
about this survey is how honest respondents apparently are: looking over the results
you quickly get a picture that just about half of the organisations surveyed are agile.
Summing it up this past June, Mike West points out that 41 per cent of respondents
were doing agile with 41 per cent more doing waterfall, and the rest doing other
methodologies.

Perhaps it's the $1,295 price tag on these 15 pages of astounding findings from our
friends in Stamford, but a shockingly low amount managers seem to be sandbagging on
finally moving to agile after a quarter of a century. (Of course, for the cheap, the

34

https://www.facebook.com/defenseinnovationunitX/videos/1105014259600458/
https://www.facebook.com/defenseinnovationunitX/videos/1105014259600458/
https://www.gartner.com/doc/3739117/survey-analysis-agile-tipping-point
https://www.slideshare.net/cote/not-a-devops-talk-nov-2017/12

DevOps Reports can get you a free version of these findings, plus a wonderful selection
of Portland hipster visages.)

In general, then, it's wise to be sceptical of any claims about an organisation being
agile.

Wagilefall
Even when development teams have nailed agile, pumping out builds weekly gleefully
(or, monthly for the languid), as Oti points out above, they often are not able to actually
deploy their code to production.

In cases like this, as venerable agile expert Israel Gat told me: "Organisations learned
how to fake agile. Many of the agile implementations I witness are actually waterfall on
top of agile, waterfall using agile terms." The teams are speedily working through things,
seemingly moving fast, and that's what agile's all about, right? They're an agile dynamo
trapped in a decadent waterfall process: wagilefall.

Mismatches like this are widespread and, to my mind, are a massive reason why
DevOps is so attractive to those who dare enter that labyrinth of definitional confusion.
It's been illustrative to think about this divide between fast-moving developers and
never-wanting-to-deploy ops teams as a "wall": developers throw the build over this all
to release management, walking away dusting off their hands as if everything is done.

Rather than bricks, this wall seems to be built out of help desk tickets. Filing away those
requests to set up staging and production environments, let alone even the simplest
resources like a licence for an IDE. And when it comes to actually deploying a build to
production, file all the tickets you want, bub, you'd better schedule up some meetings if
you want something that ground-shaking.

But think of all those 'nice gates'”!
Resistance to change is, of course, not a new occurrence when it comes to IT. That
said, again, the memos have been circulating for a good 25 years. Despite this, it's wise
to be empathetic to staff who see going agile as simply more busy work for them.
Donna Fitzgerald quoted one of her clients as saying: "It meant throwing away
everything I spent years building. All my nice gates and all my vast number of required
documents. It meant changing out the tools we use. It also meant that we needed to
change our mindset about what was important and what the organisation actually
wanted us to do."

35

https://www.theregister.co.uk/2017/06/06/state_of_devops_low_performers_are_fast_but_ignore_quality/
https://twitter.com/agile_exec
https://www.slideshare.net/cote/not-a-devops-talk-nov-2017/23
https://www.theregister.co.uk/2017/10/13/devops_culture/
https://www.theregister.co.uk/2017/10/13/devops_culture/
https://www.rundeck.com/blog/whats-a-silo-and-why-they-ruin-everything
http://www.theregister.co.uk/2016/05/06/no_escaping_review_boards/
https://www.theregister.co.uk/2017/11/17/do_the_devops_not_here_no_thank_you/
https://blogs.gartner.com/donna_fitzgerald/2016/07/06/redefining-agility-in-the-digital-age/

Yes, indeed, there's much work to be done after the old artefacts of comfort are thrown
out. I recently had a conversation with a similarly beset person in a large organisation.
There were so many agile methodologies in practices, along with the existing "waterfall"
processes, that a team had been put together to map and rationalise this rat's nest of
processes into a unified handbook of sorts. You can imagine how that project was
turning out.

Blame management
As ever, one of my core theories about improving how software is done is that, more
than likely, management is largely at fault for previously hollow victories. In addition to
the numerous reasons for staff resistance, management is often unwilling to follow
through on the changes needed to bust through a wagilefall.

Do the infrastructure Morlocks hide behind a wall of tickets? Well, the developers aren't
going to be able to change that: they'll need management to come in and burn down
that wall. Are you getting ensnared in compliance and enterprise architect dead-ends?
Again: management.

There are plenty of enlightened managers, but you'd be wise to figure out if you're
working for them whether you're on some sort of path to agile awesomeness. If you find
them wanting in vim, perhaps they're kind enough to take suggestions – if you're lucky.

Sure, it'll get worse before it gets better
When I talk to people who have reached the other side of going agile, they tend to find
that they're accomplishing the same goals of quality software, even with the same
benefits of governance and discipline. They're just able to do those tasks more
efficiently. Instead of doing audits after the fact, staying up late into the night and
working through the holidays, compliance people can automate much of the raw
information collection and leave work on time. With smaller chunks of code in each
cycles, operations staff realises that diagnosing any errors in deploys is more
straightforward. Project managers, previously beset with putting together complex
status reports that no one seems to ever actually read, find much more meaning in their
work.

Somewhere in there, you'd hope, there's also an improvement to the actual software
and the end user's experience, which usually trundles along for the ride. The studies
tend to bear this out. As West put it commenting on the agile survey: "Successful agile
organisations show significantly higher use of unit testing, DevOps, continuous delivery,

36

continuous integration, test-driven development and refactoring, when compared with
unsuccessful organisations."

More importantly: please, let the T-bone rest for a while before cooking it. Otherwise,
you could have just gotten by with a much cheaper flank steak.

Originally published in The Register, December 11th, 2017.

37

http://www.theregister.co.uk/2017/12/11/you_say_you_are_doing_devops/

Pair programming: Oooo, oooo, that smell…
Of all the agile practices out there, “pair programming” is the one that elicits the most heckles,
confusion, and head-scratching. The idea is that rather than having one person sitting at a
screen, coding, you have two programming together. Those who practice it speak of it like most
people do of their first time at Burning Man, while those who have never had the “experience”
just can’t see what the big deal is.

While finding them are hard, over the years studies of pair programming have consistently
shown that it’s an effective way to keep bugs out, write code faster, manage the risk of
developer churn, and actually raise morale.

But – really? Looking at surveys, I’d estimate that somewhere south of 20 per cent of people do
pair programming. If pair programming was so great, why do people find it so odious? I mean,
who wants to work so close to someone that you can smell the effects of coding?

And as if it wasn’t enough to keep that foetidly in the developer cubes, it’s been wafting into the
server room despite those cyclopean fans in there: operators are starting to pair as well.

Four eyes are half the productivity as two?

The theory behind pair programming is straightforward. Programming is difficult and error prone:
It’s much better to have a buddy helping along. In addition to actually coding together, it
sometimes means having one developer write code and the other write tests right next to each
other, in co-ordination. With two heads together, the thinking is that you write less bugs and get
better test coverage.

Indeed pairs in studies over the past 20+ years have consistently written higher quality code and
written it faster than solo coders. So, while it feels like there’s a “halving” of developers by
pairing them up, as one of the original pair programming studies put it: “The defect removal
savings should more than offset the development cost increase.”

Safer coder killing

If the pairs rotate frequently, the theory says you’ll get better diffusion of knowledge across the
team: no one person builds up a fief of knowledge around, say, builds, or how the “Print Invoice”
function works. This means there’s a lower “bus factor,” helping protect against team churn and
brain-drain.

38

http://www.slideshare.net/cote/devops-for-normals-springone-platform-2016/22
http://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF
http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF
https://en.wikipedia.org/wiki/Bus_factor

Large organisations I talk with - who’re all trying to figure out the footwork for that “digital
transformation” dance - use rotating pairing as a way to spread new technical knowledge, but
also change that oh so mysterious “culture” in their organisation.

People actually like it

Much like alcohol and black coffee, pairing tastes awful at first... until you start imbibing of it
repeatedly. In most of the studies, and the feedback I hear from organisations doing it
nowadays, pairing practitioners end up liking it after just a few weeks. At first, true, the usually
solitary programmer has to, you know, talk to someone else. They even have to get used
someone else corrected them – horrors of all horrors!

But, with a rigorous enough schedule that allows for breaks and bounds the programming time
to normal 9-to-5 schedules, most people end up liking pairing after a while. It only takes a few
pints to dedicate your life to it.

It’s hard to say why people like it more, but I suspect it has something to do with the fact that
humans, fundamentally, like being social, so long as it feels safe. Also, most programmers and
operations people take pride in their craft: they want to do good work (despite what those
overflowing tickets queues are doing to them). If pair programming increased code quality,
there’s more to be proud of.

Managers of these programmers should also like the quality, speed, and predictability of pairing.

That predictability comes from an interesting side effect of how exhausting pair programming is.
For one, it’s harder to goof off – er, “research” – and attend meetings when you’re pair
programming. As the man from downtown said: “Always Be Coding.”

And, on that kind of schedule, developers are straight up pudding-headed after seven or eight
hours of pair programming. As one practitioner put it: “This makes pair programming intense,
especially at the beginning. At the end of the first day, I couldn't go home. Before I could face
humans again, I put my phone on airplane mode, ignored my usual online accounts, and went
to the gym for two hours of self-imposed isolation.”

Developers can only pair so long. They have to stop, so you just close up shop at 5. No more
playing Doom until 10pm and then coding – er, I mean “working late".

It can come off as sounding a bit like nanny-management, but pair programming seems to
induce developers to actually do the work.

39

http://www.theregister.co.uk/2016/01/15/devops_people_problem/
https://www.youtube.com/watch?v=AO_t7GtXO6w
http://www.informationweek.com/devops/project-management/adventures-in-pair-programming/a/d-id/1325577

Yeah, but… no

While the research is sparse (and, really, when it’s “n=whatever students enrolled in my CS
class,” it’s a little fishy), from where I sit and what people keep telling me, pair programming
works. Should you be doing it all the time, though?

I’ve heard practitioners say that you should at least do it for complex, difficult tasks. If it’s some
routine coding or operations tasks, then pairing may not be the nitro-charge you’re expecting.
Indeed, one of the studies suggests that pairing is the most beneficial for “challenging
programming problems".

Put another way, if the task is “boring,” maybe it’s better to solo it. Still, I can’t help but think that
it’ll be the boring tasks that end up biting you, especially when it comes to pair sysadmining.
After all, how many systems have come down because of the boredom of DNS configurations?

Originally published in The Register, October, 2016.

40

http://www.cs.utexas.edu/users/mckinley/305j/pair-hcs-2006.pdf
https://www.theregister.co.uk/2016/10/18/pairing_programming_youll_never_guess_what_happens_next/

Why largile's for management crybabies

There's a stink growing out there in agile land: a debate over how to scale up agile in large
organisations. Should we put frameworks like SAFe or the most awesomely named DAD in
place to scale it? How about we do LeSS?

These "agile in the large" frameworks have been on the ascent in recent years. A 2015 Gartner
survey found that DAD, SAFe, and LeSS had been adopted by 10-12 per cent of organisations.
SAFe was driving the most interest with 34 per cent of respondents checking it out.

As ever when the adoption of agile matures, there's much gnashing over whether things are
being done properly. On the one side are the agile poets and on the other are the agile
formalists. The poets like the emergent, dynamic, small-batch nature of agile and don't want to
bind teams to locked-down rules and requirements to "align" with the rest of the organisation.
The formalists want to put in place and document processes that ensure that thousands of
people can work in lockstep on software.

The infantilism of management

Compared to staid, friendly discussion, there's a particularly vitriolic conversation going on about
SAFe now. Words like "infantile" are being thrown around! The fear is that SAFe focuses too
much on keeping existing IT bureaucracies in place for the sake, you might say, of giving
management something to do. Instead, the agile poets say the focus should be dramatically
changing how the organisation works as a whole, not keeping all the separate groups in place
that need constant "alignment."

It's this notion of "alignment" that acts as good dipstick for the discussion. If there are hundreds,
thousands of people working on a unified portfolio of software, there's the chance for lot of
coordination. As an example, in his recent book on scaling up DevOps, Gary Gruver uses the
example of putting omnichannel retail in place, a seemingly simple, but very complex system
spanning multiple back ends, shipping, and in-store systems, not to mention the mobile and web
apps buyers use.

The alignment anti-pattern

"Alignment" then is the need for groups to come together and plan out how their
sub-components interact together to create the entire system. Next thing you know, you're
scheduling meetings, writing Word docs, and spending weeks integrating various systems
together. A typical straw-person nightmare of slow software development.

41

http://scaledagileframework.com/
http://www.disciplinedagiledelivery.com/
http://less.works/
http://www.theregister.co.uk/2016/02/04/think_small_not_big/
http://cognitive-edge.com/blog/safe-the-infantilism-of-management/
http://www.netobjectives.com/blogs/safe---good-bad-and-ugly
http://www.netobjectives.com/blogs/safe---good-bad-and-ugly
http://ronjeffries.com/xprog/articles/issues-with-safe/
https://thenewstack.io/review-understanding-devops-putting-place-even-scale/

The critics of "largile" are worried that this focus on alignment should instead be on removing
the need to coordinate and align groups, at least manually. At a technical level, this means
removing as many dependencies as possible and, usually, giving each team more responsibility.
The whole idea of DevOps is an example of dependency erasing at the process level: by
collapsing together the roles of development and operations, you strip out the time and hand-off
errors that occur when you throw the application "over the wall" of the operations. The fear is
that you end up with exactly the same process as you had before. Renew those Word and
PowerPoint EULAs!

Requirements cathedrals

A few anecdotes from my flâneuring about in the enterprise world illustrate this alignment
anti-pattern. I spoke to the people at a large, US health insurance company recently trying "the
new way" of developing software. They started the project with several hundred pages of
requirements that business analysts had built up like a perfect cathedral. After throwing this pile
of paper to a unified, balanced "two-pizza team" who walked through the user problems and
how to start the discovery cycle for solving them with weekly builds, most of the cathedral was
dismantled and ignored.

Once this team started deploying software weekly and studying how the user interacted with the
software, they learned what was actually needed and changed the requirements appropriately.
The team removed the need to "align" with others in their organisation. Sure, there were
external systems to cope with, but removing the need to coordinate and take ongoing input from
parts of the organisation that weren't close to the actual users speed up the schedule
tremendously, delivering months ahead of time.

Taking a similar approach, a large bank scoped down the coordination needed across
organisation by pushing responsibility down to the team level. They were able to speed up their
delivery by 57 per cent (so precise!). At a micro-level, the act of pair programming removes the
need to "align" with code reviews as they happen while the pair codes.

The hope of much of the container and cloud crew nowadays is that cloud automation removes
a huge amount of infrastructure, networking and security functionality, removing the need to
align on those glide paths. Looking at Gruver's recent book again, the idea of standardizing on
CI/CD pipelines is another tool to automate alignment, removing the need to align in the meat
ware levels.

Time and time again, the goal of the agile poets to “remove” the need to align, not facilitate it. As
one large European bank put it:

When we were doing big design upfront, downstream changes had to go through a rigid
change control process. We wound up being busy with our own process rather than
delivering value, and either we didn't deliver or we delivered late.

42

https://twitter.com/cote/status/799273327940485125
http://dev2ops.org/2009/09/qa-lee-thompson-former-chief-technologist-of-etrade-financial/
http://www.theregister.co.uk/2016/07/27/agile_slow_ascent/
https://www.youtube.com/watch?v=xS_P4GblPDQ
http://www.theregister.co.uk/2016/10/18/pairing_programming_youll_never_guess_what_happens_next/
https://www.forrester.com/report/Best+Practices+For+AgilePlusArchitecture/-/E-RES120863

Don't pave the cowpaths

Now, I don't think proponents of largile practices would say any of this is their intention. Indeed, I
wouldn't be surprised if agile in the large practices didn’t marble my own examples above. The
agile poets would argue that, regardless of intention, the effect is to once again prove out
Larman's Law: the bureaucracy will be in place, just with new words describing the infinite
process gates and alignment drones.

I'm not convinced perfectly either way. As usual, someone's probably spun the dichotomic dial
so hard it's busted off. I've spent recent years studying the seemingly impossible task of scaling
agile techniques up to large organisations. As the DevOps Reports have found, organisations
with 10,000+ employees are 40 per cent less likely to be high performing than organisations
with 500 or less employees.

Clearly, it's hard for large companies to improve how they do software. There are real needs to
align and coordinate between organisations. Thinking back to that omnichannel example, one
team of four to 12 people can't build and maintain all parts of the system. The goals of
(buzzword alert!) "microservices" try to address this alignment problem at an architectural level,
but that school of thought is relatively new.

This is still uncharted territory for many, and I suspect it'll be the usual situational problem: how
you scale agile will depend on your organisation peccadilloes. A recent Gartner study found that
a meagre 27 per cent of surveyed organizations are using agile approaches for "most or all" of
their projects, a shockingly low number. Before these organisations even worry about doing
agile at scale, there's plenty of work to be done at the team level.

One thing is for certain: you don't want to simply keep doing the same thing. If you find that the
org chart, the flows of information and – gasp! – approval processes are exactly the same as
before your largile transformation, you're probably doing it wrong.

Originally published in The Register, November, 2016.

43

http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
http://www.slideshare.net/realgenekim/2014-state-of-devops-findings-velocity-conference/29
https://www.gartner.com/doc/3263417/survey-analysis-agile-enterprise-stumbles
http://www.theregister.co.uk/2016/07/27/agile_slow_ascent/
https://www.theregister.co.uk/2016/11/21/largile_for_management_babies/

What drives organisations to change their ways? What's the match that lights the
powder keg of actually doing something new and different in IT? That's the question I
usually get from organisations that want their approach to software to be more "agile",
who want to go through "digital transformation", and, yes, "do DevOps".

Despite glee about cleansing themselves with the buzzword of the week, they feel like
they can't get their organisation to go along with it. While upper management might be
pounding the table, shipping in crate after crate of DevOps Handbooks, the rest of the
organisation languidly keeps to their old waterfall ways of doing software – maybe
wagilefall, if you're lucky.

How do organisations that "go agile" actually motivate themselves to get out of bed in
the morning?

Kick them in the pants
It's common to trickle down blame to individual staff and the so called "frozen middle"
who keep existing processes in place. Higher level executives, though, aren't much
better according to a recent Altimeter study. Of the 500 executives surveyed, only 37
per cent said their organisation was proactively investing in "digital transformation" (let's
just assume that means "improving how we do IT around here to help run the business
better"). Put another way, 63 per cent seemed content with their IT.

In my experience, most organisations who are looking to improve their software
capabilities are motivated by a sudden, unexpected, often fierce competitor. Many
insurance companies, for example, were spooked by Google's foray into car insurance.
Fear motivated them understand what it would mean to have their market changed by
companies like Google.

While the search giant decided to shut down the experiment after about a year,
responding to this digital apocalypse premonition left several insurance companies with
new capabilities and agile aspirations. They'd been given a kick in the pants that woke
them up from their "if it ain't broke, don't fix it" stupor.

For most businesses, this kind of external threat is required to start any type of IT
improvement plans, let alone something as high-falutin' as "digital transformation" or
even DevOps with all its needs to radically change corporate culture. Without that well
understood, and felt threat from outside, driving change can be too difficult for more
organisations.

44

http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
http://www2.prophet.com/2017-state-digital-transformation
https://www.theregister.co.uk/2015/03/06/google_are_doing_car_insurance/
https://www.insurancejournal.com/news/national/2016/02/23/399632.htm

We fear change
Of course, simply kicking in a pair of well pressed slacks will only get you so far. There's
the entire rest of the company that needs to put on their big boy and girl pants and find
the will to change as well.

Below the higher levels of management, a more risk-averse culture thrives.
Middle-management's job is to keep things stable, to keep the building from burning
down. Which is all pretty easy if things never change, hence, "frozen middle". When
looking at new ways of running IT, middle-management often sees only the possible
downsides. Never mind all this "blameless post-mortem" stuff, I'm the one who'll get
blamed and punished, they quickly realise.

Worse, in organisations that desperately do need to change from a large, multi-year
delivery cycle for software (read: "waterfall"), the risks actually are huge. While big bang
projects may seem like a gallant steed at first, with such long release cycle - on the
order of years - these projects can easily blow up: they're liking using older
infrastructure and application layer stacks and will also succumb to the trap of delivering
perfectly the software that was specified three years ago and is no longer relevant
today.

In such big batch projects, as one "change agent" put it: "A mistake could cost $100m,
likely ending the career of anyone associated with that decision."

We can all agree that ending your career at middle-management wages is no good;
unlike with executives, there’s no metallurgically coloured parachutes that land you
safely in a lovely little chalet while the plane hurdles into the mountains.

Below that managerial permafrost, staff are full of anxiety as well. A recent survey of
1,000 managers in UK found that 49 per cent per cent of employees quake in their
boots when “digital transformation” is mentioned. It’s little wonder given all the claims of
how new technologies are going "optimise" staffing needs in IT, let alone how radically
different all this new free-loving agile stuff is going to be.

As I mentioned a while ago, managers I talk with say anywhere between 30 to 70 per
cent of staff "don't make it" to newly transformed organisations.

Stop hitting yourself
Based on the recent bevy of large orgs actually improving how they do software, clearly,
there's hope for getting over all this trepidation. There are enough examples of large
organisations switching over to a more agile, even "DevOps-y" approach to software.

45

https://landing.google.com/sre/book/chapters/postmortem-culture.html
http://cdn.defenseone.com/a/defenseone/interstitial.html?v=7.12.0&rf=http%3A%2F%2Fwww.defenseone.com%2Fideas%2F2017%2F10%2Fhow-us-air-force-made-its-isr-network-cheaper-run-and-easier-upgrade%2F141806%2F
https://enterprise.microsoft.com/en-gb/articles/digital-transformation/creating-the-right-company-culture-for-digital-transformation/
http://www.theregister.co.uk/2017/04/26/ah_i_love_the_smell_of_skunkworks_in_the_morning/

What's clear is that in the best cases, senior management champions the change, often
assigning an executive as "Chief Trouble Maker", as one executive described himself.
These organisations also focus on creating safe spaces for innovation and change in
process, usually over the course of several years. It's tempting to think that you'll figure
out all this transformation overnight, but with a large org, it's better to temper
expectations to reality. A misstep on managing the expectations of how long it'll take
could easily kill moral and nuke your plans early on.

It's important to actually pay attention to winning the hearts, minds, and KPIs of actual
individuals. As that fear of change and sense of nothing but downside shows, people
need to build up trust in a new process. External cases and decrees of The Good
DevOps News aren't going to help much. The most successful persuasion is building up
a string of internal success stories – those skunk works teams that can then be
marketed as "look – see – it does work here!"

Staffing those teams is tricky. On the one hand, as Brian Gregory told meback when he
was heading up the switch to agile and DevOps at Express Script, you have to choose a
team of mavericks who want nothing more than to try new things and take risks. On the
other hand, if you create too much of a "10x developer" team, everyone will look at them
and think "well, that’s fine for them, but I'm a normal." As a manager at an insurance
company told me more recently, "when you get to the end of the pilot, you want
co-workers to look at your team and see someone they can relate to."

Get ready to battle your own doubts

Finally, you, who'll be, let's face it, the "change agent", are going to go through some
rough patches. You've got to line up some trusted peers and mentors who you can call
to pick your sad-sack staff up off the ground when things go poorly. There's going to be
more meetings with more smiling jerks than you've ever encountered. Few people will
fight for you out of the good of their hearts and many will be looking for the right
opportunity to slip a knife into your ideas. There's only so much of that annual bonus
pool to go around, after all.

It'll feel like everything and everyone is against you. "You're in that valley of despair," as
Opal Perry at Allstate told me earlier this year. Things seem dire, but with plodding
success, she added, "then you start to come out". If you plan for the resistance to
change, deploy some mind-hacking tricks, and start building up some proof of success
from within your own business, well: if that doesn't work, there's always bimodal.

46

http://www.cote.show/guests/briangregory
https://soundcloud.com/pivotalconversations/the-management-perspective-on-transforming-allstate-with-opal-perry
http://www.theregister.co.uk/2016/06/15/one_it_so_many_modes/

Originally published in The Register, November 17th, 2017.

47

http://www.theregister.co.uk/2017/11/17/do_the_devops_not_here_no_thank_you/

DevOps isn't just about the new: It's about cleaning up the old, too

As one of my coworkers used to say when confronted with The Latest Development
Improvement Methodology: “Why don’t you come down here and chum this stuff?” – except he
used the language of a sailor.

In trying to implement the latest breakfast cereal agenda, DevOps, one of the primary
chumming tasks is dealing with all your “pre-DevOps” software and services.

We call this “legacy” and it’s more or less the result of too much unaddressed “technical debt.”

The techniques for dealing with legacy never leave you feeling good: just like eating a box of
cereal, over the kitchen sink, all the way down to the green leprechaun dust. But, there are
some pragmatic ways of making sure legacy doesn’t totally wreck your DevOps efforts to create
more resilient, more productive software.

Identifying legacy

First, if you’re starting from scratch, with no existing software, with the crisp scent of Expo white
board markers still lingering in the air, you have no legacy problems. Enjoy your tasks of
creating legacy code for the future you! However, in most large organizations, you’ll have plenty
of legacy code and systems.

I use two tests to identify legacy code:

1. It’s running the current business. The code is keeping the lights on, running however
many decades of existing business process has gotten your company to where it is. For
example, people often (factually) joke that the IRS is still running systems from the
Kennedy era.

2. You’re afraid to change it, mostly likely because it is poorly understood and has poor test
coverage. This is compounded by Michael Feather’s legacy code dilemma: to add unit
tests, you must change the code. To change the code, you need unit tests to show how
safe your change was.

For those lucky few who don’t need to evolve their software (and their cursed users), dealing
with legacy code isn’t an issue. But the rest of us need techniques to manage the risk of working
with legacy code.

Quarantine the slow movers

As in dealing with any pack of zombies, the first thing you want to do is identify and then isolate
as many of your legacy applications as possible so that you can ignore them, freeing up time to

48

https://www.youtube.com/watch?v=PpG3-hLJTwU
http://www.theregister.co.uk/2016/03/07/free_me_from_marketing_and_devops/?page=2
http://www.finance.senate.gov/imo/media/doc/2015%20JAK%20testimony%20SFC020315%20-%20FINAL.pdf

focus on the feisty ones. In enterprise architecture management, this means doing some basic
portfolio analysis. And, sure, I bet you have whole teams of people who do this already... right?

They know all the applications you’re running, the amount of money they bring in (“business
value”), their expected life-span and end-of-life plans, have identified key stakeholders and
developers who know not only the software but the business it supports forward-and-backward.

Yup, we all have that functioning at 110 per cent ‘cause we’re “enterprise”! And yet…somehow
we can’t do anything because of all these legacy systems pulling us down… Now then, ready to
actually put some portfolio management into place?

First, figure out which of the 1,000’s of applications you have are low value and not worth
spending time on. Figure out how to stop worrying about them. The second wave of
quarantining is to find applications that haven’t been fully virtualized yet. With minimal changes,
you can squeeze some resource savings (time, money, and attention) out of applications by
virtualizing them.

After this, you’re left with smaller set of applications that you care about. To some extent, you’re
admitting defeat with these un-quarantinedable applications. On the other hand, you now have
plenty of work for all those change resistant folks you have who aren’t feeling the DevOps
breakfast cereal vibe, if that’s a concern of yours. Now, that you’ve cleared out some
underbrush, what do you do with the trees that are left over?

Fork-lifting, strangling, and re-writing

The most common methods I see for dealing with the leftover legacy applications are to either
attempt to move them to your new platforms and methodologies, introduce an API facade in
front of them and slowly let them rot out as new code builds up behind the facade, or to start
re-writing them.

“Fork-lifting” the application into a full on DevOps-driven, continuous delivery approach can work
if the application was written to be, generally, self-contained and didn’t depend on
vendor-proprietary services or things like network file shares.

These are usually simple applications, and you’re usually not lucky enough to have them live
through the initial quarantine filter. This is often known as the “lift-and-shift” approach, and, as
Forrester’s John Rymer points out, this approach looks the easiest but has the worst long-term
payoff. This is because simply changing how you manage the lifecycle of the application without
changing the application itself can limit the benefits of a DevOps-driven approach, namely, the
ability to quickly add new features while maintaining a high level of availability in production.

In those instances where your new applications must use legacy software and services, you can
use the “strangler pattern” to lessen the annoyance of legacy. While you may wish this pattern
was named after the psychopath, it’s named after the plant that slowly takes over trees.

49

https://www.forrester.com/report/Brief+Systems+Of+Record+Projects+Are+Poised+To+Drive+New+Cloud+Growth/-/E-RES129257
https://www.forrester.com/report/Brief+Systems+Of+Record+Projects+Are+Poised+To+Drive+New+Cloud+Growth/-/E-RES129257

The first step is to introduce a new layer of abstraction – an API or set thereof – that fronts the
legacy services. Instead of calling back to that big database or ERP system directly, you call to
your own facade on-top of it. That part is easy enough, and standard, the hard part is planning
for the eventual rot-out of the old system. Judiciously, you start replacing capabilities in the
legacy system with new code that’s more aligned with your new approach to software
development, using some mild routing intelligence behind the facade to figure out when to call
the legacy code versus the new code. Eventually, as with the strangler vine, only new growth is
left.

Finally, you often have to bite the bullet and just re-write it. While this is the most time intensive,
and, if done slapdash, risk-laden choice, if done properly it gets you the frequent change
benefits of continuous delivery driven by a DevOps approach to process.

With legacy code, there are no easy outs, or secrets. The most important thing is to be aware of
that and not be bamboozled by people who are happy to sell you a perfect solution to your
legacy “problems.”

Often, the right answer is to carefully do nothing and instead to focus on your net-new software
without letting your legacy software and processes drag you down.

This way of ensuring that neither the old or new approaches to software rocks the boat for the
other is more of how I think of “bi-modal IT”: decoupling those two parts of your portfolio so that
they can independently evolve without negatively affecting the other.

Originally published in The Register, April, 2016.

50

https://www.theregister.co.uk/2016/04/12/land_the_legacy_big_fish/

Change review boards are probably a no-op, at best

One of the more wickedly astonishing findings from the current DevOps Report is that change
review or advisory boards have little effect on a company’s performance. In fact CABs – as they
are called – tend to slow down IT’s ability to release software quickly and regularly, negatively
affecting organisational performance.

I don’t think many people would say they like or even believe in change review boards – except
the architects on them … well, at least some of them, hopefully.

Nonetheless, if continued existence demonstrates faith in a concept, we in the IT industry seem
to believe fervently in review boards: I encounter them at almost every organisation I speak to.
When IT moved more slowly and we were delighting ourselves with ITIL and other PRINCEs of
process, review boards seemed like a good idea. After all, not too long ago we’d just emerged
from the switch-over to the “distributed computer” (read: Wintel boxes) whose conclusion felt like
finally bringing law and civility to the Wild West.

That huge mess of new hardware and software spawned entire clean-up crew industries in
systems management, breathing new life into aging mainframe management companies once
they had acquired the rascally newcomers like Tivoli. We certainly didn’t want some runaway IT
projects built by a bunch of cowboys who’d leave us city-folks behind to clean up the mess. We
needed a process to assure our future selves' sanity and which would allow us to get home in
time to watch Seinfeld.

In recent times, though, the need to ship software more frequently has created a new set of
expectations for IT and, thus has been a driver for innovation in the software release cycle. For
many, IT’s goal is now to ship software weekly, if not daily, giving their organisations the
capabilities to operate like software companies. So a review board that itself meets monthly to
look over a huge pile of changes becomes a massive road-block… and if they don’t seem to be
effective, why have them?

There’s no escaping reviewing

Of course, the trick is that “reviewing” is still occurring, but since everyone started following the
Toyota Way principle of "lean thinking", the reviewing is now done closer to the actual work.
Instead of relying on change review boards, the application teams themselves do peer review
with some even going as extreme as doing paired programming. There are many practices and
technologies that help accomplish the original goals of those review boards too.

Standardized testing is also done more and more by the actual application team and also has
become highly automated. It’s not like these fast-moving DevOps people are just shipping code
gleefully, they’re testing and reviewing at almost a nauseating level for old timers who enjoyed
throwing the testing tasks over the wall to QA. A recent Gartner study on agile practices in

51

https://www.youtube.com/watch?v=cJVUtbSmXaM&feature=youtu.be&t=23m49s
http://www.slideshare.net/cote/better-ways-of-developing-software/11

enterprises found that 75 per cent of organisations were doing unit tests and a third had
automated acceptance testing. That said, pair programming was only in place 23 per cent of the
time: that’s apparently still a weird meal for most to swallow despite the praises its practitioners
sing.

To be a bit hand-wavy about it, the way we write and run applications is picking up much of the
review board’s work as well. The actual cloud platforms used to run applications are creating
much more resilient software that with things like the ability to roll-back problems and isolating
poorly behaving services. Meanwhile architectural practices like microservices and 12 factor app
principles are describing how to design and write software that’s designed for this resilience and
speed of delivery.

So what’s an enterprise architect to do?

The role of the enterprise architect seems to be evolving as work is pushed down to the actual
software teams and as staff on those teams become more “balanced” with all the roles needed
on the team beyond just developers. There’s a certain kind of architecture needed to sustain
independently operating applications teams, and it looks like “architects” are well situated to be
those enablers. This, of course, is in subtle but important contrast to being the change review
“approvers”.

This all reminds me of an old anecdote from the lean manufacturing world. At one US car
factory that was going lean, trying to “catch up” with the Japanese, one of the senior presidents
observed that the factory engineers were always very busy in their offices, doing some sort of
work. “I do not think the problems are in that office,” he told the factory general manager, “I think
they are on the factory floor.”

The implication for us in IT, of course, is that problems are not solved, nor software created in
change review board meetings, but by the teams who are creating and struggling with the
software every day. Findings from studies like the DevOps report are now showing this, and it’s
large companies that seem to suffer the most.

When that same study sliced up the findings by company size, it found that organisations with
more than 10,000 people were 40 per cent less likely to be high performers than 500-people
outfits. There are many other factors causing that friction; if you’re one of those large
organisations, it’s worth revisiting CABs.

Originally published in The Register, May, 2016.

52

http://continuouslifecycle.london/sessions/applying-the-12-factors-principles-to-teams-as-well-as-apps/
http://continuouslifecycle.london/sessions/applying-the-12-factors-principles-to-teams-as-well-as-apps/
http://www.slideshare.net/cote/better-ways-of-developing-software/31
https://www.theregister.co.uk/2016/05/06/no_escaping_review_boards/

The developers vs enterprise architects showdown: You shall
know us by our trail of diagrams

One of the more wizened roles in ITis the enterprise architect, or, “EA” for those in a hurry. Now,
those cowpokes over in the wide open office plans of DevOps country have little regard for
these EA types. It’s a bit of a “what have you done for me lately” situation: last we checked in,
these EAs were saying no to cloud and before that they’d put in place something called “SOA”
which turned into a clever, if unintentional, ruse to fly in the WS-Deathstar.

As I loaf around the DevOps circuit, the future of enterprise architects has become my top,
unsolved mystery: what role do they have in this fully autonomous, heavily automated DevOps
world?

You shall know us by our trail of diagrams
EAs have a poor history of improving the lot of developers. Their focus has been on driving out
duplication, mandating all too often baroque services and frameworks, and rounding up any
rogue technologists who are trying new things, er, non-approved technologies. They certainly
seem to show up to meetings, especially recurring ones with vague agenda like “review project
status.” (Whether EAs are “good” at meetings is left as an exercise to the reader.)

Usually they’re armed with all sorts of diagrams, slides, and digital three ring binders. Just
binders, and binders full of diagrams and six deep nested sections titles.

Those diagrams are like the primary totem of EAs: I once met with an airline EA who had an
entire wall covered with a giant collage of boxes and lines describing how the entire company
was wired together. “Now, tell me how I make a ‘cloud strategy’ out of that!” they demanded as
we were sitting at their deluxe, intra-office mini round-table, the sign of real big wheel at an
enterprise.

To be fair, these diagrams are intended to be helpful and, if you stared at them long enough,
would actually be so. Someone has to keep up with what the overall big picture is, how it fits
together, and as our mini round-table baring friend was suffering through, keeping everything up
to date, all flexible and crouched down ready for the next industry curveball. “What are we
gonna do about AR?!”

And while it takes a lot of skill to toil to aligning those boxes and arrows up correctly - have you
ever noticed how “snap-to” grid points just have no aesthetic when it comes to arrow-ended
lines? - EAs are infamous for not having touched a line of code since, well, that time way back
when they did all this DevOps stuff on mini-computers but didn’t call it “DevOps.”

53

https://www.theregister.co.uk/2017/06/08/apple_arkit/

This malady presents in two extreme forms, First, the diffusion of innovation suffers: EA’s who
recommend fantastically new technologies at a mile a minute (they’re probably saying
“serverless” now, but hungering for some new word to chew up like a pack of sunflower seeds
on a tee-ball pitcher’s mound). Second, the laggards who in a voice that I can only hear in the
sound Droopy say things like “hhhmmm, let’s put it on the ESB.”

The DevOps work release program
Still, that idea of making sure everything fits together well and that IT is actually helping the
business side achieve their goals seems like something you’d want to keep. Take, for example,
the scale of JP Morgan Chase with it’s 19,000 odd developers. Even the most skeptical of us
likely feel like there’s some role in centralized governance at such scale. I’ve been talking with
EA types at DevOps-minded organizations for most of the summer and there’s a few recurring
roles for reformed enterprise architects that keep coming up.

Demilitarizing the EA police
One such EA at a financial company described the shift in their thinking as moving from
“policing to partnering.” Several years ago, an EA came in and put in place a traditional
enterprise architecture, set of governance, and all the great diagrams. It didn’t work out.

Here, we have the traditional “policing” mode of doing EA which is often more about
enforcement than, if you’ll pardon the use of vacuous terms for alliteration, enablement. After
the policing debacle, that team now takes more of a “partnering” stance with the rest of IT. The
goal is more to make doing the right thing easy rather than making the hard thing punishable by
reprimand-by-meeting.

Blinking cursors over spinning slide transitions
This also means scouting out and verifying new technologies to use, while also keeping an eye
on standardizing on technologies like platforms and build pipelines. A standardized build
pipeline provides, in fact, a hidden control point for governance. Just as failing tests won’t let a
build through, using unapproved runtimes and frameworks can halt a build. Similarly, with a
good platform (the new, vague soupy word to use for “all that PaaS and container orchestration
stuff”) in place you can control which languages, libraries, and even ports are open and network
connections are made.

Most all of that governance about healthy and sound development and architectural practices
can be baked into your infrastructure. You can see some intriguing work being done here in
projects like InSpec from Chef and in the upper levels of the ever evolving container
orchestration stacks. As any lazy parent knows, deflecting blame to some soulless enforcer like
an egg timer is a much more effective way of getting children to comply with your wishes then
just playing off your parental authority. So it goes with EAs and developers as well.

54

https://www.americanbanker.com/news/unexpected-champion-of-public-clouds-jpmorgan-cio-dana-deasy

Your microservices Gordian knot is adorable.
Planning out and managing microservices seems like another area where EAs have a strong
role for both initial leadership and ongoing governance. Sure, you want to try your best to adopt
this hype-y practice of modularizing all those little services your organization uses, but sooner or
later you’ll end up with a ball or services that might be duplicative to the point of being
confusing.

It’s all well and good for developer teams to have more freedoms on defining the the services
they use and which one they choose to use, but you probably don’t want, for example, to have
five different ways to do single sign-on. Each individual team likely shouldn’t be relied on to do
this cross-portfolio hygiene work and would benefit from an EA like role instead minding the big
ball of microservices strong.

More of the same, just done differently
Though we’d like to think that the whiz-bang, new-fangled hotness of DevOps would erase the
need for enterprise architects, as with agile, it seems to be more changing how EAs go about
their jobs than getting rid of EA.

Some functions - like policing governance - can and should be automated, but still based on
policy the EAs create and continually evolve. Also, who’s going to pay attention to policing if all
those DevOps teams are actually doing a good job?

The relationship between developers and EAs has always been terrible, so it’s little wonder that
individual contributor movements like DevOps are sick and tired of EAs. Nonetheless, especially
in large organizations that don’t have the liberty of dealing with just five or ten applications that
help users graft party hats onto pictures of towering tempeh sandwiches, scaling up DevOps in
enterprises likely needs much of what an EA does.

On the other side of the coin, the EA should actually know what they’re doing, and know the
latest technology and processes that could help their business and developers. The EAs
mindset needs to change as well; those that create and run the actual applications have
supremacy in a DevOps-minded organization. Enterprise architects need to treat these teams
as customers, product managing their work appropriately. Maybe they could even work with
those teams occasionally to see how the grub down in the trench is working out.

If DevOps people scoff at the idea of working with EAs, the feeling is usually mutual. EAs
probably need to take the first step in mending the relationship. At worse, it’ll keep EAs relevant.
After all: “good job filling out our TOGAF architecture library!” said no CIO ever at the annual
review.

55

Originally published in The Register, September, 2016.

56

http://www.theregister.co.uk/2017/09/18/learning_to_live_with_enterprise_architects/

How many “modes” does this thing need?

There’s a debate going on right now about the best way to run IT: specifically, all those custom
applications and services inside organizations. Do we try new, agile approaches, or stick to the
old, methodical processes?

Gartner did much to start this discussion with their bi-modal concept:

Bimodal IT is the practice of managing two separate, coherent modes of IT delivery, one
focused on stability and the other on agility. Mode 1 is traditional and sequential, emphasizing
safety and accuracy. Mode 2 is exploratory and nonlinear, emphasizing agility and speed.

Mode 1 deals with predictable, well understood tasks, while mode 2 is for exploratory tasks, all
those known unknowns and unknown unknowns out there. Gartner even works Cynefin in there
for some complexity theory seasoning.

When you net it all out, much of how Gartner describes bimodal IT is pretty similar to the “slow
down and think more about how to solve your problems, and focus on outcomes over
processes” school of thought – aka the “stop doing dumb stuff” vibe that you hear from the
DevOps world.

A key motivation for having two modes is to protect the new, agile teams from being clobbered
by the old, waterfall-y teams and their Big Process ways: it can be too hard to change culture
enough enough at scale to survive lift-off, and then you’re just stuck back in the muck.

Sad mode1

Most people take all this to be sanctioning “old IT,” resulting not only in freezing the use of new
IT stacks (“cloud!”), but, also freezing any changes to the culture and process around those
“mode 1” applications. The opposing camp, then, tends to see the result of bimodal as
somewhat the opposite of Gartner’s goals of encouraging and creating organizational oxygen
for innovation.

As such, you can imagine that the “unimodal” (as we’ll call them, eh?) camp asks the question
“why wouldn’t you just run everything in awesome mode?” It's a good point: the way the debate
has been framed implies that some staff will be beset with operating in “sad mode” until the pink
slips rain down. Rather than fixing how all of IT runs, if it's left to fester, Jez Humble says, your
legacy IT will eventually eat you up from the inside:

1 I originally heard this sad mode/happy mode framing from Bridget Kromhout, but, for some reason, did
not credit it here.

57

http://www.gartner.com/it-glossary/bimodal/
https://www.mindtools.com/pages/article/cynefin-framework.htm
https://continuousdelivery.com/2016/04/the-flaw-at-the-heart-of-bimodal-it/
https://twitter.com/bridgetkromhout

[L]eaders that fail to move beyond Gartner’s advice will end up falling further and further
behind the competition. They will continue to invest ever more money to maintain
systems that will become increasingly complex and fragile over time, while failing to gain
the expected return on investment from adopting agile methods.

Gartner rival Forrester has noted several times that the happy/sad mode approach can lead to
low morale and, thus, one would infer, less than ideal productivity. And as another dip-stick into
the sump of sentiment around this issue, the reaction to bimodal as a keynote topic at the recent
OpenStack Summit was along the lines of “I think I just threw up a little bit in my mouth”.

In defence of the counter-counterpoint, as it were, there are some systems in which failure can
be very expensive; thus, change carries more risk. Perhaps we should give those systems extra
time and attention, or leave them alone entirely. We have this notion that rapidly changing
software, though it may delight users with a weekly cornucopia of new features, will cause
downtime.

“Move fast and break things,” as theWest Coast motivational posters put it. “Yeah, not so much
with my systems of record,” the ITIL-set would retort.

Of course, the promise of the new, DevOps-y way is that there’s ample testing and architectural
resilience to remove such fears. If you can deploy at will, you can also patch and even rollback
at will. Your operational maturity is a safety net. The DevOps set are interesting in proving out
that unimodal is the one true way and, as indicated by Humble, believe the evolving research
shows you can both move fast and avoid breaking things, if not make your software and staff
morale downright better.

Thus far, much of the commentary has come from analysts and consultants. They of course
imply that they’re channelling the voice of the customer, but it’s always good to go to source
directly. In discussing how one of the US’s largest insurers, Allstate, has been revamping their
approach to IT department Matt Curry gave some advice on bimodal IT.

“It creates this dichotomy of competition and resistance,” in the IT department Curry says, “and
that’s not really what we’re trying to create.” What they’re trying to create is more collaboration
and understanding amongst staff to propel a unified IT department forward. Instead of going
together hand-and-hand, as Curry adds, “bimodal drives this wedge into your organization and
it’s a terrible, terrible thing.”

(I’d be remiss if I didn’t point out another, delightful, response to bimodal: the so called “trimodal”
approach.)

Can’t we all, just get along?

I always get the sense that the two camps are, more or less, talking about the same thing:
giving IT the processes and culture needed to be more innovative and, thus, helping out the

58

https://www.forrester.com/report/The+False+Promise+Of+Bimodal+IT/-/E-RES131967
https://www.forrester.com/report/Quick+Take+Cloud+Foundry+Summit+Q2+2016/-/E-RES135421
http://www.theregister.co.uk/2016/05/04/speaking_in_tech_episode_209/
http://mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability/#wAWvHVkfLsqV
https://devops-research.com/research.html
https://devops-research.com/research.html
https://www.youtube.com/watch?v=YEAejTRoPSU&feature=youtu.be&t=30m20s
https://www.youtube.com/watch?v=YEAejTRoPSU&feature=youtu.be&t=38m36s
http://blog.gardeviance.org/2014/11/how-we-used-to-organise-stuff.html
http://blog.gardeviance.org/2014/11/how-we-used-to-organise-stuff.html

larger organization more. The two camps are just approaching them from different angles,
constraints, and symptoms they’re addressing. And, of course, with much of its content locked
behind an expensive paywall, we can’t expect many of the free-wheeling DevOps-set to be
reading up on bimodal.

Perhaps Gartner would do well to jump, rather than toe-tip, into the fray. These two camps
should sort out their differences and start talking with one voice. After all, we’d all benefit from
the software at large enterprises and governments sucking less, and that’s what both of these
camps are after.

Originally published in The Register, June, 2016.

59

https://www.theregister.co.uk/2016/06/15/one_it_so_many_modes/

Victory! The smell of skunkworks in your office in the morning

While it’s easy to start up a few, flashy new DevOps teams, releasing to production each week
and flaunting the ball-and-chain of enterprise governance, scaling that change to your
organisation will always be challenging, if not crushingly impossible.

When it comes to scaling the skunk-works, I’m reminded of a conversation with a struggling
enterprise architect. I often use the company’s mobile app and it’s updated frequently, integrated
well with iOS, and provides an overall very pleasant experience. Such results are normally
unexpected from this type of aged, highly regulated, lumbering enterprise. As this enterprise
architect was masterfully telling me why their organisation was doomed, I piped in: “but the
mobile app is pretty good - excellent even!”

“Oh. Well. I mean sure. But that’s the mobile team,” the EA said in an almost: “You kids today
and your: ‘I’ve-got-it-all-figured-out attitude - these olds’!” tone, “They’re different.”

My first thought was: “Er, well, maybe you should go figure out what they’re doing right.” More
broadly, this situation pointed to the too-common anti-pattern of letting successful skunk-works
teams live in isolation too long. There are two approaches I’ve seen for airing out the skunks
and spreading change wider.

The smiling knife roll

Changing an organization from within is extremely difficult. Most staff were hired to do a specific
job and if they’ve achieved seniority, they’ve mastered their daily tasks and figured out how to
max out their performance reviews. Few people are excited to change such a comfortable statis.
And in larger organisations outsourcing contracts often act like concrete poured atop bleached
coral.

In these circumstances, brute force and fear is often the fastest way to scale up the team of
skunks. This starts with a tops-down mandate from executives who are deathly afraid of being
“disrupted” by the dog-under-desk startups. Once vendors and consultants with their slides of
startup logo-doom circle through, these executives get that “sense of urgency.” Focused, annual
freaking out is common, but what’s key is that the executives actually round up budget and
corporate attention to spend on this change.

More than likely, the next move will be to hire an outside maverick who carries a well-cared-for
roll of knives who immediately engages in bureaucratic knife fighting. Internal champions can
work as well and in some more staid, closed cultures may be all that’s possible.

60

http://www.theregister.co.uk/2016/01/15/devops_people_problem/
http://www.theregister.co.uk/2016/05/06/no_escaping_review_boards/
http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/

Either way, what’s key is slicing away the organisation mould and focusing on building up new
staff and teams who are amenable to change. Otherwise, as so many tales of cowed mavericks
show, nothing happens and you all too soon hear the soft clanking of those knives being rolled
up and shown to the door.

As the new leader builds up their posse, they must also start the hard job of internally marketing
how fantastic this new DevOps stuff is by highlighting the success of relevant projects. A well
planned series of small projects can build momentum and build up the internal folk-lore of
success. Coupled with that, internal conferences with staff from the new teams are often used to
convince the coral encrusted that following new methods might just be a good idea, and even
make their lives better.

Hearing tales of success and, it’s hoped, an easier work-life from peers is often the only way to
convince staff. After all, management has always been going on about “change,” and look
where we are now - changing again!

There are uncountable micro-level tactics to discover and fix. Management must discover and
iteratively try to fix these issues rather than relying on teams to heal-thy-self. Cajoling senior
developers to pair program is a good example. Often, senior developers are threatened by the
prospect of sitting at a desk with “junior” developers. Pairing seems to threaten their status as
The Canny Guru who’s grey-beard status is often relied on, for example, to solve Sphinx-level
COBOL riddles.

But here’s the incentive our knife-roll cuts with: in theory, by nature of being a senior developer,
The Canny Guru actually enjoys writing code. At home, they’ve likely Python’ed up some sort of
Raspberry Pi contraption to mist their iguana when the terrarium hygrometer comes up foul.
Instead of being in meetings all day to dispense sage-insights, when the senior developer pairs,
they find that they’re back to writing code most of the day. They return to their old joy. And, if
attending meetings and putting together well spaced out diagrams is their new love, well, it’s
clearly time for them to be, er, “promoted” to management.

Organisations are immutable

There’s a handful of case studies from financial companies and government agencies following
the principal I like to call “organisations are immutable.” For those not up on their nerd talk, this
means you can’t change an organisation once it is set up. The sunny side of this, is that you can
still create new ones.

In this method of introducing a new approach to software, like DevOps, a brand new group is
created that operates under the new bureaucratic norms, slowing adding new projects to the
new group. High-level management blesses this new organisation to sweep its arm across a
messy governance table of half drank ticket queues and droning CABs, starting with a tabula
rasa.

61

http://www.theregister.co.uk/2016/10/18/pairing_programming_youll_never_guess_what_happens_next/
http://www.investopedia.com/terms/p/peter-principle.asp

The existing - now “legacy” - organisation continues to operate as needed, but slowly, projects
and people are moved to the new organisation. Service dependencies from new to old are
mediated and hidden behind APIs and facades, trying to decouple the two into a sort of
reverse-quarantine: the old organisation is blocked off from infecting the new group.

The new organisation follows all the new-fangled notions, from the pedestrian practice of free
lunches and massages, to paired programming, to fully automated build pipelines… all enabling
the magic of small batches that result in better software.

The magic of this method is that it avoids having to unfreeze the glacier, namely, the people who
don’t want to work in a new way. Instead of doing the hard work of changing the old
organisation, management slowly moves over willing people, reassembling them into new
teams and reporting structures. The old organisation, though perhaps de-peopled, is left to
follow its waterfall wont.

Publicly, companies have said that something around 30 per cent of people won’t “make it” to
the new organisation. When I talk to executives in less than public forums - for some reason,
always in poorly lit places like bars and parking garages - they say the number can end up
being close to 70 per cent.

The “digital services” agencies created by various governments in recent years are some of the
most documented examples here. Several large corporations have applied this pattern as well,
often calling the new organisations “Labs.” The entirety of the old glacier is far from melted, but
the rate of liquefaction is having actual, real business effect. Who among us, after all, can resist
ordering pizza through a watch?

Success is the best deodorant

Either approach is still difficult and takes time. Based on what I’ve seen the first year will yield
anything from 10 to, perhaps, 50 applications managed in the new fashion. It could be more if
you’re blessed with people and software that is easily massaged into your new process. In the
second year you can expect to up that rate much more.

Changing how a large, 50-plus-year-old organisation with thousands of applications is much
harder than failing to success with all those hats-on-cats applications you see from the the
ramen-fed, high-hemmed skinny jeans set. Once you build up a streak solid wins, though,
introducing DevOps is easier to ripple through the organisation... so long as management
actually does their job of, well, managing.

Originally published in The Register, April, 2017.

62

https://www.theregister.co.uk/2016/04/12/land_the_legacy_big_fish/
https://www.theregister.co.uk/2016/04/12/land_the_legacy_big_fish/
https://www.wired.com/2016/04/dominos-anyware-pizza/
https://www.wired.com/2016/04/dominos-anyware-pizza/
https://www.theregister.co.uk/2016/10/07/gds_hand_signals_silliness/
https://www.theregister.co.uk/2017/04/26/ah_i_love_the_smell_of_skunkworks_in_the_morning/

ROI Smoke Bombs and Diversions

At this point in the innovation curve for something like DevOps it’s fashionable to start asking
“Where's the Return On Investment?”

Answering that question is always tedious. For the hopeful, starry-eyed practitioner, spitting up
the ROI figures is akin to the irrelevant water-carrying and wood-chopping trials imposed by a
kung-fu master. Except instead of cold rice with snow-white topknots, it’s dreary spreadsheets
with pearly toothed finance flacks.

If you’re lucky, your organisation will be dead-set on taking on that “survival is not mandatory”
mindset, ignoring questions like ROI. But, most everyone else has to fill cell range C45:G60 with
all that water and wood.

First, go drink

Your first inclination will be to crack jokes about flossing and Blockbuster. “What’s the ROI on
flossing, you ask? Well, do you like having teeth?” You’ll follow up with erudite commentary on
all the Blockbusters out there who were rearranging the deckchairs on the RMS ROI as it
descended into the icy depths.

This is not helpful. Find yourself some colleagues, get a few pints, and have a laugh play-acting
this out. Once you’re back from second breakfast, try some more helpful approaches.

What is this “ROI” you speak of?

When finance and management interrogators ask about “ROI” and “business cases,” I find that
they’re mostly asking three questions:

1. Will this fit in the budget?
2. Are we paying too much?
3. Will this change actually work?

Sometimes they’re asking all three questions, sometimes just the first two. Sometimes they’re
using you to practise their Cenobite impersonation with implements scrounged up from about
the cube-farm. More likely, they’re asking at least one of these three questions.

Will this fit in the budget?

Of all the ROI questions, this is the easiest to answer. If you know the budget, you just need to
figure out how you’ll meet or come under it. When looking at DevOps, this means you’ll first
establish the baseline cost of following the “old” way, like staff’s pay, tooling, and the expected

63

http://www.theregister.co.uk/2016/08/24/devops_salary_survey/

cost of fixing screw-ups. Then model how DevOps concepts such as "two pizza teams" and
"reducing release cycles" will lower your costs.

If your teams spend less time communicating with other teams, there’s less time in meetings,
clicking up presentations, and coordinating what to do after the meetings. Communication is
more effective and efficient if you’re all on one, small team.

You want your product teams spending 90 per cent plus of their time on product, but they’re
probably spending more like 20 to 30 per cent. Fewer, silo’ed teams will result in fewer errors
caused by handoffs between teams. Meanwhile, DevOps’ smaller batches of code and weekly
release cycles will increase the resilience of your applications (faster time to recover) and the
productivity of your software (as you iteratively release, observe the use of, and improve your
software’s usability).

Cost-cutting? It's possible...

If you want to pull out the trimmers, also look at staff reductions. Several large organisations I’ve
spoken with have drastically reduced their operations and QA staff after modernising their
software development and delivery approaches.

You can dress this up by saying those “resources” will be re-allocated to “more high value
activities,” but if you’re slotting in a huge amount of automation and pushing routine testing to
the product team you may find yourself with a sizable thumb-twiddlers' budget.

When fitting into an assigned budget, your ROI answer is on the subject of “doing more with
less.”

Are you paying too much?

We all like a good deal, and can agree that getting fleeced is a poor outcome. You’d like to know
you’re not overpaying. With a process change like DevOps, the tough question is “paying for
what?” There are costs associated with modernising your software approach like buying new
tools and hiring consultants (or “coaches”) to help change your organisation.

When it comes to tools - which usually means software, SaaSifed or otherwise - you’re talking
procurement negotiating and producing a proof of concept. There’ll be alternatives for your
development toolchain, for where you run your software (public cloud or on-premises), fees for
middleware you use, and support and maintenance costs.

There are no easy answers, just models and competitor matrixes to work over. The raw tools
here are standard technical tests to prove out the alternatives and the track records of other
users, good and bad.

64

http://www.techrepublic.com/article/how-allstate-boosted-developer-productivity-by-350-with-the-cloud/
https://www.youtube.com/watch?v=VUoj5hNfJ3Y

You might also ask if an outsourcer can do it more cheaply than your organization. Answering
this question requires more of an assessment of the your organisation’s willingness to change,
and not only the staff, but management as well. The change is not easy; executives I’ve spoken
with estimate that anywhere from 30 to 70 per cent of people “won’t make it”.

Will this actually work?

You’ve crafted up numbers for a business case, horse-traded your way to a good deal, and
ensured that your people can pull it off. And seemingly, true to Larman’s Law, people keep
insisting on more justification.

Other than table-flipping your way into a new job, I’ve found three useful tactics here:

1. Other people’s success, first hand - doubt about success tends to revolve more around
“we already do that, we’re just OG enough to not call it DevOps” and “we’re not good
enough.” Occasionally (and always in comments from you, dear El Reg readers) there’s
the cry of “it’s an Augean Stables’ worth of offal.” While there’s no end of success stories
when it comes to DevOps, rather than sending an email full of links that’ll never be read,
arrange actual meetings between your doubters and credible people from other
organizations who’ve been successful with DevOps.

2. Hide - creating a “skunk works” is a tried and true method to bootstrap a new process,
ignoring the haters in dry-clean creased dark denim. If you fail, there’s massive risk. But
if you succeed, you’ve demonstrated that the new way is effective and to be trusted.
Someone might even thank you.

3. Start small - do a series of small projects to prove out the new process. These can’t be
“science projects” and instead need to be something that’s small, yet important to your
organization. In doing these little projects, you’re building up credibility for the new
process and also learning how to do it.

What’s the ROI on ROI?

Finally, you should assess your own return on your time spent on cleaning out the stables. Will it
be worth your time, personally and professionally, go to all these meetings and hustle up
justifications for all the naysayers? Ideally, the answer is yes, of course, that’s my job even! But
carefully look at your situation, the political climate in the office, your chance of success, and the
pay off you’ll get. If you’re on the wrong side of that Deming quote, it’s best to enjoy the deck-top
orchestra while you elbow your way into a lifeboat.

Originally published in The Register, September, 2016.

65

https://vimeo.com/105840087
https://vimeo.com/105840087
http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
http://www.theregister.co.uk/2016/06/23/state_of_devops_survey/
https://www.theregister.co.uk/2016/09/13/return_on_investment_for_devops/

Go DevOps before your bosses force you to. It'll be easier that
way

Some people are making very bold claims about what DevOps can deliver. Here’s one:
“High-performing IT organizations deploy 30x more frequently with 200x shorter lead times; they
have 60x fewer failures and recover 168x faster,” according to the first bullet point of the 2015
annual Puppet Labs State of DevOps report.

With claims like those, managers in all sorts of organizations are starting to sit up and evaluate
“doing the DevOps.” And it’s time to worry.

That’s because, inevitably, those considering and then mandating a new DevOps direction will
invariably have different interpretations of “what is DevOps”. The desired goals and ways of
getting there will be shaped by this understanding and follow from there. For better, or worse.

The problem is magnified because once a new idea has taken root and gained buy-in at
executive level, challenging it is nigh on impossible – until the inevitable train wreck happens.

If you are in an organization where DevOps is in the air it therefore behoves you to make sure
the management fully understands what DevOps entails, and especially understands that it’s not
a quick win.

No quick win

Unlike virtualization, which became a quick way to save money with capacity management
optimization, DevOps is not simply a technology that one puts into place to optimize an existing
way of operating. DevOps – and the broader “cloud native” approach to custom written software
development and delivery – is about changing how your organization functions, often along with
which tools its uses, to drastically improve your software. You don’t get eye-popping results like
the Puppet Labs’ reports by simply twiddling some knobs in the stack.

So, before you embark on your DevOps quest, it’s good to make sure your organization
understands what DevOps is and ensure that it is fully – nay, smartly – behind it. It’s all too easy
to launch DevOps programs based on misconceptions. Let’s look at three of the more common
ones that are easy gut-checks.

66

https://puppetlabs.com/2015-devops-report
https://puppetlabs.com/2015-devops-report

DevOps is automation

The most common misconception is that “DevOps” means simply the use of Puppet, Chef,
Ansible, Salt, or one of the other new automation frameworks. While much of the early history of
DevOps is inextricably tied to these automation technologies, their use is, at most, merely
necessary but is not sufficient for full DevOps.

Instead of just automation, DevOps also includes a very evolved agile style to product
development. Software development is in the name. Without a mindful approach to improving
the actual software being developed, you’re merely automating eventual failure – or, at best,
mediocrity.

The creation of a DevOps team

One of the more pernicious DevOps misconceptions is the need to create a separate DevOps
team. The counter-point, here, is that “DevOps” is an end-to-end approach to improving your
organization's software: from product management, to development, to QA, to deployment, to
operations.

One of the chief theories of DevOps is that separating out the roles – and, thus, people – in that
full process introduces more damage than “savings”: each role ends up locally optimizing and
losing site of the big picture. Hence, the constant barrage of “worked in dev, now ops' problem”
slides in DevOps presentations. These separate silos also introduce “waste” in the form of the
communication between teams as software moves through the various life-cycle “gates.” Adding
yet another team introduces even more waste.

The notion that a separate team, or person, handles all the DevOps related concerns belies a
misunderstanding of what DevOps is at it’s core: sweeping changes to how the organization
operates, end-to-end.

DevOps will save you money

Coming from a decade of near alchemical cost savings from virtualization, IT management is
conditioned to think first about cost savings. When it comes to new technology adoption
measuring savings is the easiest, most dramatic, and, thus, most addictive way to show ROI.

DevOps at first seems to have the trappings of a great cost savings initiative. The idea of having
“one team” feels like you’re reducing head-count. When crossed with the idea of a “full-stack
developer” – those mythical beasts who can code and do systems management like some short
order cook whose skills range from flapjacks to foie gras – management can quickly start to
salivate at the ideas of getting more from less staff. Confusing DevOps with just automation can
add to the alluring mirage just over the horizon’s edge of quick-savings.

67

http://www.theregister.co.uk/2016/02/04/think_small_not_big/
http://www.theregister.co.uk/2016/02/04/think_small_not_big/
http://www.developermemes.com/2013/12/13/worked-fine-dev-ops-problem-now/

While I would argue that cost savings do result from a mature DevOps-driven organization, they
certainly won’t come in the short term, nor will they be easy to model up-front. The “savings” are
in things like quality of software and better uptime in production. These types of savings are all
about “sucking less,” which doesn’t exactly model well in a spreadsheet.

Be the baby, not the bathwater

We’re very close, if not right at, the apex of DevOps’s “inflated expectations.” This year and
next, I’d expect almost every organization to start asking the question: “How can we benefit from
DevOps?” and putting “strategies” together to do so. The prognosticators at Gartner are
predicting DevOps project failures at a rate of 90 per cent by 2018.

If you are part of staff who’s responsible for implementing management decrees, now is the time
to ensure your organisation doesn't get saddled with some misconceived implementation of
DevOps. You – and your organisation – want to be part of the 10 per cent, not the 90 per cent.
It’s up to you to make sure that should any bathwater get thrown out, the baby of DevOps
doesn’t go with it.

Originally published in The Register, March 2016.

68

http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.gartner.com/newsroom/id/2999017
http://www.gartner.com/newsroom/id/2999017
https://www.theregister.co.uk/2016/03/09/making_sure_your_bosses_get_devops/

You can't find tech staff – wah, wah, wah.

In a recent survey, the number of executives worried about a skills gap in IT grew from 49% in
2016 to 60% this year. Other surveys shore up this finding as well: a Cloud Foundry Foundation
survey from late 2016 had 64% of their respondents worried about getting the skilled staff
needed.

“Is there a skills shortage? No question about it,” RedMonk’s James Governor told me late last
year, later adding “and we expect it to get worse.”

While the systemic problems that cause a skills gap in “Silicon Valley” are finally being
consternated over, in “the real world” outside of tech companies, the problem is likely even more
dire.

Some (*cough* Oracle *cough*) are of the opinion that you shouldn’t worry about skilled IT staff
(particularly developers) and should instead focus on, you know, managing the procurement of
more software. This opinion isn’t too well reflected in my Friedman’ing in-and-out of stuffy
conference rooms. Leadership tends to be more interested in improving their software
capabilities rather than outsourcing them (because, you know, outsourcing has worked out so
well in the past).

How might this “skills gap” be addressed?

Bucolic programming
Location is one of the first self-imposed constraints on the supply of IT talent. All too often,
companies like to hire in the big, hustle-bustle cities. There’s an initial logic to this: just like a
lumberjack goes to where the wood is, a tech company will go to where a it thinks a pool of
talented people are.

Fairly quickly, of course, this cements you into one locale which quickly becomes congested
with competitors looking to out-benefit and poach your hard won staff. “Well, our free coconut
water is organic! And we have three fridges full of craft beer!”

It turns out there’s there’s plenty of cities full of people who know how to computer. In the past
month I’ve been to London, Riga, Kansas City, and Auckland. While the first is certainly, you
know, a big deal of place, the last three wouldn’t commonly be thought of as “hotspots” for tech
talent. The locals said that, sure, hiring was hard, but not impossible. From what I could tell,
each city was overflowing with as many foul tasting, locally crafted IPAs as any recruit could

69

https://www.scribd.com/document/336827428/State-of-the-CIO-2017#fullscreen&from_embed
https://www.cloudfoundry.org/developer-gap-2016/
https://www.cloudfoundry.org/developer-gap-2016/
https://soundcloud.com/pivotalconversations/filling-the-developer-skills-gap-with-abby-kearns-and-james-governor
https://soundcloud.com/pivotalconversations/filling-the-developer-skills-gap-with-abby-kearns-and-james-governor
https://www.theregister.co.uk/2017/10/12/oracle_must_grow_up_on_open_source/
https://forums.theregister.co.uk/forum/1/2017/06/29/devops_hustlers/#c_3220617
https://forums.theregister.co.uk/forum/1/2017/06/29/devops_hustlers/#c_3220617
http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
https://www.horsesforsources.com/traditional-outsourcing-run-out-of-value_031917
https://www.horsesforsources.com/traditional-outsourcing-run-out-of-value_031917

want to orally ruminate over while they figure out how to install kubernetes from source late into
the night.

Pay more to drive supply
A popular to encourage supply growth, of course, is to offer higher prices. In the US, “normal”
developer pay seems to slide somewhere between $80,000 just over $100,000. That’s already
a pretty lux price, but it reflects the high value of the work done. And, if people are hard to find,
perhaps the price isn’t lux enough.

If talent is short, perhaps organizations should pay more. Scarce talent demands high pay. After
all, companies seem happy to pay those elusive CEOs and VPs top dollar to attract the right
talent, eh?

But, let’s be a bit real: telling companies that they should be spending more probably isn’t going
to be well received.

Training
Instead of find just new staff, you could also increase the productivity of your existing “supply” by
better training your existing people. Management often believes they’re doing enough training,
while staff consistently believes the opposite.

Further up the staffing pipeline, coding "bootcamps” are promising. Early results are proving out
the theory that IT skills can be taught in a vocational setting, instead of needing the highly
vaulted, but high cost Computer Science degree.

For example, as she told me recently in a panel discussion, coming from the world of musicals,
Chloe Condon drank from the fire-hose of a 12 week boot-camp and now finds herself nicely
employed: “For people like myself, who, maybe have had a whole career before going into
computer science there are definitely ways to ramp people up.”

Widen the hiring pool to drive supply
Supply is also low because we’ve been narrowing our filters. There are, after all, only so many
male programmers in coffee stained Tiny Rick t-shirts, wobbling atop flip-flops, to go around.
With some tweaking on demographics, you’ll find there’s of people who’d love stuffing
themselves into a too-old-for-that t-shirt to type up bash scripts and kotlin for you. (If you’re
lucky, they might actually dress like an adult too - bonus!)

In addition to making sure your recruiting isn’t limited by biases, it’d be nice if people actually
wanted to work at your company because the culture was welcoming. As Governor put it, there
are plenty of people you could be recruiting, but “you’re not talking to them, in a way that is

70

https://www.glassdoor.com/Salaries/software-developer-salary-SRCH_KO0,18.htm
https://www.glassdoor.com/Salaries/software-developer-salary-SRCH_KO0,18.htm
http://blog.indeed.com/2017/05/02/what-employers-think-about-coding-bootcamp/
https://twitter.com/ChloeCondon
https://twitter.com/ChloeCondon
https://twitter.com/ChloeCondon

appealing. And you're not creating an organization that either encourages them to join or will
sustain them in enjoying the company when they arrive.”

As the past few years have shown, there’s still an offensive culture at too many companies that
can easily repel talented people whose skills were once considered so priceless.

“There is no talent shortage”
“I get frustrated having coming out of the job search as a junior engineer only about a year ago,
everyone’s always saying ‘where are these unicorn - this diverse talent out in the universe?’”
Condon said of recruiting efforts that are too narrow, “A lot of places literally aren’t letting them
through the front door by requiring a CS degree” and the other trappings of a stereotypical
developer.

With the right mix of training and widening our recruiting filters, there’ll be plenty of people out
there to fill everything from our dreary cube-farms shaded by stacks of TPS reports to the
overly-lit open floor-plan offices smelling of leftover kombucha. The supply problem may never
be solved perfectly, but it can certainly be made better. The talent is out there.

Originally published in The Register, October, 2017.

71

http://www.theregister.co.uk/2017/10/19/it_staff_supply_problems/

Removing grumps from the DevOps punchbowl
My editor at The Register suggested changing “grumps” to “Robin” so as not to offend Register
readers too much, which I did for publication. That was probably a good idea. -Coté

You know the grumps. Here you are, doing the DevOps so hard you’ve broken the spine of your
DevOps Handbook and Robin won’t get with the whole culture thing. They sit in the stand-up
meeting, arms crossed, each morning mumbling “well, I wrote some code” and take that long,
loud sip of tea. A grump will sabotage your improvement dreams. Something must be done.

Maybe they’re right: change is exhausting
Perhaps your grump has it right. This round of transformation might be the same squiggly pit of
offal as the ones that came before. Throughout their career, they’ve been force marched
through several searches for excellence and are now ready to ensconce themselves in a lovely,
little cottage curating their model-train collection. Change is tiring, especially if every five you
have to change again because the old system didn’t work.

Sure, DevOps (and the broader meatware of agile and lean software) emphasize continuous
learning, change, and adaptation as part of the process. That might make you assume that past
improvement initiatives were static - as is often the positioning of The New Methodology. To be
sure, whatever the process du jour, an organization tends to calcify, cementing in tickets and
change advisory boards like rebar to keep the stable and static. However, it’s not like anyone
who comes up with an IT methodology sets out to make a crappy one. ITIL doesn’t kill good
software, people do.

We are told by the high-performers of DevOps that empathy is an important tool. As much as it
hurts with grumps, let’s try. The grump likely had an incident, if not many, of transformation
betrayal and have since learned the proper way to ride the stack-ranked wave without drowning.
They have no reason to trust that it’ll work this time and be worth the risks of trying something
new.

Using a trick from the ancient tome of transformation, Leading Change, look at the alignment of
your HR policy: “Performance appraisal. Compensation. Promotions. Succession planning. Are
they aligned with the new vision?” If not, it’s an indicator that grumps are justifiably crotchety. A
recent Forrester study shows that performance appraisals mismatches are widespread.
Improving your software capabilities is largely about improving customer satisfaction, but the
study found that "[o]nly 20% of individual developers use customer satisfaction to measure
success."

72

http://www.theregister.co.uk/2016/05/06/no_escaping_review_boards/
https://www.goodreads.com/book/show/51370.Leading_Change
https://www.forrester.com/report/Dealing+With+Development+Team+Dysfunction/-/E-RES137008
http://www.theregister.co.uk/2018/02/20/design_in_the_age_of_devops/

People are rational, if they sniff out that you’re a facile change agent, singing the praises of a
new way and then doing nothing to change the compensation system, they’ll wrap themselves
in a coat of many tickets.

Volunteers only
Perhaps you can’t turn the grump’s frown upside down, or it’s taking too long. While it doesn’t
work in the long term, many organizations using the volunteer model to handle the grumps. This
model sets up a new organization and only takes volunteers for the first handful of projects.

Jon Osborn describes this tactic at Great American Insurance Group: “we used the volunteer
model because we wanted excited people who wanted to change, who wanted to be there, and
who wanted to do it. I was lucky that we could get people from all over the IT organization,
operations included, on the team…it was a fantastic success for us.”

The theory here is that organizations are immutable: once you put a system in place, it can’t
really be changed. If that system can’t be changed, you can’t change the incentives and rules of
the game, meaning you can’t change how people behave. Setting up a new organization gets
around that problem, potentially addressing the grump’s paranoia. The volunteer model also
allows the grumps to self-select and stay behind. There’s plenty of ERP systems to manage,
afterall.

About that model-train collection
Finally, after going through this grump sleuth, you could end up with unchanging grumps,
bottlenecks on two legs. In the free-wheeling US of A, you can just fire these people - yay,
capitalism!

Executives tell me that anywhere between 30% to 70% of your staff will have difficulty shifting to
a new way of doing IT. One manager grimly told me - literally, in a poorly lit parking garage - that
they should have ditched more. Of course, training and hiring replacements is a huge problem.
Cutting heads should be the last resort least the grave you’re digging for them turns out to be
yours.

European organization have a problem here they’ve institutionalized caring about the welfare of
people: it’s very hard to get rid of people. In this case, yet again, quarantine people with the
volunteer method. The retirement as change management strategy method is slow moving, but
perhaps you can rely on highly regulated, high barrier to entry markets to buy you time.

The beatings will continue until…
While it’s fine to, you know, actually care about the mental well being of people, making sure
staff are happy increases your chance of success. “[R]esearch has shown that ‘companies with

73

https://www.youtube.com/watch?v=3mahpbr7ios&feature=youtu.be&t=16m04s
http://www.theregister.co.uk/2017/10/19/it_staff_supply_problems/

highly engaged workers grew revenues two and a half times as much as those with low
engagement levels,” as the recent DevOps book Accelerate summarizes a 2012 study.

A grump will not only slow down their part of the software delivery life-cycle, but also start to
drag down others, harshing that sweet bowl of OODA loops they’re looking to chomp through.
My sense is that a minority of these grumps are acting as completely rational actors. They’ve
been conditioned by decades of corporate culture and policies that validate their change
paranoia. While you may end up having to throw them out, it’s best to first be empathetic and
humane, even using them as a canary in the change coal-mine. There will be some that are
fixed in mindset and can’t be helped, but most of them will likely help you find and fix systemic
problems, getting you one step closer to improving how your organization does software.

Originally published in The Register, May, 2018 as “You're in charge of change, and now you
need to talk about DevOps hater Robin.”

74

https://itrevolution.com/book/accelerate/
http://www.bain.com/publications/articles/the-chemistry-of-enthusiasm.aspx
http://www.theregister.co.uk/2018/05/14/devops_change_barriers/

How to avoid getting hoodwinked by a DevOps hustler

It being June, we’re almost halfway through this year, and how’s progress on those Digital
Transformation Initiative slides doing? Maybe you need a quick jump in improvement to buy
some time for August vacations, and then ensure you can get enough actual change and a few
successful projects in place by the holidays.

While they’ll ship themselves to your door, those gifts aren’t going to buy themselves. At this
point, finding an outside expert to push your jalopy-cruiser’s KPI gauges up is a common tactic.
And why not? It might actually work, and if it doesn’t, you can always whip out your
blame-storming finger to buy time while you look for a new job.

'What’s this thing on my wrist, then?'

The larger the organization, the less likely management will have the skills to look at their own
watch to tell the time accurately. That is, they’ll need to hire some outside consultants to help
shuffle the organization along to the golden path of DevOps. Traditional-minded watch-reading
assistants have been biffing it of late, with well over 70 per cent of senior management
registering dissatisfaction with traditional consultants in a recent survey. You’re going to need
some sluice-fiddling to find the good change consultants.

Provenance

As any angler will tell you, going to where the fish actually are is a key step in catching one.
Where should you find these experts, then?

“Here's a hint... strong DevOps consultants don't come from vendors,” said Matt Walburn late of
Target’s DevOps team and now at Amazon. Now, now: if I may be biased a bit, perhaps a
vendor will hire such people to staff a practice, but, sure, that heuristic will serve well more
frequently than not.

Put another way, you’d like to find someone who’s Done This Before. Without getting too far into
a phrenologic alphabet soup, you want people who have experience both with the technology
and the meatware.

Walburn characterizes a good pedigree thus: “A strong background in not only the technical and
tooling side of DevOps, but also in driving enterprise-wide people and process changes.” For
example, a passing familiarity with the woes of DNS andWestrum-type spotting are good signs.

Judge a person by how they’ve failed in the past

75

http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
http://www.huffingtonpost.com/2012/06/28/joke-the-three-envelopes_n_1635781.html
http://www.horsesforsources.com/c-suite-therapy_013016
https://twitter.com/mattwalburn
https://agileleanlife.com/t-shaped-skills-every-area-life/
https://www.infoq.com/articles/devops-organizational-culture

Many can claim to have such a broad skill-set, but they must be vetted somehow. Sniffing out a
track record should primarily be driven by word-of-mouth and talking with past clients. When
asked for a lengthy list of referrals, if a prospective consultant pleads that their past dance
partners are unwilling to talk, be immediately suspicious. Any organization that’s successfully
changed is tripping over itself to tell others how awesome it went.

As a bonus qualifier, ensure that the referrals tell you plenty of stories of woe: no mercenary
time-teller is without defeats and warts. A referral is likely being overly glowy (read: dishonest or
just indolent) if they don’t tell you what went wrong.

And, ever looking for adding more heft to any blamestorming that must happen post bed-soiling
down-the-line, building up a good list of credible people who said it was a good idea is a fine
defence. Well documented due diligence is a solid parachute.

Anyone can make pretty slides

It’ll be tempting to qualify consultants by the beauty of their conference talks and, of course,
written material (yes, dear readers, the ragged irony-crow sitting here my shoulder doesn’t
escape me). It’s easy to fall into a Socratic trap of dismissing good rhetoric: just because one
can speak pretty doesn’t mean they’re wrong. However, short-listing consultants based on their
conference performances and spoken work takes some skill. As a general rule, you should
differentiate between successful self-promotion and actual DevOps community appreciation,
and, thus, accreditation.

“If someone is considered expert by people other than themselves, they typically show up in
more places than their own self-promotional efforts,” says Bridget Kromhout, head of the global
devopsdays organization and suffer of reviewing many conference talk submissions. So, if all
you see is a series of lambo videos, Twitter verified badges, and sponsored keynote talks at
conferences suffixed with the word “Expo,” be suspect.

Every good consultant knows that a book is a deft calling card. When you’re using the bookshelf
as a selector, ask yourself if the tome contains tactics you can actually put in practice, rather
than just Sunday morning bromides. For example, Gary Gruver’s books practically order you to
put continuous integration in place, first thing. Other books, which shall go unnamed, spend
much time painting the corporate inferno and telling you just about the end-state of bliss, but
little on how to actually get from the path of sin to the blessed elevator. You want stories of
suffering, and how the expert fixed it.

Final judgement

Once hired, you’ll need to measure these consultants to make sure they’re actually doing their
job and worth their salt. This is devilish, as with all measurements involving meat-sacks that
haven’t been yet replaced by robots. How would you attribute causal success to the consultant

76

https://twitter.com/bridgetkromhout
https://www.youtube.com/watch?v=Cv1RJTHf5fk
https://thenewstack.io/review-understanding-devops-putting-place-even-scale/

rather than the organization... or apocalyptic failure when it was actually a bad plate of oysters
your sysadmin had the night before that $440m bash-script error? If success has many fathers,
failure kills all fathers involved.

The easiest way to track a consultant's progress is to ask the teams they work with if they’ve
been helpful. If you don’t mind long-term studies, you can track things like total number of teams
that have run through the consultants fingers, crossed with those teams new-found abilities to
release software more frequently with fewer bugs. But, will the consultant even be there
long-enough for that?

Of course, you’d like to also account for the consultant’s contribution to the success of the
business that’s driving all this change in IT. That can be dicey, however, if you’re not honest with
your assessment. Numerous consultants I’ve shared noon cocktails with as we Quincy, M.E.
their client’s train-wrecks have built compelling cases of organizations that eat themselves to
failure despite all that good counsel.

To rate a consultant, you must clearly define the job you wanted them to do and the blast radius
of success you allow them. This of course, requires knowing what your own goals and metrics
are, and, dare I say it, what strategy your business is pursuing and how it’ll know when it’s failed
and succeeded. And who among us, after all, has the time to figure that out?

Better to hire a consultant to come up with your strategy.

Originally published in The Register, June, 2017.

77

https://www.theregister.co.uk/2017/06/29/devops_hustlers/

Barriers to DevOps in government

There’s just as much pull for DevOps in government as there is in the private sector. While most
of our focus around adoption is on how businesses can and are using DevOps and continuous
delivery, supported by cloud, to create better software, many government agencies are in the
same position and would benefit greatly from figuring out how to apply DevOps in their
organizations.

Just 13% of respondents in a recent MeriTalk/Accenture survey of 152 US Federal IT managers
believed they could “develop and deploy new systems as fast as the mission requires.” The
impact of improving on that could be huge. For example, the US Federal government, by
conservative estimates, spends $84 billion a year on IT. And yet, the Standish Group believes
that 94% of government IT projects fail. These are huge numbers that, with even small
improvements, can have massive impact. And that’s before even considering the benefits of
simply improving the quality of software used to provide government services.

As with any organization, the first filter for applicability is whether or not the government
organization is using custom written software to accomplish it’s goals. If all the organization is
doing is managing desktops, mobile, and packaged software, it’s likely that just SaaS and
BYOD are the important areas to focus on. DevOps doesn’t really apply, unless there’s software
being written and deployed in your organization or, as is more common in government agencies,
for your organization as we’ll get to when we discuss “contractors.”

When it comes to adopting and being successful with DevOps, the game isn’t too different than
in the business world: much of the change will have to do with changing your organization’s
process and “culture,” as well as adopting new tools that automate much of what was previously
manual. You’ll still need to actually take advantage of the feedback loop that helps you improve
the quality of your software, in respect to defect, performance in production, and design quality.
There are a few things that tend to be more common in government organizations that bear
some discussion: having to cut through red-tape, dealing with contractors, and a focus on
budget.

Living with red-tape

While “enterprise” IT management tasks can be onerous and full of change review boards and
process, government organizations seem to have mastered the art of paperwork, three ring
binders, and red tape in IT. As an example, in the US Federal government, any change needs to
achieve “Authority To Operate” which includes updating the runbook covering numerous failure
conditions, certifying security, and otherwise documenting every aspect of the change in, to the
DevOps minded, infinitesimal detail. And why not? When was the last time your government
“failed fast” and you said “gosh, I guess they’re learning and innovating! I hope they fail again!”

78

http://www.meritalk.com/agile-advantage
https://www.youtube.com/watch?v=y6nMQg9qs7k&feature=youtu.be&t=8m16s
https://www.youtube.com/watch?v=y6nMQg9qs7k&feature=youtu.be&t=8m16s
http://www.computerworld.com/article/2486426/healthcare-it/healthcare-gov-website--didn-t-have-a-chance-in-hell-.html
http://www.computerworld.com/article/2486426/healthcare-it/healthcare-gov-website--didn-t-have-a-chance-in-hell-.html
http://www.fiercedevops.com/story/heres-how-we-can-help-push-devops-mainstream/2015-05-14
http://www.fiercedevops.com/story/heres-how-we-can-help-push-devops-mainstream/2015-05-14
http://www.fiercedevops.com/offer/gc_software?sourceform=Organic-GC-SoftwareDefined-FierceDevOps

No, indeed. Governments are given little leash for failure and when things go terribly wrong, you
don’t just get a tongue lashing from your boss, but you might get to go talk to Congress and not
in the fun, field-trip "how a bill is made" kind of way. Being less cynical, in the military,
intelligence, and law enforcement parts of government, if things go wrong more terrible things
than denying you the ability to upload a picture of your pot roast to Instagram can happen. It’s
understandable — perhaps, “explainable” — that government IT would be wrapped up in
red-tape.

However, when trying to get the benefits of continuous delivery, DevOps, and cloud (or “cloud
native” as that tryptic of buzzwords is coming to be known), government organizations have
been demonstrating that the comforting mantle of red-tape can be stripped. For example, in the
GSA, the 18F group has reduced the time it takes to get a change through from 9–14 months to
just two to three days.

They achieved this because now when they deploy applications on their cloud native platform (a
Cloud Foundry instance that they run on Amazon Web Services) they are only changing the
application, not the whole stack of software and hardware below the application layer. This
means they don’t need to re-certify the middleware, runtimes and development frameworks, let
alone the entire cloud platform, operating systems used, networking, hardware, and security
configurations. Of course, the new lines of application code need to be checked, but because
they’re following the small batch principles of continuous delivery, those net-new lines are few.

The lesson here is that you’ll need to get your change review process — the red-tape
spinners — to trust the standard cloud platform you’re deploying your applications on. There
could be numerous ways to do this from using a widely used cloud platform like Cloud Foundry,
building up trusted automation build processes, or creating your own platform and software
release pipelines that are trusted by your red-tape mavens.

Contractors & Lost Competency

If you want to get staff in a government IT department ranting at you all night long, ask them
about contractors. They loathe them and despise them and will tell you that they’re “killing”
government IT. Their complaints is that contractors cannot structurally deal with an Agile
mentality that refuses to lock-down a full list of features that will be delivered on a specific date.
As you shift to not even a “DevOps mindset,” but an Agile mindset where the product team is
discovering with each iteration what the product will be and how to best implement it, you need
the ability to change scope throughout the project as you learn and adapt. There is no “fail fast”
(read: learning) when the deliverables 12 months out are defined in a 300 page document that
took 3–6 months to scope and define.

Once again, getting into this state is likely explainable: it’s not so much that any actor is
responsible, it’s more that the management in government IT departments is now responsible to
fix the problem. The problem is more than a square peg (waterfall mentalities from contractors)
in a round-hole (government IT departments that want to be more Agile) issue. After several

79

https://www.youtube.com/watch?v=598c1pB39Ms&feature=youtu.be&t=11m45s
https://www.youtube.com/watch?v=598c1pB39Ms&feature=youtu.be&t=11m45s
http://wikibon.com/technical-dive-into-cloud-native-application-platforms/

decades of outsourcing to contractors, there’s also a skills and cultural gap in the IT
departments. Just as custom written software is becoming strategically important to more
organizations, many large IT departments find themselves with little experience and even less
skill when it comes to software and product development. I hear these same complaints
frequently from the private sector who’ve outsourced IT for many years, if not decades.

The Agile community has long discussed this problem and there are always interesting, novel
efforts to get back to insourcing. A huge part is simply getting the terms of outsourcing
agreements to be more compatible. The flip-side of this is simplifying the process to become a
government contractor: it’s sure not easy at the moment. Many of the newer, more Agile and
DevOps minded contractors are smaller shops that will find the prospect of working with the
government daunting and, well, less profitable than working with other organizations. Making it
easier for more shops to sign up will introduce more competition rather than the more limited
strangle-hold by paperwork, smaller market that exists now. The current pool of government
contractors seems mostly dominated by larger shops that can navigate the government
procurement process and seem to, for whatever reason, be the ones who are the most inflexible
and waterfall-y.

Another part is refusing to ceed project management and scoping management to external
partiers; and, making sure you have the appropriate skills in-house to do so. Finally, the
management layers in both public and private sector need to recognize this as a gap that needs
to be filled and start recruiting more in-house talent. Otherwise, the highly integrated state of
DevOps — let alone a product focus vs. a project focus — will be very hard to achieve.

Addressing budgetary concerns with waste removal

Every organization faces budget problems, but tech startups seem immune to such fetters. We
call them “unicorns” because they have this mythical quality of seemingly unlimited budget. The
spiral horn-festooned are the exception that proves the rule that all organizations are expected
to spend money wisely. Government, however, seems to operate in a permanent state of
shrinking IT budgets. And even when government organizations experience the rare influx of
cash, there’s hyper-scrutiny on how it’s spent. To me, the difference is that private sector
companies can justify spending “a lot” of money if “a lot” of profit results, where-as government
organizations don’t find such calculations as easily. Effectively, government IT departments
have to prove that they’re spending only as much money as necessary and strategically plan to
have their budget stripped down in each budgetary cycle.

Here, the Lean-think part of DevOps can actually be very helpful and, indeed, may become a
core motivation for government to look to DevOps. My simplification of the goals of DevOps are
to:

1. Ensure that the software has good availability (which it does by focusing on resilience vs.
perfection, the ability to recover from failure quickly rather than avoiding all failure by

80

http://www.fiercedevops.com/story/software-defined-businesses-need-software-defined-it-departments/2015-04-07
http://www.fiercedevops.com/story/software-defined-businesses-need-software-defined-it-departments/2015-04-07
http://www.fiercedevops.com/story/software-defined-businesses-need-software-defined-it-departments/2015-04-07
http://blog.pivotal.io/pivotal-conversations/features/talking-devops-roi-with-the-finance-department
http://www.slideshare.net/cote/day-of-the-donkey-with-cloud-platform-interlude/18

rarely changing anything). This is something that recent failures in US Federal
government IT can appreciate.

2. Enable the weekly, if not daily, deployment of new code into production with continuous
delivery. The goal here is to improve the quality of the software, both bugs and “design”
quality, ensuring that the software is what users actually want by iterating over features
frequently.

Those two goals end up working harmoniously together (with smaller batches of code deployed
more frequently, you reduce the risk of each causing major downtime, for example). For
government organizations focused on “budget,” the focus on removing as much “waste” from
the system to speed up the delivery cycle starts to look very attractive for the cost-cutting
minded. A well functioning DevOps shop will spend much time analyzing the entire, end-to-end
cycle with value-stream mapping, stripping out all the “stupid” from the process. The intention of
removing waste in DevOps think is more about speeding up the software release process and
helping ensure better resilience in production, but a “side effect” can be removing costs from the
system.

Often, in the private sector we say that resources (time, money, and organization attention)
saved in this process can be reallocated to helping grow the business. This is certainly the case
in government, where “the business” is, of course, understood not as seeking profits but
delivering government services and fulfilling “mission” requirements. However, simply reducing
costs by finding and removing unneeded “waste” may be an highly attractive outcome of
adopting DevOps for governments.

“Bureaucracy” doesn’t have to be a bad word

As with any large organization, governments can be horrendous bureaucracies. Pulling out the
DevOps empathy card, it’s easy to understand why people in such government bureaucracies
can start to stagnate and calcify, themselves becoming grit in the gears of change if not outright
monkey-wrenches.

In particular, there are two mind-sets that need to change as government staff adopt DevOps:

1. Analysis paralysis — The almost default impulse to over analyze and specify with
ponderous, multi-100 page documents the shifting to a more Agile and DevOps mindset.
A large part of the magic of DevOps and Agile think is avoiding analysis paralysis and
learning by doing rather than thinking in .docx. Government teams not familiar with
smaller batch, experiment-based approaches to software development would do well to
read up on Lean Startup think, perhaps checking out Lean Enterprise for a compendium
of current best practices and, well, mindsets.

2. Stagnant minds — large organizations, particularly government ones, can breed a certain
learned helplessness and even laziness in individuals. If things are slow moving,
impossible to change, and managed in a tall blade of grass gets cut style, individuals will
tune out rapidly. If DevOps is understood as a practice to help jump-start all too slow IT

81

https://www.youtube.com/watch?v=y6nMQg9qs7k
https://www.youtube.com/watch?v=y6nMQg9qs7k
https://vimeo.com/129792179#t=2m21s
https://vimeo.com/129792179#t=2m21s
https://en.wikipedia.org/wiki/Analysis_paralysis

organizations, it’ll often be the case that individuals in that organization are in this
stagnated mindset. One of the key challenges becomes inspiring and then motivating
staff to care enough to try something new and stick with it.

Again, these problems frequently happen in the private sector. But, they seem to be larger
problems in government that bear closer attention. Thankfully, it seems like leaders in
government know this: in a recent Gartner, global survey, 40% of government CIOs said they
needed to focus more on developing and communicating their vision and do more coaching. In
contrast, 60% said they needed to reduce the time spent in command-and-control mode.
Leading, rather than just managing, the IT department, as ever, is key to the transformative use
of IT.

More than rats dragging pizza

In any given time, it’s easy to be dismissive of government as wasteful and even incompetent.
That’s the case in the U.S. at least, if you can judge based on the many politicians who seem to
center their political campaigns around the idea of government waste - and win! In contrast, we
praise the private sector for their ability to wield IT to…better target ads to get us to buy sugar
coated corn flakes.

Don’t get me wrong, I’m part of the private sector and I like my role chasing profit. But we in the
“enterprise” who are busy roaming the halls of capitalism don’t often get the chance to positively
effect, let alone simply help and improve the lives of, everyone on a daily basis. Government
has that chance and when you speak with most people who are passionate about using IT
better in government, they want to do it because they are morally motivated to help society.

The benefits of adopting DevOps have been clearly demonstrated in recent years, and for
businesses we’re seeing truth in the statement that you’re either becoming a software
organization or losing to someone who is. As government organizations start to think about
improving how they do IT, they have the chance to help all of us, “winning” isn’t zero-sum like it
can be in the business world. To that end, as we in the industry find new, better ways to create
and deliver software, it behoves us to figure out how government can benefit as well. That’ll get
us a even closer towards making software suck less something we’ll all benefit from.

Originally published at FierceDevOps, September 2015.

82

https://www.gartner.com/doc/2974423/-cio-agenda-government-perspective
http://www.dailydot.com/lol/man-behind-pizza-rat-tells-all/
https://www.quora.com/How-true-is-the-statement-The-best-minds-of-my-generation-are-thinking-about-how-to-make-people-click-ads-That-sucks
https://www.quora.com/How-true-is-the-statement-The-best-minds-of-my-generation-are-thinking-about-how-to-make-people-click-ads-That-sucks
https://puppetlabs.com/2015-devops-report
http://www.slideshare.net/littleidea/i-build-the-future-agile-2014/12
http://www.slideshare.net/littleidea/i-build-the-future-agile-2014/12
http://blog.pivotal.io/pivotal-cloud-foundry/pivotal-people/pivotal-people-michael-cote-on-joining-pivotal-and-building-better-software
https://medium.com/@cote/barriers-to-devops-in-government-72d657ecf722

Addressing the DevOps compliance problem

Satisfying the mythical auditors is often one of the first barriers to spreading DevOps initiatives
more widely inside an organization. While these process-driven barriers can be annoying and
onerous, once you follow the DevOps tradition of empathetic inclusion — being all “one
team” — they can not only stop slowing you down but actually help the overall quality of the
product. Indeed, the very reason these audit checks were introduced in the first place was to
ensure overall quality of the software and business. There’s some excellent, exhaustive
overviews out there of dealing with audits and the like in DevOps. Here, I wanted to go through
a little mental reorientation for how to start thinking about and approaching the “compliance
problem.”

Three-Ring Binder Ninjas

In this context, I think of “auditors” as falling into the category of governance, risk and
compliance (GRC) — any function that acts as a check on code as and how the code is
produced and run as it goes through its lifecycle. I would put security in here as well, though that
tends to be such a broad, important topic that it often warrants its own category (and the
security people seem to like maintaining their occultic silo-tude, anyhow).

The GRC function(s) may impose self-created policies (like code and architectural review), third
party and government imposed regulations (like industry standard compliance and laws such as
HIPAA), and verification that risky behavior is being avoided (if you write the code, you can’t be
the same person who then uses that code for cash payouts, perhaps, to yourself, for example).
In all cases, “compliance” is there to ensure overall quality of the product and the process that
created it. That “quality” may be the prevention of malicious and undesired behavior; that is, in a
compliance-driven software development mindset, the ends rarely justify the means.

In many cases, the GRC function is more interested in proof that there is a process in place
than actually auditing each execution of that process. This is a curious thing at first. Any
developer knows that the proof is in the code, not the documentation. And, indeed, for some
types of GRC the amount of automation that a DevOps mindset puts into place could likely
improve the quality of GRC, ironically.

Establishing trust and automating compliance

Indeed, automation is one of the first areas to look at when reducing DevOps/GRC friction. First,
treat complying with policies as you would any other feature. Describe it, prioritize it and track it.
Once you have gotten your hands around it, you can start figure out how to best implement that

83

http://itrevolution.com/audit-101-for-devops-resource-guide-for-the-phoenix-project-part-3-correctly-scoping-it-using-gait-and-gait-r/
http://itrevolution.com/audit-101-for-devops-resource-guide-for-the-phoenix-project-part-3-correctly-scoping-it-using-gait-and-gait-r/

“feature.” Ideally, you can code and automate your way out of having to do too much manual
work.

There’s work being done in the US Federal government along these lines that’s helpful because
it’s visible and at scale. First, as covered in a recent talk by Diego Lapiduz, part of what auditors
are looking for is to trust the software and infrastructure stack that apps are running on. This is
especially true from a security standpoint. The current way that software is spec’d out and
developed in most organizations follows a certain “do whatever,” or even YOLO principal. App
teams are allowed to specify which operating systems, orchestration layers and middleware
components they want. This may be within an approved list of options, but more often than not it
results in unique software stacks per application.

As outlined by Diego, this variation in the stack meant that government auditors had to review
just about everything, taking up to months to approve even the simplest line of code. To solve
this problem, 18F standardized on one stack — Cloud Foundry — to run applications on, not
allowing for variance at the infrastructure layer. They then worked with the auditors to build trust
in the platform. Then, when there was just the metaphoric or literal “one line of code” to deploy,
auditors could focus on much less, certainly not the entire stack. This brought approval time
down to just days. A huge speed up.

When it comes to all the paperwork, also look to ways to automate the generation of the needed
listings of certifications and compliance artifacts. This shouldn’t be a process that’s done in
opaque documents, nor manually, if at all possible. Just as we’d now recoil in horror at manually
deploying software into production, we should try to achieve “compliance as code” that’s as
autogenerated (but accurate!) as possible. To that end, the work being done in the OpenControl
project is showing an interesting and likely helpful approach.

The lessons for DevOps teams here is clear: standardize your stack as much as possible and
work with auditors to build their trust in that platform. Also, look into how you can automate the
generation of compliance documents beyond the usual .docx and .pptx suspects. This will help
your GRC process move at DevOps speed. And it will also allow your auditors to still act as a
third party governing your code. They’ll probably even do a better job if they have these new,
smaller batches of changes to review.

Refactoring the compliance process

To address the compliance issue fully, you’ll need to start working with the actual compliance
stakeholders directly to change the process. There’s a subtle point right there: work with the
people responsible for setting compliance, not those responsible for enforcing it, like IT. All too
often, people in IT will take the strictest view of compliance rules, which results in saying “no” to
virtually anything new — coupled with Larman’s Law, you’ll soon find that, mysteriously, nothing
new ever happens and you’re back to the pre-DevOps speed of deployment, software quality
levels and timelines. You can’t blame IT staff for being unimaginative here — they’re not experts
in compliance and it’d be risky for them to imagine “workarounds.” So, when you’re looking to

84

https://www.youtube.com/watch?v=598c1pB39Ms&feature=youtu.be&t=11m45s
http://opencontrol.xyz/
http://opencontrol.xyz/
http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior

change your compliance process, make sure you’re including the actual auditors and policy
setters in your conversations. If they’re not “in the room,” you’re likely wasting your time.

As an example, one of the common compliance problems is around “developers deploying to
production.” In many cases and industries, a separation of duties is required between coding
and deploying. When deploying code to production was a more manual, complicated process,
this could be extremely onerous. But once deployments are push-button automated with a good
continuous delivery pipeline,you might consider having the product manager or someone who
hasn’t written code be the deployer. This ensures that you can “deploy at will,” but keeps the
actual coders’ fingers off the button.

As another intriguing compliance strategy, suggested by Home Depot’s Tony McCulley (who
also suggested the above approach to the separation of duties) is to give GRC staff access to
your continuous delivery process and deployment environment. This means instead of having to
answer questions and check for controls for them, you can allow GRC staff to just do it on their
own. Effectively, you’re letting GRC staff peer into and even help out with controls in your
software. I’d argue that this only works if you have a well-structured platform supporting your CD
pipeline with good UIs that non-technical staff can access.

It might be a bit of a stretch, but inviting your GRC people into your DevOps world, especially
early on, may be your best bet at preventing compliance slowdowns. And, if there’s any core
lesson of DevOps, it’s that the real problems are not in the software or hardware, but the
meatware. Figuring out how to work better with the people involved will go a long way towards
addressing the compliance problem.

Originally published in FierceDevOps, December, 2015.

85

https://www.youtube.com/watch?v=Bl0oH0UdJPM
https://www.youtube.com/watch?v=Bl0oH0UdJPM
https://medium.com/@cote/addressing-the-devops-compliance-problem-deefe47e204f

Great, we're going to get DevOps-ed. So, 15 years of planning
processes – for the bin?

In large organisations, the question is rarely “what are these newfangled practices and
technologies,” but more “how could we actually do them here?”

DevOps has been here nigh on 10 years, and in the past three or so of those, large, normal2

organisations, like Allstate and Duke, have been learning its mysteries.

“I think that for the IT staff, once they try it, they will never do it another way,” Allstate agile
transformation manager Matt Curry said when I asked him about applying DevOps. That’s
something you hear over and over again when it comes to putting DevOps in place.

While putting improvements and changes in often seems like something that can’t happen at
your organisation, the results are too enticing to ignore, and the business side of the house is
expecting big things for IT, like yesterday. “Based on our business feedback,” Duke Energy’s
director of digital strategy and delivery John Mitchell told me, “it’s 10x better.”

Less analysis paralysis, more continuous planning
A focus on improving software with DevOps techniques requires an organizational mind-shift. In
the traditional mindset, even in the past 20 years of supposedly doing agile, software was seen
as a lengthy project, executed to fulfill a tome of requirements, targeted at a specific launch
date. Slow and careful release trains and planning also limited the number of releases each
year, putting a damper on the feedback loops which improve software in a small batch
approach.

Most organizations, then, have taken a project-oriented approach to software. This means that
IT staff and contractors are forced into a huge, up-front analysis and commitments used to
manage them to schedule.

Former CIO of US Citizenship and Immigration Services (now at AWS), Mark Schwartz says:
“To demonstrate that [IT staff and contractors were] performing that type of work responsibly
and for the business to verify that it was doing so, the scope of each task had to be defined
precisely, bounded, and agreed upon in advance. The work had to be organized into projects,
which are units of work with a defined set of deliverables, a beginning, and an end.”

2 “Yes, but what is DevOps?!” you maybe screaming or typing. Let us just assume, for now, that
it means: “Improving the quality of your software by speeding up release cycles with cloud
automation and practices, with the added benefit of software that actually stays up in
production.”

86

http://www.theregister.co.uk/2018/02/06/devops_no_ops_less_ops/
http://www.theregister.co.uk/2018/02/06/devops_no_ops_less_ops/
https://www.youtube.com/watch?time_continue=102&v=Ot4GvOtq5XY
http://www.theregister.co.uk/2016/02/04/think_small_not_big/
http://www.theregister.co.uk/2016/02/04/think_small_not_big/
http://www.theregister.co.uk/2018/02/20/design_in_the_age_of_devops/

Now, as any overly clever agile-cum-DevOps fan-girl will quickly point out: “Yes, but where’s the
part that ensures the software is actually useful?” Of course, such a thing is the goal of all those
controls described by Schwartz.

A more contemporary view of software, though, is angling to discover exactly what the software
should be by systematically understanding users, discovering what works (and doesn’t!),
building the software, observing how people use it, and then starting the process over again.
This reorientation changes the organizations’ planning process: “it’s only when we started
shifting the focus on ‘outcomes’,” John Mitchell told me, “[that] we start to see that there is a
new approach we can take in front of the planning process.”

In general, people have only the foggiest notion of what their software should actually do until
they start trying. Thinking that you can deeply understand the problem you’re solving, Allstate's
divisional chief information officer claims, vice president technology and strategic ventures Opal
Perry told me in an interview last May, “[is] a traditional pitfall where we thought we knew with
absolute certainty where we were going and it turned out we thought we were going south. But
we need to go north.”

This means there’s not only much less time spent on up-front planning, but much less time
along the way spent verifying that developers have been following the plan. Instead of verifying
the status of projects, you verify that actual business value is delivered in the form of software
that’s useful.

Project Management
With all the talk of “products, not projects,” you’d expect all those PMP-types in the Project
Management Office to freak out. Which, to a certain extent, is always a good idea for those who
enjoy paycheques. However, as many noted, PMO capability is still needed, especially for more
complex applications.

Recently, after giving a long, DevOps soliloquy at a large enterprise, an astute project manager
beset with modernising a rats' nest of mission critical, but aged services soliloquised back at
me. They made odd poetry out of a long list of cross-service dependencies, regulations,
COTS-uses, data concerns, and integrations. “Yeah. Sounds like you need some project
management,” I recall saying in my snarky character: “Good luck - next question!”

Less glib, Matt Curry outlined a heuristic for getting enterprise-grade project management
involved. “PMO is super helpful when my batch sizes are large and my feedback loops are
long,” he said. “When batches become significantly smaller and the feedback loops are shorter
the need for that [PMO] is lessened. The second place that project management is useful is
when you have a lot of external coordination.”

87

https://soundcloud.com/pivotalconversations/the-management-perspective-on-transforming-allstate-with-opal-perry
https://soundcloud.com/pivotalconversations/the-management-perspective-on-transforming-allstate-with-opal-perry
https://www.theregister.co.uk/2016/04/21/intel_paranoia/
https://www.theregister.co.uk/2016/04/21/intel_paranoia/

Finance
Handling financing in a DevOps-oriented organization takes some care. Previously, because IT
purchased their own kit for development, QA, and staging labs would require a capital expense
(capex) approach. The amount of servers needed, of course, was a drop in the bucket
compared to the amount of hardware needed for production, which were even larger capital
expenses. With a DevOps approach, which typically depends on using public cloud, these
expenses switch to operating expenses (opex).

The application teams, of course, love operating in an opex model because it speeds up finance
planning and lab building times: they can get to the value of actually creating and releasing
software quicker. However, if the accounts don’t pay close attention, they’re gonna have a bad
time.

Namely, while the opex of the pre-production environments may seem smaller than upfront,
capex, once the application moves to production, the opex might blossom like algae in a
stagnant creek. This is especially true if the application is cursed with success, chewing up opex
capacity at an unpredicted rate. If you can effectively manage 10,000 machines in production,
Israel Gat, a renowned independent software & IT consultant, points out, financially you might
be better off running in your own data centre. The exact cut rate for that number will always be
debated - with server vendors tossing endless FUD into the debate - but it's worth finance
keeping a close eye on where compute should be done and how it'll effect planning.

Tickets no more
With the promise of de-crudding the process of acquiring IT assets and release management,
it’s little wonder that traditional IT service management changes as well. Perhaps it’s little
wonder that ticket-driven IT is decreased. Duke Energy’s John Mitchell notes: “It’s so nice to not
have to ask, plan and wait for infrastructure. Also, with our cloud engineering team co-located
with the software engineers, they solve problems in real-time instead of [waiting on] tickets. It’s
so cool watching one of our hipster mobile devs walking and talking like best buds with a big
burly ops engineer.”

This measurable, in your face metric is also a good way to motivate those BOFHs. "It wasn't
easy to win them over at first,” Brian Silles said, “ But once they saw 35-40 backup tickets per
week go down to mostly zero, they got on board.”

But think of the poor CABs!
Then, there are the basics of trying to put 15 pounds of tickets in a 5 point bag: “if I’m doing 8 or
15 releases a week,” HCSC’s Mark Ardito asked, “how am I going to get through all those
CABs?” The Change Advisory Boards - who hardly ever “advise” so much as stick you in a box
of pain until you confess to your enterprise architecture policy subversion - needs to speed up
whatever benefit they’re bringing. Most organizations I talk to are baking much of their policy

88

https://www.youtube.com/watch?v=rGNlSCquZIc

enforcement into their automation, build pipelines, and platforms. It’s also clear that the usual 9
to 5 of enterprise architects needs to change (exactly how is still fuzzy).

Something like Chef’s InSpec is finding early success here to enforce policy in the pipeline and
monitor drift in production, while the cloud native platforms and add-ons like the various Cloud
Foundry distros, Red Hat OpenShift, and Istio all have components that seek to make robots out
of those CABs.

Starting
Finally, after all that ironic up-front planning and contemplation, there’s the method for choosing
and sequencing your first applications to rub DevOps all over. The resounding advice from
those who’ve done it - or realised they should have - is to start small. “We started small,” John
Mitchell said when reminiscing about starting up, “Then [when] we started getting noticed, more
business pouring in.”

The likes of Home Depot have spoken extensively about the process of starting with small
projects, then building up to larger projects. These initial projects aren’t “science projects,” but
have actual business value (like running the paint and tool-rental desks in Home Depot’s case).
Success means creating actual business value (read: less suck, more cash). On the other hand,
as you learn how to do the DevOps, mistakes along the way have less negative impact than,
say, bringing down the .com site.

Sometimes, though, you have to go big or go home, as the wide-toothed, neck-vein popping set
like to say. “Ultimately, it is a matter of the cash flow situation of the company,” says Israel Gat,
“Starting small is less risky, but operational/financial parameters might force you to adopt an ‘all
In!’ strategy.”

Once you select software to work on, the process of good design-think kicks in. But instead
doing - you guessed it! - up-front analysis and specification, designers stay involved during the
whole process. This means expectation and organisational changes for your design people and
departments: they’re now in the soup every day, not just contemplating chamfering in their tidy
work-spaces.

The only easy day was yesterday
Once the engine starts, it has to be maintained, which is typically a change in mentality and
motions for “leadership.” The organisation needs to continually crank-down on wastes like time
waiting in ticket and review board queues, relentlessly squeezing out efficiencies where
possible. The most vital, helpful part of DevOps is something it stole, outright, from Lean
manufacturing: continuous improvement. DevOps itself has been undergoing changes as
technologies automate some of the more manual steps and these large organisations bring
more learning to the practice, perhaps even “killing off” DevOps as it evolves to whatever’s next.

89

http://www.theregister.co.uk/2017/09/18/learning_to_live_with_enterprise_architects/
https://www.theregister.co.uk/2018/02/02/building_security_into_software_via_devops/
https://www.theregister.co.uk/2017/11/09/from_kubernetes_bosh_to_container_runtime/
https://www.theregister.co.uk/2017/11/09/from_kubernetes_bosh_to_container_runtime/
https://www.theregister.co.uk/2018/01/31/red_hat_coreos_acquisition/
https://www.theregister.co.uk/2017/05/24/google_lyft_ibm_mix_microservices_into_management_mesh/
http://www.theregister.co.uk/2018/02/20/design_in_the_age_of_devops/
http://www.theregister.co.uk/2018/02/06/devops_no_ops_less_ops/

At the leadership layer this emphasis on continuous learning implies creating and maintaining
an organization that’s always eager to get better and, even, change dramatically. The
MBA-wonks call this “a sense of urgency,” and as documented long ago, if the organisation
doesn’t have that urge to change, little will happen. What I’ve seen in recent years is that, sadly,
unless there’s an external threat to the organisation - cough, cough, Amazon, cough - not much
will change, despite whatever decrees an executive or an eager young DevOps expert will spew
into the organisation. There’s relief though if this sound exhausting. As my more macabre
thoughtlords and ladies are fond of (mis-)quoting: “It is not necessary to change. Survival is not
mandatory.”

Originally published in The Register, March 6th, 2018.

90

https://www.youtube.com/watch?v=U5802FBaMSI
https://www.leanblog.org/2013/02/dont-threaten-people-with-this-deming-quote/
http://www.theregister.co.uk/2018/03/06/what_does_devops_do_to_decades_old_planning_processes_and_assumptions/

The many-faced god of operational excellence, DevOps and now
'site reliability engineering'

Toil no more, ye 40-year-old DevOps

Someone's been kicking up the "NoOps" ant pile again. There it was, sitting there finally
rebuilt after the annual upturning, and The Lord of Cartography, Simon Wardley says: "I
think you'll find that the new legacy is going to be DevOps." That said, it is winter, so the
ants are moving a bit slower than usual.

But we've only just started...!
This "LessOps" vibe matches my own anecdotes as flit about the IT departments at
large organizations. At the same time, so many IT departments are hungry for DevOps,
they want to understand it and put it into practice, to be sure. Surveys are showing
growing interest: the annual DevOps report says the number of respondents working on
DevOps teams rose from 16 per cent in 2014 to 27 per cent in 2017.

A 2016 Forrester survey reports that 69 per cent of respondents reported adopting
"processes that embrace or resemble DevOps". And while I can't help but think that
those 69 per cent are those of you, dear readers, who leave comments for me
professing that you've been doing DevOps since Churchill's second term – and "just
didn't call it that" – let's take Forrester's survey here as useful.

What was that middle part again?
First, what exactly is DevOps? As John Willis, one of the co-authors of the DevOps
Handbook told me: "Unfortunately, DevOps means whatever the definer wants you to
believe and no definition is wrong." He went on to give his definition by way of
describing the end state: "DevOps is about service as a supply chain and all the things
that enable fast, resident and consumable delivery of the service."

Another dean of DevOps, Gene Kim, described it much the same way, as quoted in
Gary Gruver's excellent book on scaling DevOps: "DevOps should be defined by the
outcomes. It is those sets of cultural norms and technology practices that enable the
fast flow of planned work from, among other things, development through tests into
operations, while preserving world-class reliability, operation, and security.

91

https://read.acloud.guru/simon-wardley-is-a-big-fan-of-containers-despite-what-you-might-think-18c9f5352147
https://puppet.com/resources/whitepaper/state-of-devops-report
https://www.forrester.com/report/DevOps+Heat+Map+2017/-/E-RES137782
https://thenewstack.io/review-understanding-devops-putting-place-even-scale/

"DevOps is not about what you do, but what your outcomes are. So many things that we
associate with DevOps, such as communication and culture, fit underneath this very
broad umbrella of beliefs and practices."

As ever, successful technology-driven definitions quickly become a description of the
outcomes rather than how you get there. But wait! Our DevOps report friends took a
bold swing at defining exactly what DevOps is, first by practices, then by effects, and
then by outcomes.

This year, they even made a single chart of it, below.

Of course, unless you've had deep MBA training, one chart like that isn't going to define
DevOps for you, but it does highlight a set of practices that lead to goals (like
continuous delivery) that start to ensure predictably, reliable, and useful delivery of IT...
that helps improve the business.

To me, the key to figuring out where DevOps begins and ends – what it is as a practice
– is asking what's done after a functional agile development team does a build. How
does the organization deploy the build to production, then ensure it runs in production,
and then ensure that it can be upgraded on-demand?

Early on, the answer was to automate, automate, automate. Instead of manually
deploying builds to production, you'd use Puppet or Chef, for example. Then you'd use
containers, and then came the idea of "cloud platforms" that dictated exactly how you'd
package, deploy, and manage your software and gave you close to zero options about
the stack below your application. Each of these was built around the idea of "the wall"
between developers and operators, and removing the negative effects of that wall.

Developers would make their build, then throw it over to operations staff who'd have to
figure out how to deploy the build to production and then manage it ongoing. This wall

92

https://puppet.com/resources/whitepaper/state-of-devops-report
http://www.theregister.co.uk/2017/10/13/devops_culture/

introduced so much variability in configuration management that, inevitably, someone
would forget to configure the DNS servers and the whole system would go down each
time a build went to production. I'm greatly oversimplifying here, but solving that
problem of frequent deployment drove a tremendous amount of DevOps thought and
innovation.

If you re-read Willis's delightfully concise definition, this notion fits in pretty well.
Back-solving from the goal of more frequently deploying software (that, as a bonus, also
stayed up), DevOps discovered a host of "culture" practices and issues that it's become
much more famous for.

And at some point, the venerable practices "agile" were added whole-hog into the mix.
And why wouldn't it be mixed into the batter? The end goal is creating better customer
and user experiences, which means not only ensuring that the software runs in
production, but that it's well designed.

Todd Underwood, a site reliability engineer at Google, summarized the process and
cultural consequences well a few years back: "DevOps seeks to integrate operational
concerns into the software and business practices and software/skills capabilities into
operations." This can include operations staff actually embedding with the developers,
especially those developer teams who have very little operations skills.

Who automates the automaters?
Early on, the notion of DevOps was that a unified team of developers and operators (I
mean, it's right there in the name, right?) would figure all of this out, working hand in
hand and all carrying pagers to create, deploy, and then manage their applications. A
huge amount of work in DevOps centered around automating the end-to-end process of
getting software into production, so it's little wonder that "configuration management" is
often seen as "DevOps". But, as the tools and practices started to coagulate, these
teams did more than just automating configuration management, they'd build "platforms"
out of the standard stacks processes they'd been following.

Getting your teams to build platforms, being "full stack developers" as we used to call
them, seems excellent, at first, until you're lucky enough to operate at enterprise scale.
For example, say the 19,000+ developers at JP Morgan Chase. At that scale, you get a
real 1 + 1 = -3 effect because you're duplicating all those stacks. Using production
monitoring and management as a tracer for this anti-pattern of too many stack
developers, 451 Research’s Nancy Gohring told me: "[This] leads to the situation where

93

https://www.youtube.com/watch?v=-gn4JFZzciI&feature=youtu.be&t=13m55s

some enterprises have 50 monitoring tools, sometimes including multiple deployments
of the same tool. That seems inefficient."

Ideally, to "scale", you want to not only automate the toil of IT management, but
standardize and centralize it. You don't want developer teams building their own stacks
and managing their production applications in unique ways. You want to automate the
automation. As Google's Kelsey Hightower put it recently talking about serverless and
DevOps: "Once we get the practice right, it should turn into technology."

How dare you say my bash scripts aren't proper programming!
The idea of Site Reliability Engineering, or "SRE", fits better in this view of what DevOps
is. SRE-think is not focused on pulling developers into a unified team with sysadmins.
Instead, the goal is to get sysadmins to start thinking like programmers, actually writing
code and developing systems for production use. Sysadmins are no longer responsible
for just running what developers give them.

Sure, they spend time troubleshooting production problems like a classic sysadmin
would, but once the hair-on-fires are extinguished, the immediate question is: "OK, how
can we change our platform to automate all this ops toil?" The idea, as Underwood put
it, is to: "Write infrastructure that doesn't require that kind of procedural automation."

Technologically, the re-emergence of platforms as a service (PaaS) and the growing
dominance of Kubernetes for management are automating much of the manual, one-off
processes of DevOps. (You should know, dear reader, that I pay my mortgage by
working at one of the vendors that peddles such kit.)

The end result is enabling developers to focus on their applications, not actually
carrying a pager or worrying about whatever a "DNS" is. As Allstate's Matt Curry
described it to me: "The goal is to eliminate cognitive overhead for the developers and
keep their pipelines as simple as possible. They should get a ton of operational value
for free just by pushing to an environment, be it monitoring, release process, security
scanning, architecture patterns, or anything else that is repetitive and fairly consistent
between deployments." Similarly, good SRE staff take a code-first approach to solving
problems and make operating production as simple as possible.

Who's SRE'ing my résumé updates?
Does this mean we can start using all those DevOps books as kindling? Well, hardly.
Doing software well has always passed through many names, but the general end goals
have remained the same. We can all agree with a sentiment put well by Microsoft

94

https://read.acloud.guru/you-need-sre-skills-to-thrive-in-a-serverless-world-kelsey-hightower-340a002b3730
https://www.youtube.com/watch?v=-gn4JFZzciI&feature=youtu.be&t=20m30s
https://www.youtube.com/watch?v=-gn4JFZzciI&feature=youtu.be&t=20m30s
https://twitter.com/mattjcurry

principal cloud developer advocate Bridget Kromhout: if DevOps means "good,
tool-enhanced cross-team collaboration. I sure hope that never goes away."

DevOps is "a cross-team practice, not a task," she adds. "SRE is the new Ops
Engineer, but DevOps shouldn't have been considered to be a job in the first place. We
don't hire a collaboration expert to do all the collaborating."

The organization treating development and operations as all part of the same concern –
creating and running good software – shouldn't be lost. The DevOps practices of being
more humane in working with people seem, well, humane and pragmatic. Most
importantly, the emphasis on continuous improvement and the injection of lean thinking
have helped lead to huge improvements in organization I talk with. As someone who's
always complaining about how boring the "cultural" aspects of DevOps are, they'll
probably be the most long-lasting, important precepts.

There may be a few stick-in-the-muds who get all roiled at the idea of DevOps shifting
around, even "dying" if you're the kind of person who likes that hyperbole (why are you
looking at me?). Clearly, "DevOps" is evolving as it spreads into mainstream
organizations and as newer technologies automate what were once manual practices
and disparate tools. That doesn't mean the core goals and "culture" zoom away. Just as
with "serverless", you're supposed to take the idea seriously, not literally.

So, if you buy all that, consider this some 2018 career advice: it's time to go update your
résumé and say you've been doing "SRE" this whole time, but just not calling it that.

Originally published in The Register, February 6th, 2018.

95

http://www.theregister.co.uk/2017/10/13/devops_culture/
https://www.theregister.co.uk/2018/01/23/serverless_exhilarating_terrifying_ridiculous_name/
http://www.theregister.co.uk/2018/02/06/devops_no_ops_less_ops/

A print button? Mmkay. Let's explore WHY you need me to add
that

Come, Morlocks, and step into the world of the design Eloi

With all our attention on the Morlocks – down there with the whirring gears of
Kubernetes and steaming clouds – it's easy to lose track of the Eloi: those concierges of
productivity that smooth out the rough, upper crust of The Stack to make sure your
software is actually usable.

The trend now is to call this layer "design", which is just fine. "UX" always seemed a bit
like an X Games sport, and even the Morlocks know that "UI" is just a part of the story.
Exposed bricks and pale-wood desks only go so far in seasoning good software.
There's an actual methodology there as deep and sculpted as any DevOps-cum-SRE
discipline.

Let me give you, my Morlock friends, a framing that – though likely shallow and far from
complete – will give you a good tour guide to the surface of The Stack.

The parable of the print button
Your first encounter with "design" tends to follow a predictable flow: "UIs, amirite – how
hard can it be? I just need you to add a print button to this page. Should take, like, five
minutes, right? 20 tops?"

Before you can scoot off to digging into the latest, real-life BOFH accomplishment, the
designer coughs, Jeeves-like. They straighten up, and step off their standing-desk mat,
running their fingers through their forest green-tipped hair to smooth it out. Armed with a
fresh stack of sticky notes, your designer says: "Well, first, let's explore why you need a
print button."

Fear not, ye five-minute-feature fiends, this is the process working. This is the first step
on the journey of software that doesn't suck (rather, in most cases, software that sucks
less).

What your frosted-tip friend is driving at is the first stage of design. As Erika Hall
recently riddle-listicled: "Only after you have a goal will you know what you need to
know. And you have to know your question before you can choose how to answer it."
The question is: why do they need a print button? Is a print button the best way to
accomplish that task? Do they even need a print out?

96

https://www.theregister.co.uk/2018/02/07/kubernetes_hegemony/
https://www.theregister.co.uk/2018/02/07/kubernetes_hegemony/
https://www.theregister.co.uk/2018/02/08/cisco_hyperscale_growth_cloud_forecast/
http://www.theregister.co.uk/2018/02/06/devops_no_ops_less_ops/
https://www.theregister.co.uk/2018/02/14/rogue_it_admin_canadian_railway_switches/
https://medium.com/mule-design/the-9-rules-of-design-research-1a273fdd1d3b

Answering these questions gets to the bottom of what you're actually trying to do. A sort
of annoying application of the five whys (are there, really, any enjoyable applications of
the five whys?).

This is a good path to go down, but it can feel just like a sysadmin longbeard who, when
asked how to write an awk script to break-up a CSV file, will say: "Why would you want
to do that?" instead of just answering the damn question.

The sticky notes are made of people!
The next stage, "research", is where you start to discover the answers to these
questions. Of course, this means first knowing exactly who these "theys" are. Your
design friend might bring in a friend – all thick-rimmed bespectacled, sporting a fresh
Macklemore up top – to draw up some "personas". These are profiles of your us-... ah,
pardon me, that's a term that's too easy to backslide to... people.

Sagely stroking his Maestro's buttered beard, he'll sort out what the motivations, wants,
and needs of these people are. Each will be given a name, and perhaps a delightful
sketch or properly bokeh'd photo of people like "Pat". Does this person even have a
printer? Perhaps "print" is the wrong action needed here for poor printing Pat.

As with all great small-batch questions, we should gather some actual user studies to
validate our theories, or invalidate them to then come up with new theories.

A million one-way mirrors
I don't presume to know the art our well-oiled and styled design friends practice at this
stage – gazing into the daily work of your software's factotums. But there is a craft –
even art – to discovering the mysteries of the print button.

In recent years, all our lower-level IT has actually contributed a great deal to design
research. In previous decades, the best a designer could hope for when observing
users (sorry) people was using baroque, one-way mirror rooms with dozens of cameras
perched to spy on people as they moused through the UI. Now, thanks to highly
network-dependent apps, designers can watch every single thing every user ever does.
While that might be creepy in the hands of hucksters and black-bag millennials, it's pure
gold for designers.

Way back in 2009, taking advantage of this methodology a famous Microsoft study
(PDF) found that only a third of the features in their software were used as intended, or
used at all. Think about all that fat in the other two-thirds that could be trimmed! We

97

https://www.isixsigma.com/tools-templates/cause-effect/determine-root-cause-5-whys/
https://www.buzzfeed.com/juliareinstein/thank-you-macklemore?utm_term=.ufbeljBqP#.iomA4xB0W
http://www.theregister.co.uk/2016/02/04/think_small_not_big/
http://ai.stanford.edu/~ronnyk/ExPThinkWeek2009Public.pdf

expect software to constantly evolve, better fitting what's actually useful and productive
for the people using it. These millions of one-way mirrors give us a sharp knife.

Small batches rule everything around me
With all this in hand, to cut a long story short, the designers iterate, small-batch style,
until they systematically figure out the why and how of that print button. Perhaps it turns
out that people don't actually want to print out that form, they just want to archive it
somewhere: why not email instead?

This feedback loop, done weekly or even daily, is what improves modern software and
is the source of much of the business value in "digital transformations".

And then we come back to you, dear Morlocks. All that work putting a release pipeline in
place, a solid cloud platform, and ensuring production resilience is a huge part of what's
empowering designers to do much of this.

Improving and optimising your stack wasn't just an exercise in lean efficiency and
Taylorian lead time reduction. The actual goal was to improve your organisation's
software. DevOps friends, this is where you can crawl out of your warrens and take a
victory lap in the sun for once. Try not to eat too many designers while you're up there.

Originally published in The Register, February 20th, 2018.

98

http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
http://www.theregister.co.uk/2018/02/20/design_in_the_age_of_devops/

The best outsourcers fire themselves

And you can’t spend EBITA in the grave…

Outsourcing. Let's talk about it. The agile and DevOps people can’t stomach the idea and will
tell you that, intuitively, outsourcing something as core as software development ruins any
chance of enterprise success. But whither comes this bone-deep skepticism among the cloud
cognoscenti? Surely there’s value to be had. Surely.

You get what you pay for

The story frequently plays out the same. I’ve certainly heard it innumerable times in those
affordably furnished Fortune 500 conference rooms I spend my time in. A frisky new CIO comes
onboard, charged with ship-shaping a flabby IT department. Their first move, of course, is to
sizzle off all the fat, namely “non-strategic” IT services. You know, those things like infrastructure
management and operations, maybe even writing software. A deal is signed. It’s always a large
deal. The CEO lauds the CIO’s optimization efforts, shareholders crown the CIO with the
almighty halo. Our CIO opportunistically scrambles up the career cliff from, say, a Fortune 200
company to a Fortune 100 company (I mean, who among us doesn’t like more money?).
They’re off to slice through the new place with that sharpened halo.

Meanwhile, back in the IT department, necessarily ornate service agreements and contracts are
put into place between the outsourcer and the organization. The outsourcer is wonderful, sure,
but we need to make sure it holds up their end of the bargain. To make sure it is meeting SLAs,
maybe we should get someone to audit and project-manage the outsources. What’s that? One
person isn’t enough? Well, maybe we should create a new team of people who audit and
manage them. We’d better update the runbooks too and setup a meeting to see about updating
the SLAs.

“That outsourcing transformation sure did save us a lot of money,” I’ve been told, years later, by
IT staff. “Now that we’re trying to be all DevOps,” they pause for dramatic effect, perhaps
leaning back and sighing, “well, just sending in a ticket to ask the outsources for a development
database takes two to four weeks. If you fill the ticket out wrong, golly, that’s when you really
feel the ‘cost savings’ slice deep in your shins.”

Sometimes, at this point, our story resolves. Commonly, a friend told me as I was sailing slices
of rare steak through L'Entrecôte’s green sauce, outsourced projects boomerang back to the
in-house staff. An enlightened (and likely new CIO who was brought in to, yet again, fix the
mess in IT) pulls the project back in-house, giving it over to some capable developers. Seeing
the quality of the code, or, the simple lack thereof, staff will often have to start over, chucking the
outsorcerer's code down dark chutes of the refactoring abattoir. That’s not the ideal scenario,
but it’s better than another narrative that too often plays out.

99

My own people can’t be trusted
It’s not like we IT nerds have done a great job building confidence in our efforts over the
decades. After years of trying to get IT to, in their view, actually do something useful, executives
often throw up their hands and start booking meetings with outsourcers. You can imagine this
table-flipping executive saying: “I'm not gonna get what I want anyway, so I might as well get it
for a third of the price!"

Bringing in outsourcers is proof that the organisation already mistrusted its in-house IT.
Inevitably, the usual causes of failure - ever changing requirements, overly ambitious deadlines
and budgets, etc - will plague the outsourcers’ efforts. No one is immune from the difficulty of
creating good software. This struggle increases the layers of outsourcer oversight. Quickly, this
method of project management becomes the norm for the entire organisation. As was once
said: “Trust, but verify.” Now, the organisation holds both in-house staff and outsources at
length, papering over its learned mistrust with endless three-ring binders, enterprise architect
reviews, and Project Management Office callisthenics.

CIO Mark Schwartz calls this insidious cycle the “contractor-control paradigm,” and points out
the quick slide into busy-work that follows. With so many oversight processes to manage, a new
problem emerges: managing each project becomes a unit of work itself, another project that
must be managed! Often, this meta-project-management layer becomes the highest priority.
After all, if the weekly status report is all red, or even formatted incorrectly, the Big Boss will get
suspicious and start casting about to change the paradigm yet again. The entire system is built
on management-by-mistrust, so any small slip can only be proof that the trembling project
manager in front of you is, indeed, papering over bad news. It becomes vitally important, then,
to get through the Monday status meeting, so button up your deck! Never mind, you know, if the
software actually works well or not.

This state of mistrust and upward happy-talk couldn’t be further from the Agile state
organisations wanted in the first place. Each layer of the organisation mistrusts the layer below
it and fears telling the truth to the layer above it. What a fine mess we’ve gotten ourselves into,
and all just to save a few billion dollars!

You can’t spend EBITA in the grave
Looking at industry surveys, this poor state of affairs checks out. “[N]ot even a third of [VPs and
middle-managers] view their [outsourcing] engagements as being very effective at driving out
significant cost or making their operations more flexible and scalable,” as Phil Fersht put in his
analysis of his firm’s annual outsourcing survey, “Their bosses are slightly less cynical, but still
the vast majority is underwhelmed.”

Ironically in this history, executives now need their organisations to master software
development. In the same analysis, Fersht suggests that there’s a ray of light for outsourcers if

100

https://www.washingtonpost.com/opinions/trust-but-verify-an-untrustworthy-political-phrase/2016/03/11/da32fb08-db3b-11e5-891a-4ed04f4213e8_story.html?utm_term=.910b83e2664a
https://itrevolution.com/book/the-art-of-business-value/
https://www.federaltimes.com/govcon/2015/07/30/cis-keeps-contractors-competing-with-new-approach/
https://www.horsesforsources.com/traditional-outsourcing-run-out-of-value_031917
https://www.horsesforsources.com/traditional-outsourcing-run-out-of-value_031917

they, themselves, can only transform. Executives still believe in the dream of outsourcing, that
they can pay for a “true partner” in innovation.

Successful organisations I’ve spoken to want outsources to be training wheels for their
transformation. Finding in-house talent is a constant bugbear, though likely fixable with a small
bit of thought. Businesses want something beyond “augmentation,” however, from outsources.
In the state they’re in after decades of letting in-house talent atrophy, these firms want an
outsourcer to help get the engine going, get staff trained up by working on real projects… and
then leave.

My rule of thumb, then, with outsourcing software development, is to ask the outsourcer what
their plan to fire themselves is. How long will they need to be around, exactly? If they don’t have
one, then they’re likely planning on sticking around for a long time. And next thing you know,
you’ll be catching a lot of boomerangs which, lacking the right equipment and skills, often turns
out poorly for people who depend so much on their fingers.

Originally published in The Register, March 29th, 2018.

101

http://www.theregister.co.uk/2017/10/19/it_staff_supply_problems/
http://www.theregister.co.uk/2017/10/19/it_staff_supply_problems/
https://www.youtube.com/watch?v=RAHOMuiipsE
http://www.theregister.co.uk/2018/03/29/outsourcing_software_development/

Rule 1: Don’t go to meetings. Rule 2: See rule 1.

Whether you’re doing waterfall, DevOps, PRINCE, SAFe, PMBOK, ITIL, or whatever process
and certification-scheme you like, chances are you’re not using your time wisely. I’d estimate
that most of the immediate, short-term benefit organizations get from switching to cloud native is
simply because they’re now actually, truly following a process which both focuses your efforts on
creating customer value (useful software that helps customers out, making them keep paying or
pay you more) and managing your time wisely. This is like the first 10–20 pounds you lose on
any diet: that just happens because you’re actually doing something where before you were
doing nothing.

Less developer meetings, more pairing up
When it comes to time management, eliminating meetings is the easiest, biggest productivity
booster you can do. Start with developers. They should be doing actual work (probably “coding”)
5–6 hours a day and go to only a handful of meetings a week. If the daily stand-up isn’t getting
them all the information they need for the day, look to improve the information flow or limit it to
just what’s needed.
Somewhat counter-intuitively, pairing up developers (and other staff, it turns out) will increase
productivity as well. When they pair, developers are better synced up on most knowledge they
need, learning how all parts of the system work with a built in tutor in their pair. Keeping up to
speed like this means the developers have still less meetings to go to, those ones where they
learn about the new pagination framework that Kris made. Pairing helps with more than just
knowledge maintenance. While it feels like there’s a “halving” of developers by pairing them up,
as one of the original pair programming studies put it: “the defect removal savings should more
than offset the development cost increase.” Pairs in studies over the past 20+ years have
consistently written higher quality code and written it faster than solo coders.
Coupled with the product mindset to software that involves the whole team in the process from
start to end, they’ll be up to speed on the use cases and customers. And, by putting small
batches in place, the amount of up-front study needed (requiring meetings) will be reduced to
bite-sized chunks.

It takes a long time to digest 300 pages
The requirements process is a notorious source of wasteful meetings. This is especially true
when companies are still doing big, up-front analysis to front-end agile development teams.
For example, at a large health insurance company, the product owner at first worked with
business analysts, QA managers, and operations managers to get developers synced up and
working. The product owner quickly realized that most of the content in the conversations was
not actually needed, or was overkill. With some corporate slickness, the product owner removed
the developers from this meeting-loop, and essentially /dev/null’ed the input that wasn’t needed.

102

http://www.businessinsider.com/pivotal-906-am-breakfast-meeting-2016-6
https://content.pivotal.io/blog/a-responsible-recipe-for-the-fewest-possible-meetings
https://content.pivotal.io/blog/a-responsible-recipe-for-the-fewest-possible-meetings
http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF
http://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF
https://builttoadapt.io/use-balanced-teams-to-suck-less-at-software-a10b6ee8ff51
https://builttoadapt.io/good-software-is-a-series-of-little-failures-e468220217e5
https://builttoadapt.io/good-software-is-a-series-of-little-failures-e468220217e5
https://medium.com/@cote/limit-upfront-analysis-by-including-frequent-real-world-feedback-from-users-7e99ad01c8b2

Assign this story to management
Staff can try to reduce the amount of meetings they go to (and start practices like pairing), but,
to be effective, managers have the responsibility to make it happen. At Allstate, managers would
put “meetings” on developers calendars that said “Don’t go to meetings.” When you read results
like Allstate going from 20% productivity to 90% productivity, you can see how effective
eliminating meetings, along with all their other improvements, can be on an organization.
If you feel like developers must go to a meeting, first ask how you can eliminate that need.
Second, track it like any other feature in the release, accounting for the time and cost of it. Make
the costs of the miserable visible.

This concept of attending less meetings isn’t just for developers,The same productivity
outcomes can be achieved to QA, the product owners, operations, and everyone else. Once
you’ve done this, you’ll likely find having a balanced team easier and possible. Of course, once
you have everyone on a balanced team, following this principle is easier.Reducing the time your
staff spends in meetings and, instead, increasing the time they spend coding, designing, and
doing actual product management (like talking with end users!) get you the obvious benefits of
increasing productivity by 4x-5x.

If you feel you cannot do this, at least track the time you’re losing/using on meetings. A good
rule of thumb is that context switching (going from one task to another) takes about 30 minutes.
So, an hour long meeting will actually take out 2 hours of an employee’s time. To get ahold of
how you’re choosing to spend your time, in reality, track these as tasks somehow, perhaps even
adding in stories for “the big, important meeting.” And then, when you’re project tracking make
sure you actually want to spend your organization’s time this way. If you do: great, you’re getting
what you want! More than likely, spending time doing anything by creating and shipping
customer value isn’t something you want to keep doing.

It may seem ridiculous to suggest that paying attention to time spent in meetings is even
something that needs to be uttered. In my experience, management may feel like meetings are
good, helpful, and not too onerous. After all, meetings are a major tool for managers to come to
learn how their businesses are performing, discuss growth and optimization options, and reach
decisions. Meetings are the whiteboards and IDEs of managers. Management needs to look
beyond the utility meetings give them, and realize that for most everyone else, meetings are a
waste of time.

Originally published in Medium, February 1st, 2018.

103

http://www.theregister.co.uk/2016/10/18/pairing_programming_youll_never_guess_what_happens_next/
https://www.youtube.com/watch?v=YEAejTRoPSU
https://thenewstack.io/dont-forget-people-process-digital-transformation/
https://blog.trello.com/why-context-switching-ruins-productivity
https://medium.com/@cote/rule-1-dont-go-to-meetings-rule-2-see-rule-1-845d331ee1c5

In 2018, Clear Out Your Portfolio Underbrush Before You Have to
Burn it All Down
Before you finally embark on your digital transformation in 2018, do these things first.
You’ve got a little break ahead of yourself now, at the end of the year. Time to relax your mind of
all those color-coded Excel spreadsheets going over IT project statuses, stop worrying about
the most recent Windows patches, and finally figure out what “blockchain” is. But come early
next month, you’ll need to actually plan out what you’ll be suffering through for the rest of the
year. Rather — pardon me, there — how you’ll be helping out the business.

Nowadays, it’s the same thing every year, time for more digital transformation! Move the plans
forward! While “digital” was once the domain of “social media” and better marketing, in recent
years responsibility has grown from just the CMOs responsibility to the CIOs as well. One recent
survey found that the IT department lead in digital transformation responsibility in 34% of
organizations, trailed only slightly by marketing at 30%. Clearly, the IT department is going to
play a key role in most organization’s digital transformation.

Don’t get captured
While you’re running through the planning of what to do, it’s a good time to pay down the “debt”
you have in IT. This isn’t monetary debt, it’s just a metaphor for things that, if you have too much
of them, prevent you from doing anything. This can be poor code you decided to let slip into
production to make dates, OS upgrades you wanted to avoid because they’d surely result in
downtime, or any number of things that should get done, but you decided to just punt on
because, let’s face it, “reasons.”

But there’s one type of debt in particular that will immediately tank whatever digital
transformation snows down on you this coming January: portfolio debt.

A “portfolio” in this context is composed of all the services and applications IT is providing and
running. It could be public cloud based SaaSes, on-premises Exchange servers, developer
services to support all those mobile apps — everything. That’s a huge collection of things: it’s the
IT department.

SaaSify like a maniac
To focus, first ensure that you’re moving as many applications to SaaSes as possible. There
may be very good reasons to run your off-the-shelf applications on-premises, but there’s likely
not that many. Some business operations like HR systems seem particularly well suited to run in
the public cloud. There’s also your “collaboration” software: presentations, spreadsheets,
documents, email, and calendaring.

104

http://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
http://www2.prophet.com/2017-state-digital-transformation
http://www2.prophet.com/2017-state-digital-transformation
https://www.amazon.com/Managing-Software-Debt-Inevitable-Development/dp/0321948610
https://www.amazon.com/Managing-Software-Debt-Inevitable-Development/dp/0321948610
https://www.youtube.com/watch?v=01R_QJqhz8M&feature=youtu.be&t=2m47s
https://www.youtube.com/watch?v=01R_QJqhz8M&feature=youtu.be&t=2m47s

The ability to collaborate on documents and presentations online instead of emailing around
track changes documents will boost all sorts of productivity. If you have some excuse for running
that kind of toolchain on-premises, ruthlessly ask why until you find a reason to keep them
on-premises. And, then, move them to a SaaS anyway.

This urgency to move to SaaS may seem like a crazy focus, but there’s a shocking amount of
companies that have yet to move. In early 2016, Gartner estimated that under 10% of publicly
listed enterprises were running their email and collaboration toolchain in the public cloud.
Thankfully, they’re also predicting a rapid rush to cloud in 2018, though: “we expect 40% to 50%
of business users to have moved their core collaboration and communications systems to cloud
platforms.” Just make sure you’re on the right side of that rush.

Choose any quadrants you like, but just choose one
Once you’ve cleared out all this on-premises underbrush, take a look at your more bespoke
services and custom-written software. This part of your IT portfolio should be the most valuable
assets you have: the unique services and applications that run your business and distinguish it
from competition. In an ideal state, all of this custom IT is what transforms your business into a
software-defined business. Voilà! You’ve digitally transformed!

If all of these services are not constantly gardened, you’ll end up with a big plot of land full of
weeds, impassible. They’ll be otherwise unusable and will eventually need to be burnt to the
ground to do anything. Once you get behind, you start forgetting how to operate and evolve
each service. Then, most pernicious, as the service starts to degrade, in anger, funding gets cut
and cut until there’s not enough money to actually fix the problems. “Starving the beast” usually
results in famine.

There are innumerable, quadrant-driven ways to prioritize which weeds to pick. If you find
yourself saddled down by “legacy” services that are preventing you from moving, don’t worry so
much which method you use to evaluate and prioritize the portfolio. Instead, worry about
actually doing the work. People give lip-service to following a process, and yet I constantly talk
with enterprises who feel stuck in a legacy swamp. Just pick a framework and focus on actually
doing the work week-to-week.

When it comes to addressing debt, there are no silver bullets, just the tedious, never-ending
work of actually doing what your process prescribes.

In addition to whatever flashy, new applications you’ll work in 2018, make sure to spin up a
quiet, plodding, but incredibly enabling process of addressing portfolio debt. If anything, it’ll give
your enterprise architects something to do! Kidding aside — who doesn’t love their EAs?! — don’t
get stuck in analysis paralysis about how to actually go about it, just start, study the result, and
correct the process as needed. But above all else, start.

105

https://www.gartner.com/smarterwithgartner/widespread-adoption-of-cloud-office-is-now-well-underway/
https://content.pivotal.io/blog/the-three-horsemen-of-the-digital-apocalypse-considered
https://fcw.com/articles/2017/11/21/senate-irs-tech-report.aspx
https://fcw.com/articles/2017/11/21/senate-irs-tech-report.aspx
https://builttoadapt.io/deal-with-legacy-before-it-deals-with-you-cc907c800845
http://www.theregister.co.uk/2017/09/18/learning_to_live_with_enterprise_architects/
http://www.theregister.co.uk/2017/09/18/learning_to_live_with_enterprise_architects/
https://builttoadapt.io/good-software-is-a-series-of-little-failures-e468220217e5
https://builttoadapt.io/good-software-is-a-series-of-little-failures-e468220217e5
https://medium.com/@cote/getting-started-picking-your-first-cloud-native-projects-or-every-digital-transformation-starts-d0b1295f3712

106

Vendors-Sports: The Business of IT & ecosystem
hand-waving
When this happened, I can’t say, but early on I became enamored with the tech industry.
Following the software each company released, their internal machinations, their understanding
of the market, the FUD they deployed, and, well, everything about them. It made me a good
industry analyst, if I do say so myself.

I lucked out early in my analyst career because open source was on the ascension and the
important of developers was apparent. Equally important, and mostly forgotten, blogging was
born early in my career as well. In fact, it’s through my blog that James Governor and Stephen
O’Grady discovered me and pulled me into this new career path I’m on. For that, I’m ever
thankful.

Since then, my hobby has been watching the tech industry like others follow sports of
celebrities. At parties, I’m silent and hidden in a corner. I only come alive when people start
talking about software and, better, what software companies are doing. What’s up with IBM?
Have you noticed Microsoft’s turn-around?

As with any study, the longer I manager to stay alive the more enjoyment I get out of this hobby.
You see the same patterns, you learn more history, and you have a growing body of stories you
can use to fortify your mind-palace. Here’s a few of the better lounge chairs in there.

107

All this Facebook hoopla is bullshit

Everyone is freaking out about "tech companies," by which they mean consumer tech
companies, many of which are not even actually companies that sell tech. Rather, these use
tech to run their business, often dramatically changing how business is done in their industries.

They're just companies
From what I can tell, much of this discussion this week is actually about Facebook. They're
thought of as a tech company, buy are they? I'm pretty sure you can't buy software for them. Or
can you? If you're an advertiser, you buy the service of targeting digital ads. This isn't really like
buying DVDs and installing them - ERP and Microsoft Office days of yore! - but you are paying
for a SaaS model to put up ads.

Facebook isn't the only one people freak out about, there's also Twitter, Google, and Amazon. If
you throw in the successful-but-shit-show companies like Uber, it's easy to get a weird view of
what a "tech company" is. I'd rather we just label all of these as "companies," businesses. In this
discussion of "what's wrong with tech," it's not like we talk about SAP, Oracle, Micro Focus, even
Microsoft. We don't discuss Seagate, Samsung, and on and on.

Media, advertising, retail, and other boring industries
Looking at these so called "tech companies," then, most of them operate in clear markets:
media, retail, car services, and many of them straight up advertising. If there's some argument
to be had about the business merits of the company, it should discuss the actual customers
involved. For Facebook, it's the the advertisers and, in the case of Amazon, the buyers like you
and me.

Much of the discussion, really, is about Facebook and Twitter (with maybe Google as a goofy,
aloof aunt in the background that people have mostly forgotten to loath after all these years).
We're worried about addiction, how public opinion is shaped, and overall the effect of these two
companies on our culture.

Powerless users
“Come on! Take more personal responsibility!”
-Ben Thompson, Exponent #137.

The main thing I find annoying is the idea that the users of these platforms are being
manipulated beyond their control. It’s like we’re trying to make Facebook out to be the next
tobacco company. Even if Facebook is trying to manipulate users into spending more time on
the site…is that bad? Should we be upset that book authors and movie makers try to make their

108

http://exponent.fm/episode-137-addicted-to-facebook/

content more engaging and entertaining so that you both enjoy and go back to those types of
content? Is Patrick Rothfuss an evil actor because I eagerly want him to publish his third book in
The Kingkiller Chronicle?

People can choose to login to Facebook to log their lives, they can choose to stick their heads
into the shit-storm that's Twitter. I guess it's a creaky old dude argument, but having lived
through all of the modern Internet I've observed all the attempts to grab people's attention. We
debated the "walled garden" to death back in the mid-2000s. We were supposed to have an
open web, with open data and interoperability.

It didn't work. Normals didn't care. The Economist alludes to this in it's write-up of all this hoopla
this week:

Google already voluntarily offers a “takeout service” which lets users export a copy of
their data. Europe’s General Data Protection Regulation, which comes into effect this
May, will extend the principle of data portability to other platforms. Observers compare it
to how mobile-phone users can switch networks without losing their phone number. This
should not worry you too much. Most customers won’t care; very few people are up for
the hassle of actually using Google’s takeout service. And your dominance means there
is very little funding for new search engines and social networks, and thus few alternative
services to which consumers can port their data.

You could download all that data, but what would you do with it? You can also download all your
flickr pictures (as I always want to do!) but it's impossible to download just under 20 years of
photos...and then upload it again.

Owning data

The modern anxiety about distraction betrays a good deal about us. Insofar as we
associate attention with power and control, it reflects our fears of losing both in an
increasingly unpredictable cultural and natural climate. We also find ourselves living in
an economy where we pay for cultural goods with our attention, so it makes sense that
we worry about running out of a precious currency. Tolerating distraction

What does it mean to own your data in this context?

First, the actual customers: I’m sure advertisers would love to get their data out of there and
make it more portable. But do we care about the data ownership rights of advertisers? "Exxon is
being screwed over by Facebook because it can't download it's complete data set and upload it
to a rival advertising platform," said no concerned Internet worry-wart ever.

109

https://en.wikipedia.org/wiki/The_Kingkiller_Chronicle
https://www.economist.com/news/briefing/21735026-which-antitrust-remedies-welcome-which-fight-techlash-against-amazon-facebook-and
https://www.economist.com/news/briefing/21735026-which-antitrust-remedies-welcome-which-fight-techlash-against-amazon-facebook-and
http://theconversation.com/tolerating-distraction-87580
http://theconversation.com/tolerating-distraction-87580

Second, the users, you and me. There’s something to be said for copyright: I’d like to own all the
things I publish rather than (unknowingly) giving up or even sharing copyright with Facebook.
But, when it comes to all my behaviors, “gestures,” and the log of what I’ve done in Facebook -
and Facebook’s analysis of what that means about me and how to advertise to me better - I
mean, I’m curious to see that, but I’m not sure I “own” it. If someone sits in Times Square and
takes detailed notes about what everyone there is doing, does each pedestrian own that data?
Sure, it’s creepy as hell, but that’s a different discussion: being creepy.

There is something to be said against duping people into giving up more information than they'd
like to...if they knew what they were giving up. When told, people do tend to get creeped out by
how deeply companies know and understand them. All that bra-stalking that goes on is a
sardonic example, and the old story of a dad finding out about his daughter's pregnancy through
a Target mailer is good too.

If anything, it'd make sense to regulate how clear companies like Facebook explain how the
data is used. We've learned that credit card and mortgage companies need to be forced to spell
out exactly the risks you'll be taking on and how much you'll be paying.

Rough competition
There's a competitive angle to look at too. Understanding the regulatory borders of Amazon is
pretty straight forward: they're a retailer, regulate them like that. But when it comes to ideas that,
for example, Facebook is running Snap out of business...who cares? Is Snap such a public
good that we need to care if it exists or not? If so, should Verizon start regulation-rattling
on-behalf of flickr?

We should define what we want
The discussion in all of this that I value is talking through what we actually want. Do we want
their to be one, central place that people go on the web (Facebook)? All the normals I know live
in Facebook, it is the Internet for them (along with email). They seem to really like it, and it
works a lot better than those days when I tried to explain the 10 different web sites they should
use to live on the Internet.

Personally, I find Facebook's model of interacting with the Internet shitty. I don't really use it, I
still read RSS feeds and dip into Twitter here and there. But, again, the normals never took that
view of how the Internet should be used.

We fear change
There's no answer there, but it all points to why debate about Facebook is both frustrating
(because it focuses on irrelevant things) and boring. I'm all for debating Facebook as an
adverting company and making sure they're not jerks in that industry, figuring out if Amazon is a

110

http://www.slate.com/blogs/how_not_to_be_wrong/2014/06/09/big_data_what_s_even_creepier_than_target_guessing_that_you_re_pregnant.html
https://medium.com/@laurenhallden/towards-a-bra-free-instagram-experience-3e43273b611f
https://medium.com/@laurenhallden/towards-a-bra-free-instagram-experience-3e43273b611f
http://www.businessinsider.com/the-incredible-story-of-how-target-exposed-a-teen-girls-pregnancy-2012-2

net-good (if you recall the Walmart debates of the late 90s, I think you can easily predict the
outcome of that figuring: people value cheap shit over anything else), and if Apple should give
parents more control over their children's iOS usage (yes! Apple's controls are shit compared to
what others do).

But, discussing things like people being ill-informed and other cultural effects of Facebook are
the same old arguments, over again, that we've had since Socrates said writing was going to kill
civilization.

To be sure, much of the content shoved down these tubes is terrible and needs to be improved,
but that's a different discussion. The technology doesn't matter: you can have crap content
talking face-to-face, on clay tablets, in illuminated manuscripts, printed pages, magazines, in
live plays, sent on a telegraph or through semaphores flags, broadcast on the radio, put into
moving pictures, shot into living rooms on TVs, and put into your palm through the Internet. We
should be discussing how to improve the writers and the readers, not if these technologies have
some giant responsibility to de-dumb-shit the content.

Jesus. I sound like a regular, nut-job, libertarian.

Originally published in my January 19th, 2018 newsletter.

111

http://apt46.net/2011/05/18/socrates-was-against-writing/
http://apt46.net/2011/05/18/socrates-was-against-writing/
https://us1.campaign-archive.com/?u=ce6149b4008d62a08093a4fa6&id=914f3f1c79

Will the blighters pay this time? Betting big on developers

Not too long ago, selling middleware and tools to software developers was a big business.

Large technology empires were built on a single premise: that computers need software, written
by software developers who need a panoply of infrastructure tools and middleware - and that
you could charge the developers for that infrastructure. Household names like Borland, BEA,
and Rational chugged along merrily.

While vendors counted their middleware lucre, developers debated "Java vs .Net" like it was
some kind of important existential concern. Disruption came from marrying up the
rainbow-and-sandals world of FLOSS to the free-loading spirit of the web... and the developer
market quickly had its Napster moment. Free (and - sure, sure - open source for those who
care) technologies like Perl, PHP, Python, and Ruby coupled with free, "enterprise grade" web
services like Apache (and then nginx) all but eviscerated the "developer market" in the 2000s.

The finishing slice came when the Java ecosystem open-sourced, through JBoss, and then Sun
capitulated to open source, and finally the perfection of SpringSource arrived. The list goes on -
MySQL, anyone? Soon, the idea that you'd make money by selling to developers was
laughable. Instead you made money by selling the company to another company: MySQL sold
to Sun for $1bn, and SpringSource sold to VMware for around $400m.

You've got to make friends

While the developer market withered, developers remained an important force, "king-makers"
even, as my former colleagues at RedMonk put it. Winning developer allegiance is still key to
building ecosystems around companies and platforms from historical cases like Microsoft and
Java, to Apple's success in recent years. But making money from developers directly was
another story.

A developer might shell out $50 to $100 for a nice text editor or IDE: but pay for middleware?
Nope. Running that middleware as a cloud-based service, however, is a clever hack around this
parsimony. Developers are driving much of the spend on IaaS and PaaS.

Developers need somewhere to run their software, and buying new servers doesn't appear to
be where they're putting many of the new applications. There's certainly a market there: taking
out SaaS, [our bottoms-up forecast at 451] puts the public cloud market at around $20bn in
2016, with the majority in IaaS and about 25 per cent in PaaS. When you look at Amazon's
portfolio, it's essentially a stack of middleware, all run, and charged "as-a-Service."

A quick look at the customer logo-porn pages of competing IaaS and PaaS providers shows the
importance of developers; many of these companies, like Rackspace, have established
developer relations programs and before getting snatched up by IBM, SoftLayer was

112

http://www.theregister.co.uk/2008/01/16/sun_buys_mysql/
http://www.theregister.co.uk/2008/01/16/sun_buys_mysql/
http://www.theregister.co.uk/2009/08/11/vmware_springsource_acquisition/
http://www.prnewswire.com/news-releases/cloud-computing-market-revenue-to-approach-20-billion-by-end-of-2016-according-to-new-451-research-study-220322891.html

self-admittedly focused almost exclusively on developers. With all the hand-wringing about
"shadow IT" - namely developers going out-of-band to pay for cloud-resources - the connection
between developers and spending is even more direct. It seems developers are perfectly happy
to pay for middleware, if only you'll run it for them.

Follow the money... the VCs' money

Incubators like HeavyBit are betting on the return of the developer market as well. Companies in
their portfolio service developer needs, from IDEs like Codeenvy, to QA platforms like
Rainforest, to the API documentation service Apiary. Of course tracking VCs' bets is more about
doing once-removed crystal-ball-gazing on what the mega-vendors would acquire in three to
five years than accurately tracking broader trends.

And to that point, IBM's movement back towards the developer market at its recent Pulse
conference provides one of the better indicators for which direction the developer market is
going. Over the past year, IBM has been reorienting large swaths of the software group's
portfolio around not just cloud, but cloud as a medium to go after developers.

Armonk's finest tripped over each other to paint the vision of enterprises getting back into
software development, driven by the need to interact with customers in new and exciting ways
("social") and on new and exciting platforms ("mobile," as well as tablets).

Big Blue released a beta of its new middleware stack, BlueMix, based on Cloud Foundry. Filling
out the new middleware stack more, IBM picked up Cloudant, a Database-as-a-Service
company, one of those previously free chunks of downloadable middleware that's now
Monetisable-as-a-Service now. Indeed, at 451, we estimate the DBaaS market was worth
$150m in 2012, growing at a CAGR of 86 per cent a year to $1.79bn in 2016, attractive to any
vendor strategist.

With all of the cuts and bottom-line optimisation going on at IBM, this much focus on an entirely
new middleware stack, targeted at developers, is a large signal of intention.

IBM's not the only one placing developer bets. VMware and EMC bet on developers in 2013
when it combined the SpringSource, Cloud Foundry, and Big Data assets together into Pivotal,
with ex-VMware, now Pivotal CEO Paul Maritz saying they were building "a new platform for a
new era." This was quickly followed by GE $105m investment into the developer-oriented
company.

These "new platforms" are certainly out there, from the Jawbone Up that tells me I don't walk
enough and sleep poorly, to new marketing applications that better track and seek to program
my buying habits. Where there's software, there are developers.

113

https://451research.com/report-short?entityId=78105&referrer=marketing

Will the developers finally pay for the tools they use to make their write and run software? In the
consumer space of $19bn exits, oddly enough, perhaps not: many of the old ways hold true –
there is still DIY pride and 20-year-olds with nothing better to do than code all night.

Outside of the Ramen-noodle-coated technology world, however, as more devices get IP
addresses and need software accordingly, it's not full-on bonkers to think that there will be more
developers at "normal" companies. And that's the meat-and-potatoes of any "infrastructure"
play: the mainstream companies which would rather purchase tools and middleware than
quickly polish off another cup of Ramen before firing up a bare-bones editor to type up yet
another chunk of middleware from scratch.

Originally published in The Register, March 2014.

114

https://www.theregister.co.uk/2014/03/07/developers_tools_feature/

Uncork a bottle of vintage open-source FUD
“Yeah, but is open source a safe choice?” Surprisingly, I’ve been asked that frequently of late.
Larger organisations in particular are giving me the old squinty eye. The folks in these
conference rooms and tentacular email threads are often looking to replace decades old stacks
of IT and get their “digital transformation” on, so perhaps they can be forgiven asking such a
dated question.

Having been out on the choppy proprietary seas so long, these organizations are a bit wobbly
with those sea legs and can’t rightly say where the land begins and the water stops.

Who are these people?

Most of the open source questioners come from larger organisations. Banks very rarely pop up
here, and governments have long been hip to using open source. Both have ancient, proprietary
systems in place here and there that are finally crumbling to dust and need replacing fast. Their
concerns are more oft around risk management and picking the right projects.

It’s usually organisations whose business is dealing with actual three dimensional objects that
ask about open source. Manufacturing, industrials, oil and gas, mining, and others who have
typically looked at IT as, at best, a helper for their business rather than a core product enabler.

These industries are witnessing the lighting fast injection of software into their products - that
whole “Internet of Things” jag we keep hearing about. Companies here are being forced to look
at both using open source in their products and shipping open source as part of their business.

The technical and pricing requirements for IoT scale software is a perfect fit for open source,
especially that pricing bit. On the other end - peddling open source themselves - companies that
are looking to build and sell software-driven “platforms” are finding that partners and developers
are not so keen to join closed source ecosystems.

These two pulls create some weird clunking in the heads of management at these companies
who aren’t used to working with a sandals and rainbow frame of mind. They have a scepticism
born of their inexperience with open source. Let’s address some of their trepidation.

If all your friends jumped off a bridge...

There was a time when using open source seemed a little odd. IBM’s billion dollar Linux R&D
spend in 2001 was quite the eyebrow-raiser, but they could smell the revenue wafting in from

115

the future. By 2008 a significant amount, if not a majority, of buyers were comfortable with open
source.

That positive sentiment has only grown. This year’s, 2016, long-running Blackduck open source
survey found that 78 per cent of the respondents were using open source software to run their
businesses (well mixed in with closed source, of course), up from 42 per cent in 2010. Similarly,
Forrester’s recent surveys shows that just 13 per cent of developers have yet to use open
source. Even in the seemingly staid world of manufacturing only 10 per cent of respondents
have never touched open source.

Put another way, the usage of open source to support, if not outright run a company’s core
businesses is normal. Like, totally normal.

You’ll be using open source sooner rather than later. How can you make sure it goes well?

Keeping an even keel

How to answer this hidden generation of doubters? Make like it's 2006 all over again: marshal
your arguments, plan a strategy, prove it works.

First, you should only aim to use open source projects and software that have a stable, long life.
Part of what you pay for with closed source software is the comforting sense that the company
will be there for years to come. At least, you should be getting that guarantee. You don’t want to
build your business on-top of a fly-by-night technology - open or closed! - that leaves you
stranded on an EoL island.

To sniff out stability, I’d evaluate the project's community in three areas:

● Is the community relatively free of conflict? If developers and stakeholders are generally
congenial, the long term prospects are better than if they're antagonistic.

● Is the community thriving? You want the code to be continually updated, with the
freshest features and whizbang thought technologies (REST! Responsive UI!
Microservices!). Otherwise you’ll be stuck with “legacy” frameworks, slowing you down
like barnacles, and equally hard to remove.

● Does the community generally stay on the same course, or is it always changing tack?
Multiple identity crises and dramatic changes can add a tremendous amount of instability
to the project's roadmap, requiring you to change yourself or stay left behind on old,
unsupported versions.

Put on those sandals and slide up the rainbow

Beyond just using open source, many companies are now in a position where shipping open
source looks to be a vital, strategic option. As previously “analog” devices like turbines, planes,
buildings, cars – and, yes, even coffee machines – are essentially highly networked computers.

116

Businesses can benefit from gussying up their their new “platforms” with open source. While
companies like Microsoft, Oracle and Apple show that you can build platform communities
around closed source platforms, using open source as a tactic is valuable, perhaps even easier.

Attracting developers (and their patron companies) to your new platform is difficult, no matter
open or closed. By my reckoning, building the community of business partners and developers
is easiest when open source is involved. Partners are suspicious of the commercial motivation
of the platform owners and look to open sourcing to provide a type of mutual assured success
and continual access to the core platform. Developers simply like having freely available code
and continue to put more faith and interest into open source projects than closed source ones.

All of this conjecture amounts to a strong suggestion for companies considering anything having
to do with sticking software, APIs, and network connections into their devices: think seriously
about the benefits (and drawbacks!) of open source your core platforms. The tried–and–true
“open core” model provides plenty of room for high-priced, closed software wrapped around a
delicious open core. Keeping your platforms 100 per cent closed has the potential to, well, close
off too many opportunities.

While all of this may seem blindingly obvious to the old salts out there, as more industries inject
software into their devices and businesses, this topic will keep floating back up. Us
tech-obsessed people will scratch our heads and wonder what’s wrong with them. But it’s all
new to those being eaten by software. Hopefully they’ll figure out that it’s smooth sailing with
open source.

Originally published in The Register, September, 2016.

117

https://www.theregister.co.uk/2016/09/29/unexpected_resistance_to_opensource/

Pizza, roaches, and Java

A while back I answered my doorbell - it was the pizza. After transacting for the hot pie, the
older delivery man with a Just Like Dear Old Dad mustache asked: "Are you a programmer?"
pointing to the OpenStack logo on my hoodie sleeve. "Yes," I said, "well, I used to be." He asked
me what programming language he should learn and quickly added "JavaScript?"

Taking the pizza, I said: "Java. There's lots of jobs in Java."

"You mean JavaScript?"

"Well, I mean, everyone knows JavaScript. But there's always work in Java."

Java is the great shoggoth of the programming world. Seemingly eternal, ever shifting and
growing, but above all massive enough to mindlessly roll over any competitors, even the
withering of time. Over the years, Java has been declared dead many times, but despite
numerous visits to the grave it has constantly remained one of the top three languages in use.

The nature of Java changes constantly, and despite an ever-fragmented and quarrelling
community and coming and going vendors, what seems like disorder is a wonderful advantage
of constant adaptability and, thus, stability over time. The most recent fear and uncertainty
comes from a shift in the nature and usage of Java’s enterprise-y face.

The money in Java

The business – nay, “enterprise” – version of Java has always provoked the most vitriolic
responses from the overall development community. “Why do we need all this bulk?” the Ruby
and Python kids have always harrumphed in their tight pants. “Why don’t we just code this
mortgage application approval workflow in Go?” the shiny object squirrels on Hacker News
comment.

But like a baffled, aloof grey-hair in dad jeans, squinting over his glasses at that hand-sized
Android phablet, Java Enterprise Edition (Java EE) chugs along. This variant of Java aims to
add in the common frameworks used by organizations to go all “enterprise grade” in their
applications: transactions, RBAC, database integration, common methods for web development,
and numerous other components all corralled together into a standard stack.

Most of the these components can be used on their own - most famously the servlet spec which
defines a widely used method for writing web applications - but having the all-in-one kit is
supposed to afford you the usual 1 + 1 = 3 benefits. The additional angle vendors of Java EE

118

stacks trade on is actual production performance and manageability: that silo’ed bundle of
uptime needs for the pre-DevOps set.

As you’d expect from anything going by the nom de guerre “enterprise,” Java EE products and
services have driven a huge amount of revenue for decades in the Java world. In 2015, Gartner
estimated that the application platform market was $7.8bn. But share of Java EE revenue in that
mix has been shrinking in favour of non-Java EE options. The lions of the Java EE market, IBM
and Oracle, have been dropping in revenue share while non-traditional Java EE vendors have
been rising quickly, with growth in the double digits in 2015.

Looking back, Java EE has been an incredibly reliable bucket of technologies, running
numerous, mission critical applications across companies of all sizes. Plenty of colorful
personalities have come and gone and repeatedly kicked over rose-scented piles of Java muck
to the delight of train-wreck coroners like myself. For example, the ever bombastic and florid
JBoss crew and their head iconoclast, Marc Fluery, never failed to delight in calling out the slow
Java standard process and mercantile interests of Java vendors.

In exactly the opposite direction of sharp-elbow pizzaz, the calm and plodding Spring
community led by Rod Johnson slowly changed the usability and nature of Java development as
a sort of friendly rebel next door.

Both of these communities sought to strip down the “bloat” of Java, making it smaller, and easier
to use. Like so many Java startups, each of these firms was gobbled up by the mainstream:
JBoss was acquired by Red Hat in 2006, while Spring found its way first into VMware in 2009
and then into Pivotal (my employer).

Dead again

Last year, a report from Gartner declaring the end of Java EE’s dominance invigorated all the
latent tension in the community. As one of the report’s authors put it: "People don't need 90 per
cent of the stuff sitting in Java EE to build modern enterprise applications.”

Predictably, such statements drove counter-arguments of analyst payola and ignorance in the
ever-delightful ad hominem style (I'm looking forward to finding out how much of a moron I am
this time in the comments section - KISSES!). Vendors who benefited from a decline in Java EE
only offered wry smiles and download figures, while the original analysts gave the equivalent of
a tired shruggie as they stuck by their guns and pdf-splained their original analysis.

What gets lost in this near annual Java flagellation is that Java's ever-green viability and
usefulness is driven by its ever evolving nature. What worked in one decade isn’t the best
approach in the next. Early on, Java and Java EE were the equivalent of a fully operational
battle-platform, loaded with features that could dominate any transactional workload to
space-dust.

119

http://www.theregister.co.uk/2016/01/15/devops_people_problem/
https://content.pivotal.io/analyst-reports/gartner-market-guide-for-application-platforms
https://content.pivotal.io/analyst-reports/gartner-market-guide-for-application-platforms
http://www.theregister.co.uk/2006/04/10/fleury_redhat_critic/
http://www.theregister.co.uk/2006/04/10/redhat_buys_jboss/
https://m.theregister.co.uk/2009/08/11/vmware_springsource_acquisition/
https://content.pivotal.io/analyst-reports/gartner-market-guide-for-application-platforms
https://adtmag.com/blogs/watersworks/2017/02/java-obsolete-report.aspx

It also provided a widely understood standard for enterprises development: you could easily find
programmers who knew the stuff and didn't need training. That aircraft carrier is overkill for
today's buzzword-blizzard of architectures (microservices! Cloud-native!), and now, a stripped
down Java that centers around agility, speed, and (still!) reliability is the endless hunger Java is
feeding.

You see this in usage of Java EE as reported in the long-running Zeroturnaround Java surveys:
in 2014, usage of Java EE was at 68 per cent and this year has declined to 58 per cent.

Meanwhile, interest in Java remains strong: IDC estimated that there were five to seven million
Java developers in 2016. While Java EE as a lifestyle may be on the wane, Java as a whole is
holding strong. There’s been some recent threats from Go and Swift, but reports from firms like
RedMonk show Java’s amazing ability to go along with changes in the industry and stay on top.

Oracle’s occasional, goofy product management decisions since acquiring Sun Microsystems
(the original steward of Java) has made the community nervous over the years. There have
been delays (I mean, it’s software after all - delays are a feature, not a bug) that have slowed
down the evolution of the official Java standard, but open source members of the community
have stepped in over the years to keep the train moving.

Oracle’s continued pursuit of lawsuits and occasional licence true-ups have a tendency to freak
the community out as well, but more provide blog-screed fodder for the loyal opposition. And,
you know, maybe it’s sometimes worth paying for something that your entire business relies on -
just sayin’.

However it gets packaged up and sold, Java consistently ends-ups satisfying the application
development and runtime needs of most organizations, from desktop, to cloud, to
pocket-computer. “We just like roaches, never die, always live." Indeed, in recent years the
official Java EE standards have added in slimmed down profiles as well, matching the desires of
the ever evolving Java community. The memo was received, and read.

Despite all the inside-bickering, lawsuits, a shotgun wedding to Oracle, drawn-out releases, and
rivals from PHP, to Rails, to Swift, Java is still in wide use and shows no signs of finally dying.
Jobs-wise, you’d be hard-pressed to find a better language than Java as your primary
programming language if you wanted to switch from dropping off hot-pies to writing code.

As they say in this “gig economy” world: you’re either delivering pizzas according the
code-dictates of a programmer, or writing the code to tell pizza delivery drivers which door to
knock on.

Originally published in The Register, March, 2017.

120

https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/
http://redmonk.com/sogrady/2016/07/20/language-rankings-6-16/
http://redmonk.com/sogrady/2016/07/20/language-rankings-6-16/
http://www.theregister.co.uk/2017/02/22/java_ee_8_provisional_date/
http://www.theregister.co.uk/2017/02/11/oracle_refuses_to_let_java_suit_die/
https://www.theregister.co.uk/2016/12/16/oracle_targets_java_users_non_compliance/
https://www.theregister.co.uk/2015/01/28/five_years_sun_software_under_oracle/
https://www.theregister.co.uk/2017/03/03/pizza_roaches_and_java/

O HAIOps! Can AI deliver BSM dreams, or just more BS?

“So, let me ask you,” he said, smoothing out his goatee with one hand. “Five planes have been
circling for hours, delayed. You can land one,” a long pause, “how do you choose?”

Us 20 something developers had been corralled into a windowless room to meet with this new
“CTO,” but we were pretty sure they didn’t do much right clicking in Rational to extract those
handsome sequence diagrams. “The one with the least gas!” one of my colleagues said. “The
one that has the highest revenue!” I interjected. And the joker of the group: “Pick randomly!”

“No, no, and no. You pick the one with the most elite status travelers,” he said. This was unfair.
None of us traveled as much as he did. I don’t think we could put together the proper attire for a
wedding or a funeral amongst the six of us. “These are your best customers, so you want them
to be happy. And that is what Business Service Management is!”

Confounded, we went back to what any self-respecting 20 something developers at the dawn of
the 21st century were doing: writing a bespoke ORM framework.

Maybe this time we’ll get it right
This notion of measuring the “business impact” of all those whirring disks, CPU gauges, and
web applications has always been with us. It’s the height of any high-falutin’ systems
management ethos. It doesn’t matter if the CPU is pegged, what matters is if customers can
book a car, buy a book, or see real-time, targeted ads for the removal of unwanted belly fat and
the reduction in their monthly mortgage payments with the use of one, natural, miracle pill – all
the while shopping for MAGA baseball caps.

Of course, just as vendors get close to solving the problem, a new array of middleware and
infrastructure comes along (mobile, cloud, voice, blockchain, or whatever new technology
Charlie Munger will hate on next year in Omaha) changing even the most basics of the problem
space. And, so here we are, some 15 years later, and systems management vendors are still
trying to reduce the time IT fritters away on the pea-soup of metrics and tickets that hurtle
towards them each day. “Business outcomes,” friend.

But wait! There’s a new way to focus on the business value: AIOps. First, it meant “Algorithmic
IT Operations,” but clearly, that dog don’t hunt, so it now means “Artificial Intelligence for IT
Operations” - the second “I” is silent.

The phrase pretty much defines itself, but here’s how Gartner’s Andrew Lerner puts it:

AIOps platforms utilize big data, modern machine learning and other advanced analytics
technologies to directly and indirectly enhance IT operations (monitoring, automation

121

https://www.theregister.co.uk/2018/05/07/warren_buffet_charlie_munger_technology_investment_assessment/
https://www.theregister.co.uk/2018/05/07/warren_buffet_charlie_munger_technology_investment_assessment/
https://www.gartner.com/newsroom/id/3674017
https://www.gartner.com/newsroom/id/3674017
https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms/
https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms/
https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms/

and service desk) functions with proactive, personal and dynamic insight. AIOps
platforms enable the concurrent use of multiple data sources, data collection methods,
analytical (real-time and deep) technologies, and presentation technologies.

Yup, yup: the kind of one dish dump dinner our MoMs are always after.

Not to be left out, Forrester calls the whole notion “cognitive operations”:

Software that applies advanced analytics and machine learning to analyze historical IT
operations data and make predictions that expedite management, speed problem
resolution, prevent developing problems, and attach business significance to problems
resolved or prevented.

CogOps! Barkeep, when you see this PDF reader empty, just fill it right back up!

What’s shared between all definitions is applying Machine Learning to whatever large corpus
you have lounging about with the aim of solving and predicting ops problems. That seems fair: if
Google Photos can cluster together all my pictures of late 20th century clown paintings, the ops
wizards out there should be able to automagically find patterns and even start to predict when
things will go wrong in the glass cage.

In action…?
Gartner tells us that by 2019, 25 per cent of enterprises will use AIOps to support “two or more
major IT operations functions.” Achieving growth rates that’d make Munger’s head pop, in its
“Market Guide for AIOps Platforms” report, the same put the number at a whopping 40 per cent
in 2022, saying it was at about five per cent penetration in 2017. Hopefully between those two
estimates there was some revision of the prediction models: that’s some insane growth.

However, that five per cent explains why it’s so hard to find enterprises who’re gushing about
their success with AIOps.

“Using AI/ML in IT ops could be as simple as automatic thresholding,” 451 Research’s Nancy
Gohring told me. “On the more useful end of the spectrum, it means presenting users with some
actionable information.” Triggering those actions comes from machine learning all that historic
data, as she explained: “the alert could be based on automatic thresholding or analysis of
historical incidents, potentially across a vendor's customer base.” That could then be presented
“along with possible suggestions for a way to solve the problem - again, based on analysis of
historical activity.”

For example, one insurer who applied Moogsoft’s AIOps approach used the machines to reduce
their event storms by 99 percent, while HCL worked with the same steer and carved down their
ticket queue by 62 per cent - so precise!

122

https://assets.dynatrace.com/en/docs/report/vendor-landscape-cognitive-operations.pdf
https://www.gartner.com/newsroom/id/3674017
https://www.gartner.com/doc/3772124/market-guide-aiops-platforms
https://twitter.com/ngohring
https://twitter.com/ngohring

There’s no cold winter in heaven
When you ask most people in the industry about the term AIOps, they roll their eyes. While it
<i>sounds</i> cool, they collectively admit that the name overpromises. As Gohring told me:
“Many vendors are confused by the term and end users are wary of it in the same way they're
wary of the more general AI/ML concepts - they want to understand how much of it is marketing
BS and how much of it might be of value to them.” Sure, “AI” is a bit aspirational, but calling it
“MLOps” sounds more like a character cut from early <i>Adventure Time</I> concept art.

IT will likely get much benefit from applying ML to it’s ever growing data sets in the “punk era of
IT” we now call “cloud.” While it’s delightful to poke fun at the name “AIOps,” it’s likely the usual
innovation in AI that we quickly forget and then take for granted. “[T]here have been a number
of successes [in AI] over the years,” Moogsoft’s Dominic Wellington says, “The problem is that
each time, the definition of AI has been updated to exclude the recent achievement.”

In one of my all time favorite analyst PDF subheadings, Forrester leaves us with this inspiring
send-off: “We’ve Seen Too Many False Prophets, But A Messiah Is Coming.” Cancel your
haircuts, my BOFHthren - lo! - make ready to wash feet!

Originally published in The Register, June 5th, 2018 as “AIOps they did it again, played with
your heart, new acronym shame.”

123

https://www.theregister.co.uk/2006/07/24/google_builds_own_servers/
https://www.theregister.co.uk/2006/07/24/google_builds_own_servers/
https://www.theregister.co.uk/2018/05/08/google_assistant_duplex_caller/
http://findthethread.postach.io/post/think-outside-the-black-box
https://assets.dynatrace.com/en/docs/report/vendor-landscape-cognitive-operations.pdf
https://assets.dynatrace.com/en/docs/report/vendor-landscape-cognitive-operations.pdf
http://www.theregister.co.uk/2018/06/05/aiops_can_ai_deliver_bsm_dreams_just_more_bs/

So you want to become a software company? 7 tips to not screw
it up.

Hey, I’ve not only seen this movie before, I did some script treatments:

Chief Executive Officer John Chambers is aggressively pursuing software takeovers as
he seeks to turn a company once known for Internet plumbing products such as routers
into the world’s No. 1 information-technology company.

…

Cisco is primarily targeting developers of security, data-analysis and collaboration tools,
as well as cloud-related technology, Chambers said in an interview last month.

Good for them. Cisco has consistently done a good job filling out its portfolio and is far from the
one-trick pony people think it is (last I checked, they do well with converged infrastructure, or
integrated systems, or whatever we’re supposed to call it now). They actually have a (clearly
from lack of mention in the piece Chambers is quoted in) little known-about software portfolio
already.

Most every large, traditional systems company wants to, sooner or later, get into software.
Here’s some tips:

1.) Don’t buy already successful companies, they’ll soon be old, tired
companies

Software follows a strange loop. Unlike hardware where (more or less) we keep making the
same products better, in software we like to re-write the same old things every five years or so,
throwing out any “winners” from the previous regime. Examples here are APM, middleware,
analytics, CRM, web browsers…well…every category except maybe Microsoft Office (even that
is going bonkers in the email and calendaring space, and you can see Microsoft “re-writing”
there as well [at last, thankfully]). You want to buy, likely, mid-stage startups that have proven
that their product works and is needed in the market. They’ve found the new job to be done (or
the old one and are re-writing the code for it!) and have a solid code-base, go-to-market, and
essentially just need access to your massive resources (money, people, access to customers,
and time) to grow revenue. Buy new things, which implies you can spot old vs. new things.

2.) Get ready to pay a huge multiple

When you identify a “new thing” you’re going to pay a huge multiple on company valuations of
5x, 10x, 20x, even more. You’re going to think that’s absurd and that you can find a better deal
(TIBCO, Magic, Actuate, etc.). Trust me, in software there are no “good deals” (except once in a

124

http://www.bloomberg.com/news/articles/2015-03-04/cisco-chasing-margins-of-past-means-software-takeovers-real-m-a
http://www.idc.com/getdoc.jsp?containerId=prUS25347414
http://www.idc.com/getdoc.jsp?containerId=prUS25347414
http://cote.io/blog/office-on-ios-share
http://cote.io/blog/office-on-ios-share
http://www.theverge.com/2014/4/24/5645684/accompli-is-a-powerhouse-email-app-for-iphone-for-outlook-users
http://5by5.tv/criticalpath/137
http://5by5.tv/criticalpath/137
http://en.wikipedia.org/wiki/Peregrine_Systems

lifetime buys like the firesale fro Remedy). You don’t walk into Tiffany’s and think you’re going to
get a good deal, you think you’re going to make your spouse happy.

3.) “Drag” and “Synergies” are Christmas ponies

That is, they’re not gonna happen on any scale that helps make the business case, move on.
The effort it takes to “integrate” products and, more importantly, strategy and go-to-market,
together to enabled these dreams of a “portfolio” is massive and often doesn’t pan out. Are the
products written in the exactly the same programming language, using exactly the same
frameworks and runtimes? Unless you’re Microsoft buying a .Net-based company, the answer is
usually “hell no!”

Any business “synergies” are equally troublesome, unless they already exist (IBM is good at
buying small and mid-sized companies who have proven out synergies by being long-time
partners). It’s a long-shot that you’re going to create any synergies. Evaluate software assets on
their own, stand-alone, not as fitting into a portfolio. You’ve been warned.

4.) Educate your sales force. No, really. REALLY!

You’re thinking your sales force is going to help you sell these new products. They “go up the
elevator” instead of down, so will easily move these new SKUs. Yeah, good luck, buddy.
Salespeople aren’t that quick to learn (not because they’re dumb, at all, but because that’s not
what you pay and train them for). You’ll need to spend a lot of time educating them and also
your field engineers. Your sales force will be one of your biggest assets (something the acquired
company didn’t have) so baby them and treat them well. Train them.

5.) Start working, now, on creating a software culture, not acquiring one

The business and processes (“culture”) of software is very different and particular. Do you have
free coffee? Better get it. (And if that seems absurd to you, my point is proven.) Do you get
excited about ideas like “fail fast”? Study and understand how software businesses run and
what they do to attract and retain talent. We still don’t really understand how it all works after all
these years and that’s the point: it’s weird. There are great people (like my friend Israel Gat)
who can help you, there’s good philosophy too: go read all of Joel’s early writing of Joel’s as a
start, don’t let yourself get too distracted by Paul Graham (his is more about software culture for
startups, who you are not — Graham-think is about creating large valuations, not extracting large
profits), and just keep learning. I still don’t know how it works or I’d be pointing you to the right
URL. Just like with the software itself, we completely forget and re-write the culture of software
canon about every five years. Good on us. Andrew has a good check-point from a few years
ago that’s worth watching a few times.

125

http://en.wikipedia.org/wiki/Peregrine_Systems
http://cote.io/fail-fast
http://www.cutter.com/meet-our-experts/gati.html
http://www.joelonsoftware.com/articles/fieldguidetodevelopers.html
http://www.paulgraham.com/
https://www.youtube.com/watch?v=P_sWGl7MzhU
https://www.youtube.com/watch?v=P_sWGl7MzhU

6.) Read and understand Escape Velocity

This is the only book I’ve ever read that describes what it’s like to be an “old” technology
company and actually has practical advice on how to survive. Understand how the cash-cow
cycle works and, more importantly for software, how to get senior leadership to support a
cycle/culture of business renewal, not just customer renewal.

7.) There’s more, of course, but that’s a good start

Finally, I spotted a reference to Stall Points in one of Chambers’ talks the other day which is
encouraging. Here’s one of the better charts you can print out and put on your wall to look at
while you’re taking a pee-break between meetings:

That charts all types of companies. It’s hard to renew yourself, it’s not going to be easy. Good
luck!

Originally published in March, 2016.

126

http://www.amazon.com/gp/product/B004S32R42/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B004S32R42&linkCode=as2&tag=coteicomthecoteb&linkId=DDQB7H2K7YJAGPLG
http://www.amazon.com/gp/product/B001AZ7QTC/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B001AZ7QTC&linkCode=as2&tag=coteicomthecoteb&linkId=ON22MB3IKASG5UQW
http://www.slideshare.net/Cisco/john-chambers-cisco-live-keynote-presentation
https://medium.com/@cote/so-you-want-to-become-a-software-company-7-tips-to-not-screw-it-up-9580235af076

Eventually, to do a developer strategy your execs have to take a
leap of faith

I talked with an old colleague about pitching a developer-based strategy recently. They’re trying
to convince their management chain to pay attention to developers to move their infrastructure
sales. There’s a huge amount of “proof” and arguments you can make to do this, but my
experience in these kinds of projects has taught me that, eventually, the executive in charge just
has to take a leap of faith. There’s no perfect slide that proves developers matter. As with all
great strategies, there’s a stack of work, but the final call has to be pure judgement, a leap of
faith.

“Why are they using Amazon instead of our multi-billion dollar suite?”

You know the story. Many of the folks in the IT vendor world have had a great, multi-decade run
in selling infrastructure (hardware and software). All the sudden (well, starting about ten years
ago), this cloud stuff comes along, and then things look weird. Why aren’t they just using our
products? To cap it off, you have Apple in mobile just screwing the crap out of the analogous
incumbents there.

But, in cloud, if you’re not the leaders, you’re obsessed with appealing to developers and
operators. You know you can have a “go up the elevator” sale (sell to executives who mandate
the use of technology), but you also see “down the elevator” people helping or hindering here.
People complain about that SOAP interface, for some reason they like Docker before it’s even
GA’ed, and they keep using these free tools instead of buying yours.

It’s not always the case that appealing to the “coal-facers” (developers and operators) is helpful,
but chances are high that if you’re in the infrastructure part of the IT vendor world, you should
think about it.

So, you have The Big Meeting. You lay out some charts, probably reference RedMonk here and
there. And then the executive(s) still isn’t convinced. “Meh,” as one systems management
vendor exec said to me most recently, “everyone knows developers don’t pay for anything.” And
then, that’s the end.

There is no smoking gun

If you can’t use Microsoft, IBM, Apple, and open source itself (developers like it not just because
it’s free, but because they actually like the tools!) as historic proof, you’re sort of lost. Perhaps
someone has worked out a good, management consultant strategy-toned “lessons learned”
from those companies, but I’ve never seen it. And believe me, I’ve spent months looking when I

127

http://www.channelregister.co.uk/2014/03/07/developers_tools_feature/
http://www.channelregister.co.uk/2014/03/07/developers_tools_feature/

was at Dell working on strategy. Stephen O’Grady’s The New Kingmakers is great and has all
the material, but it’s not in that much needed management consulting tone/style. (I’m ashamed
to admit I haven’t read his most recent book yet, maybe there’s some in there.)

Of course, if Microsoft and Apple don’t work out as examples of “leaders,” don’t even think of
deploying all the whacky consumer-space folks out like Twitter and Facebook, or something as
detailed as Hudson/Jenkins or Oracle DB/MySQL/MariaDB.

I think SolarWinds might be an interesting example, and if Dell can figure out applying that
model to their Software Group, it’d make a good case study. Both of these are not “developer”
stories, but “operator” ones; same structural strategy.

Eventually, they just have to “get it”

All of this has lead me to believe that, eventually, the executives have to just take a leap of faith
and “get it.” There’s only so much work you can do — slides and meetings — before you’re
wasting your time if that epiphany doesn’t happen.

Originally published March 31st, 2016.

128

http://www.amazon.com/gp/product/B0097E4MEU/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B0097E4MEU&linkCode=as2&tag=coteicomthecoteb&linkId=K754J55JKDTOUVA2
http://amzn.to/22LRBDh
https://medium.com/@cote/eventually-to-do-a-developer-strategy-your-execs-have-to-take-a-leap-of-faith-6785284e8613

What's up with IBM?

Now that IBM has ended its revenue losing streak, we're ready to stick a halo on it:

There is no doubt, though, that there are signs of progress at IBM, which would not
comment on its financial picture before the release of the earning report. So much
attention is focused on the company’s top line because revenue is the broadest measure
of the headway IBM is making in a difficult transformation toward cloud computing, data
handling and A.I. offerings for corporate customers.

The new businesses — “strategic imperatives,” IBM calls them — now account for 45
percent of the company’s revenue. And though it still has a ways to go, IBM has steadily
built up those operations — and gained converts.

Over all those quarters, there hasn't been that much good analysis of "what went wrong" at IBM
in so much as I haven't really read much about what IBM should have been doing. What did we
expect from them? What should they be doing now and in the future? I don't know the answers,
but I'm damn curious.
"State your deal."
Since the mid-2000's, all tech companies have been shit on for not getting to and dominating
public cloud faster (there are exceptions like Adobe that get lost in the splurty noise of said
shitting on). Huge changes have happened at companies HP/HPE and Dell/EMC/VMware
(where I work happily at Pivotal, thank you very much), and you can see Oracle quarterly
dance-adapting to the new realities of enterprise IT spending.

For the past 8 or 10 years I've had a rocky handle on what it is that IBM sell exactly, and in
recent years their marketing around it has been fuzzy. Try to answer the question "so what is it,
exactly, that IBM sells?" A good companion is, "why do customers choose IBM over other
options?"

You can't say "solutions" or "digital transformation." (I'm aware of some black kettle over here,
but I and any Pivotal person could tell you exactly the SKUs, tools, and consulting we sell,
probably on an index card). I'm pretty sure some people in IBM know, but the press certainly
doesn't know how the fuck to answer that question (with some exception at The Registerand
from TPM, grand sage of all IBM coverage).

I've been a life-long follower of IBM: my dad worked at the Austin campus, it was a major focus
at RedMonk, and, you know, just being in the enterprise tech industry gets your face placed
facing Armonk frequently. I feel like I know the company pretty well and have enough of an
unnatural fascination to put up with spelunking through them when I get the chance; IBMers
seem pleasantly bewildered when the first thing I ask them to do is explain the current IBM
hierarchy and brand structure.

129

https://www.nytimes.com/2018/01/17/technology/ibm-earnings.html
https://www.theregister.co.uk/2018/01/19/ibm_fy2017_sales_growth/
http://amzn.to/2Dyo6O5
http://tomtunguz.com/adobe-saas-growth/
http://www.theregister.co.uk/2018/01/19/digital_transformation_better_software_practices/
https://www.theregister.co.uk/Tag/ibm
https://www.nextplatform.com/author/tpmn/
https://www.nextplatform.com/tag/ibm/
http://redmonk.com/cote/tag/ibm/
http://redmonk.com/cote/tag/ibm/

But I couldn't really explain what their deal is now. I mean, I get it: enterprise outsourcing,
BPaaS (or did they sell all that off?), some enterprise private cloud and the left over public cloud
stuff, mainframe, a bunch of branded middleware (MQ, WebSphere, DB2, etc.) that they seem
forbidden to mention by name, and "Watson."
There are clear products & services (right?)
When I've been involved in competitive situations with IBM over the years, what they're selling is
very, very straight forward: outsourcing, software, and a sense of dependability. But the way
they're talked about in the press is all buzzwordy weirdness. I'm sure blockchain and AI could be
a big deal, but their on and off success at doing something everyday, practical with it is weird.

Or, it could just be the difficulty of covering it, explaining it, productizing, and then marketing it.
"Enterprise solutions" often amounts to individually customized strategy, programs, and
implementations for companies (as it should, most of the time), so you can't really wrap a
clear-cut SKU around that. It's probably equally hard to explain it to financial analysts.
So, what's their deal?
Anyhow, I don't come here to whatnot IBM (genuinely, I've always liked the company and still
hope they figure it out), but more out of actual curiosity to hear what they should have been
doing and what they should do now. Here's some options:

1. The first option is always "stay on target, stay on target," which is to say we just need to
be patient and they'll actually become some sort of "the business of AI/ML, blockchain,
and the same old, useful stuff of improving how companies run IT." I mean, sure. In that
case, going private is probably a good idea. The coda to this is always "things are
actually fine, so shut the fuck up with your negativity. Don't kill my vibe!" And if this it
true, IBM just needs some new comms/PR strategies and programs.

2. You could say they should have done public cloud better and (like all the other
incumbent tech companies except Microsoft), just ate it. What people leave out of this
argument is that they would have had to spend billions (and billions) of dollars to build
that up over the past 10 years. Talk about a string of revenue loosing quarters.

3. As I'm fiddling around with, they could just explain themselves better.
4. They should have gotten into actual enterprise applications, SaaS. Done something like

bought Salesforce, merged with SAP, who knows. IBM people hated it when you
suggested this.

5. The always ambiguous "management sucks." Another dumb answer that has to be
backed up not with missed opportunities and failures (like public cloud), but also proving
that IBM could have been successful there in the first place (e.g., with public cloud,
would Wall Street have put up with them loosing billions for years to build up a cloud?)

I'm sure there's other options. Thinking through all this would be illustrative of how the
technology industry works (and not the so called tech industry, the real tech industry).

130

https://www.technologyreview.com/s/607965/a-reality-check-for-ibms-ai-ambitions/
http://www.platformonomics.com/2017/04/follow-the-capex-cloud-table-stakes/
http://www.craiglarman.com/wiki/index.php?title=Larman%27s_Laws_of_Organizational_Behavior
https://www.youtube.com/watch?v=GF8aaTu2kg0
http://www.nytimes.com/2004/01/28/business/technology-amazon-reports-first-full-year-profit.html
https://us1.campaign-archive.com/?u=ce6149b4008d62a08093a4fa6&id=914f3f1c79

Post-note

Since posting this I've come across - rather been reminded - of one swag at this summarizing
Tony Sacconaghi's take. Also, Stephen O'Grady wrote something up a few years ago.

Originally posted in my newsletter, January 27, 2018.

131

http://cote.io/2018/01/22/so-what-exactly-should-ibm-do-and-have-done
https://www.theregister.co.uk/2017/12/22/ibm_bernstein_analysis/
https://www.theregister.co.uk/2017/12/22/ibm_bernstein_analysis/
http://redmonk.com/sogrady/2015/10/27/amazon-ibm/
https://us1.campaign-archive.com/?u=ce6149b4008d62a08093a4fa6&id=396ebf7635

Burnout
The suggested actions at the end are ultimately unsatisfying and weak. There should be more
to suggest. -Coté

The DevOps community is focused on this thing called “culture.” By this, I always take them to
mean the processes, norms, and HR policy that an organization has in place. You want the
culture to be open, understanding, curious, and above all else, well, friendly. If you’re using
failing-as-learning to improve your software capabilities, you can’t have a failing-as-failing
mindset and incentive system.

The opposite of DevOps culture

Around 2015, John Willis introduced a foil to positive culture, a black dog of destructive funk he
called burnout. Whether an individual is working in a negative, blame-storming organization, or
even a happy, blameless one, sometimes people end up taking on too much, damaging
themselves.

I must admit, that I’ve paid little attention to this part of DevOps lore. That’s an embarrassing
admission since John is a long-time, good friend (we used to wax on and on about ITIL back
when it was cool). But if you’re in the industry long enough, John’s mixing in of burnout think into
IT starts to make a lot of sense, and, indeed, is helpful.

Eventually we all start giving that black dog too many table scraps.

All heros are tragic

Working in IT is a magical, mysterious, and wonderful task. To the normals, it seems like the
computers and demons are machinating against them, but us nerds know they’re just like big
pawed puppies pouncing and growling to get us to roll around on the floor. We bond with them,
and we start to dedicate ourselves to the machines.

In a business context, when you’re paid to roll around on the ground, things start to change.
What were once a fun, even relaxing all night sessions debugging code starts happening more
and more. Your boss starts yelling at you, even if quietly, telling you that you should just cancel
all your weekend plans for the next month. Somehow, you still see yourself as a hero, the one
who can put in all that effort to troubleshoot a problem and emerge early Monday morning with a
fix (always some freaky DNS problem, of course).

Those nervous managers who were looking over your shoulder, calling in from their daughter’s
birthday party to check on your progress, suddenly proclaim you some sort of Achilles, grand
champion of the battle over beauty, respected by all.

132

http://www.theregister.co.uk/2017/10/13/devops_culture/
http://www.theregister.co.uk/2017/10/13/devops_culture/
https://itrevolution.com/karojisatsu/

Of course, what you forget is that Heros rarely die intacted and without holes in their heels.

Spawning the dog

In a dysfunctional culture that doesn’t prioritize long term working software, and instead looks
for the quick fix, you enter a cycle of strife, toil, and triumph over and over.

As the hero of all disasters, you become the central focus of fixing everything, and any slacking
on your part is reflected back to you as a flaw. If you can’t fix the crashed storage array this
time, then clearly you’re all used up like a failed prize-fighter with a steak to the face, or, worse,
a thoroughbred whose name is now glue.

Us nerds see failure as a problem with us, not with the overall system that consistently failed to
apply the right patches, decided to spend too little on high availability, and refused to halt
releasing features to make time for hardening production. It’s not the culture’s fault, it’s our fault.

That begins the spiral into burnout. The ups and downs of green and red status icons starts
choking you like an anaconda, pulling tighter every time you breath.

You’re sliding into a hole of both culture's and, then, your own making. The research shows that
the first mental downgrade is to become cynical - “disassociated” from yourself and your
environment - to protect yourself. “It’s not my fault,” you think, “everything is FUBARed and
SNAFUed.”

Donning a Deadpool t-shirt to work with disaffecting flip-flops to work each day, though, is thin
armor. The stress keeps piling on, unfazed by your sartorial carapace. Soon, you’re entirely
burned out, constantly thinking that it’s not the storage array at fault, but you.

Different day same… management

John’s insight at this point was to pull in the rich body of knowledge on burnout. As ever, we in
the IT industry act like we’re a breed apart: nothing any other industry has learned applies to us.
It’s a miracle that we discovered and accepted Lean into our world.

There’s decades of research on burnout in various trades, from health care, to service industry,
and even to IT. One recent, 2015, study by Sara Cook nicely compiles all this research as a
prefix to its own study of burnout among IT workers. While there were many factors that drive
stress, the study concludes that organizational politics and "menial work" were large drivers of
burnout.

In other words, dealing with managerial bullshit and toil drives a great deal of stress.

Reducing managerial politics is difficult, but that's why DevOps is so focused on putting a
positive culture in place. Part of the problem with changing management is that the people who

133

http://www.ijbhtnet.com/journals/Vol_5_No_3_June_2015/1.pdf

work for them can’t change them. They have to change themselves. Of course, their managers
could change them, but then it’s managers who need to be changed all the way up.

Reducing toil, of course, is one of great principals of SRE. If an engineer spends most of time
on menial work, something is going terribly wrong and work stops to address that error. Of
course, most organizations are not so focused on reducing toil: as Cook's study found, just
about 75 percent of respondents said they spend too much time on "menial tasks.”

Patching the patcher
One of the easiest ways to address stress, Cook suggests, is to better prioritize work and hold
off interruptions. While this isn't always possible, it does add color to the anecdotes you hear
about how much happier and productive backlog-driven agile teams are. Clearly, management
can decide to introduce such structure, and even teams can to an extent.

In my career, I've found that you can't always work in an enlightened organization that self-heals
once some organization science study comes out. I mean, have you ever tried to actually
download academic PDFs, yet alone read them?

When I've been trapped with the black dog late into too many nights, with no managers there to
throw a muzzle on it, the only solution I've found is to leave, to find a new job. It can seem
impossible, but it always works and leaving is often easier than it seems. It’s certainly better
than becoming a burnt out cinder. While IT might be in a stressful line of work, at least there's
always the call for more workers and there's a good chance that a new organization will treat
you more like a human, and less like a dog.

Originally published in The Register, June 18th, 2018 as “What can you do when the pup of
programming becomes the black dog of burnout? Dude, leave.”

134

https://www.theregister.co.uk/2018/02/06/devops_no_ops_less_ops/
http://www.theregister.co.uk/2017/10/19/it_staff_supply_problems/
http://www.theregister.co.uk/2017/10/19/it_staff_supply_problems/
http://www.theregister.co.uk/2018/06/18/burn_out_and_leave_patching_the_patcher/

Chronological List
1. 20140307 - The Register, March 2014 - “Will the blighters pay this time? Betting big on
2. 20140603 - The Register, June, 2014 - “DevOps is actually a thing – and people are

willing to pay for it.”
3. 20150901 - FierceDevOps, September 2015 - “Barriers to DevOps in government.”
4. 20151201 - FierceDevOps, December, 2015 - “Addressing the DevOps compliance
5. 20160115 - The Register, January, 2016 - “You, yes YOU: DevOps' people problem.”
6. 20160204 - The Register, February 2016 - “Software devs' new mantra: Zen dogs dream

of small-sized bones.”
7. 20160309 - The Register, March 2016 - “Go DevOps before your bosses force you to.

It'll be easier that way.”
8. 20160330 - Medium, March, 2016 - “So you want to become a software company? 7 tips

to not screw it up.”
9. 20160331 - Medium, March 31st, 2016 - “Eventually, to do a developer strategy your

execs have to take a leap of faith.”
10. 20160412 - The Register, April, 2016 - “DevOps isn't just about the new: It's about

cleaning up the old, too.”
11. 20160506 - The Register, May, 2016 - “Change review boards are probably a no-op, at

best.”
12. 20160615 - The Register, June, 2016 - “How many “modes” does this thing need?”
13. 20160727 - The Register, July, 2016, published as “Why Agile is like flossing and regular

sex.”
14. 20160913 - The Register, September, 2016 - “ROI Smoke Bombs and Diversions.”
15. 20160929 - The Register, September, 2016 - “Uncork a bottle of vintage open-source

FUD.”
16. 20161018 - The Register, October, 2016.
17. 20161121 - The Register, November, 2016.
18. 20170118 - The Register, January, 2017.
19. 20170303 - The Register, March, 2017 - “Pizza, roaches, and Java.”
20. 20170426 - The Register, April, 2017 - “Victory! The smell of skunkworks in your office in

the morning.”
21. 20170629 - The Register, June, 2017 - “How to avoid getting hoodwinked by a DevOps

hustler.”
22. 20170918 - The Register, September - “The developers vs enterprise architects

showdown: You shall know us by our trail of diagrams.”
23. 20171013 - The Register, October, 2017 - “Culture, schmulture. DevOps, agile need to

be software-first again.”
24. 20171019 - The Register, October, 2017 - “You can't find tech staff – wah, wah, wah.”
25. 20171117 - The Register, November, 2017 - “'Do the DevOps?' No thanks! Not until a

'blameless post-mortem' really is one.”

135

https://www.theregister.co.uk/2014/03/07/developers_tools_feature/
https://www.theregister.co.uk/2014/06/03/michael_cote_dev_ops/
https://medium.com/@cote/barriers-to-devops-in-government-72d657ecf722
https://medium.com/@cote/addressing-the-devops-compliance-problem-deefe47e204f
https://www.theregister.co.uk/2016/01/15/devops_people_problem/
https://www.theregister.co.uk/2016/02/04/think_small_not_big/
https://www.theregister.co.uk/2016/03/09/making_sure_your_bosses_get_devops/
https://medium.com/@cote/so-you-want-to-become-a-software-company-7-tips-to-not-screw-it-up-9580235af076
https://medium.com/@cote/eventually-to-do-a-developer-strategy-your-execs-have-to-take-a-leap-of-faith-6785284e8613
https://www.theregister.co.uk/2016/04/12/land_the_legacy_big_fish/
https://www.theregister.co.uk/2016/05/06/no_escaping_review_boards/
https://www.theregister.co.uk/2016/06/15/one_it_so_many_modes/
https://www.theregister.co.uk/2016/07/27/agile_slow_ascent/
https://www.theregister.co.uk/2016/07/27/agile_slow_ascent/
https://www.theregister.co.uk/2016/07/27/agile_slow_ascent/
https://www.theregister.co.uk/2016/09/13/return_on_investment_for_devops/
https://www.theregister.co.uk/2016/09/29/unexpected_resistance_to_opensource/
https://www.theregister.co.uk/2016/10/18/pairing_programming_youll_never_guess_what_happens_next/
https://www.theregister.co.uk/2016/11/21/largile_for_management_babies/
https://www.theregister.co.uk/2017/01/18/wtf_is_digital_transformation/
https://www.theregister.co.uk/2017/03/03/pizza_roaches_and_java/
https://www.theregister.co.uk/2017/04/26/ah_i_love_the_smell_of_skunkworks_in_the_morning/
https://www.theregister.co.uk/2017/06/29/devops_hustlers/
http://www.theregister.co.uk/2017/09/18/learning_to_live_with_enterprise_architects/
http://www.theregister.co.uk/2017/10/13/devops_culture/
http://www.theregister.co.uk/2017/10/19/it_staff_supply_problems/
http://www.theregister.co.uk/2017/11/17/do_the_devops_not_here_no_thank_you/

26. 20171211 - The Register, December 11th, 2017 - “So you're 'agile', huh? I do not think it
means what you think it means.”

27. 20171221 - “In 2018, Clear Out Your Portfolio Underbrush Before You Have to Burn it All
Down” - BuiltToAdapt, December 21st, 2017.

28. 20180119 - The Register, January 19th, 2018 - “You may not be a software company,
but that isn't an excuse to lame-out at computering.”

29. 20180119 - “All this Facebook hoopla is bullshit” - Newsletter, January 19th, 2018.
30. 20180127 - “What's up with IBM?” - Newsletter, January 27th, 20128
31. 20180201 - “Rule 1: Don’t go to meetings. Rule 2: See rule 1,” Medium, February 1st,

2018.
32. 20180206 - The Register, February 6th, 2018 - “The many-faced god of operational

excellence, DevOps and now 'site reliability engineering.’”
33. 20180220 - The Register, February 20th, 2018 - “A print button? Mmkay. Let's explore

WHY you need me to add that.”
34. 20180306 - The Register, March 6th, 2018 - “Great, we're going to get DevOps-ed. So,

15 years of planning processes – for the bin?”
35. 20180309 - “We've got a lot of heinous problems, but for fuck's sake, don't compare

dancing hot dogs to RDBMS's” - Newsletter, March 9th, 2018.
36. 20180329 - The Register, March 29th, 2018 - “The best outsourcers fire themselves.”
37. 20180514 - The Register, May 14th, 2018 - “Removing grumps from the DevOps

punchbowl” (published as “You're in charge of change, and now you need to talk about
DevOps hater Robin”).

38. 20180505 - The Register, June 5th, 2018 - “O HAIOps! Can AI deliver BSM dreams, or
just more BS?” originally published as “AIOps they did it again, played with your heart,
new acronym shame.”

39. 20180618 - The Register, June 18th, 2018 - “Burnout,” originally published as “What can
you do when the pup of programming becomes the black dog of burnout? Dude, leave.”

136

http://www.theregister.co.uk/2017/12/11/you_say_you_are_doing_devops/
https://builttoadapt.io/in-2018-clear-out-your-portfolio-underbrush-before-you-have-to-burn-it-all-down-86ae18f98f24
http://www.theregister.co.uk/2018/01/19/digital_transformation_better_software_practices/
https://us1.campaign-archive.com/?u=ce6149b4008d62a08093a4fa6&id=914f3f1c79
https://medium.com/@cote/rule-1-dont-go-to-meetings-rule-2-see-rule-1-845d331ee1c5
http://www.theregister.co.uk/2018/02/06/devops_no_ops_less_ops/
http://www.theregister.co.uk/2018/02/20/design_in_the_age_of_devops/
http://www.theregister.co.uk/2018/02/20/design_in_the_age_of_devops/
http://www.theregister.co.uk/2018/03/06/what_does_devops_do_to_decades_old_planning_processes_and_assumptions/
http://www.theregister.co.uk/2018/03/06/what_does_devops_do_to_decades_old_planning_processes_and_assumptions/
https://us1.campaign-archive.com/?u=ce6149b4008d62a08093a4fa6&id=5629614213
https://us1.campaign-archive.com/?u=ce6149b4008d62a08093a4fa6&id=5629614213
http://www.theregister.co.uk/2018/03/29/outsourcing_software_development/
http://www.theregister.co.uk/2018/05/14/devops_change_barriers/
http://www.theregister.co.uk/2018/05/14/devops_change_barriers/
http://www.theregister.co.uk/2018/06/05/aiops_can_ai_deliver_bsm_dreams_just_more_bs/
https://www.theregister.co.uk/2018/06/18/burn_out_and_leave_patching_the_patcher/
https://www.theregister.co.uk/2018/06/18/burn_out_and_leave_patching_the_patcher/

