RFC: Merge istio-ca-secrets and cacerts

Shared with Istio Community

A

~—

Owner: Jackie Elliott (jaellio) Status: WIP | In Review | Approved | Obsolete
Working Group: Security Created: 2023-03-07
Approvers:

TL;DR

The istio-ca-secret and cacerts Kubernetes Secrets offer alternative options to provide the root
or intermediate certificate to istiod in different scenarios, but contain similar information. This
doc proposes merging the istio-ca-secret and cacerts Kubernetes secrets into a single secret
(surfaced via Propose combine "istio-ca-secret" and "cacerts" - Issue #41507 - istio/istio

(github.com)).

Background

Currently, Istio supports two mechanisms for configuring the CA certificate when Istiod is
functioning as the Certificate Authority.

1. Plugin CA certificate

2. Istiod generated self-signed certificate

There are several functionality and configuration differences between the plugin cacerts and the
istio-ca-secret self-signed certificate. The cacerts Secret is optionally volume mounted to istiod.
Since Istio v1.12, Istiod has supported picking up on changes to the plugin CA certificate in the
cacerts Secret without having to restart istiod: Add support to istiod to notice cacerts changes by
rveeramal - Pull Request #31522 - istio/istio (github.com). The generation of a self-signed CA
certificate stored in the istio-ca-secret k8s Secrets is not recommended for production and istiod
does not pick up on a change to istio-ca-secret without a restart. Istiod expects a cacerts Secret
to be generic or tls certificate type. The istio-ca-secret k8s Secret is of type istio.io/ca-root.

Goals

e Reduce complexity of providing a root certificate for the Istio CA and centralizing the
location of a root certificate

mailto:jaellio@microsoft.com
https://github.com/istio/istio/issues/41507
https://github.com/istio/istio/issues/41507
https://istio.io/latest/docs/tasks/security/cert-management/plugin-ca-cert/
https://github.com/istio/istio/pull/31522
https://github.com/istio/istio/pull/31522

e Merge the cacerts and istio-ca-secret into single k8s Secret for plug in and istio
generated CAs
e Maintain backwards compatibility with cacerts and istio-ca-secret functionality

Non-Goals

e Create a new root certificate workflow or means to provide an additional root certificate

Requirements

To preserve backwards compatibility, the solution must preserve the existing functionality of the

plugin CA cert as well as the self-signed certificate. The solution aims to preserve the

functionality introduced in Add support to istiod to notice cacerts changes by rveeramal - Pull
Request #31522 - istio/istio (github.com). This change implemented a file watch on the volume

mounted cacerts Secret. Currently, no watch is initialized on the istio-ca-secret.

The use cases of a merged CA root Secret are comprised of the combined use cases of the
plugin CA and a self-signed, istiod generated CA certificate.

Proposal/Design Ideas

Utilize the existing cacert for the plugin and istiod generated root certificate. The cacerts Secret
is either created and populated by the user with a plugin certificate, or it is created by istiod and
populated using a self-signed certificate. The supported types for cacert are generic,
istio.io/ca-root, and tls certificate.

The cacerts Secret will remain as an optional Secret for user provided certificates.

Startup Workflow

On start-up, istiod will follow the below process to load or create the CA certificate:
1. First, istiod checks for the existence of a file mounted cacerts Secret by checking for the
populated well known file paths.

a. If the files at the well known path are not empty, the existing workflow will
continue as is.

b. NOTE: This workflow is already implemented.

c. If the Secret does not exist, istiod will check for the existence of the
istio-ca-secret.

https://github.com/istio/istio/pull/31522
https://github.com/istio/istio/pull/31522

2. Second, istiod checks for the existence of the istio-ca-secret.

a. If the secret exists, istiod creates a cacerts Secret of the same Secret type and
populates the Secret with the contents of istio-ca-secret. If cacerts already exists,
ignore the error. Then a watch is established on the cacerts optional Secret
volume mount.

i. Note: This enables supports for updating the istio generated self-signed
without having to restart the control plane.

b. If the secret does not exist, istiod creates a cacerts Secret.

3. Lastly, istiod generates a self-signed cert as its CA.

a. Istiod attempts to create the cacerts Secert as type istio.io/ca-root and populate
with the new self-signed cert. A file watch is initialized on the optional Secret
volume mount.

b. If the Secret creation fails because the secret already exists then a watch is
established on the existing secret.

Alternative Workflow (Draft)

1. Create new cacerts file watch process only for the initial load
a. Sends a cancel context if the following operation is no longer needed
2. Check for cacerts files and load them if present. Start existing cacerts file-watcher and
continue with existing workflow. Cancels the above file watch
3. Attempt to get istio-ca-secret in a retry loop - breaks after 20 minutes? idk? similar to
existing code
a. If operation fails does to a not found error, create a self signed cert and populate
a new cacerts Secert - if that fails error, unless the error is that is already exists
then break
b. If operation fails with another error, retry istio-ca-secret get operation
c. If found, create a cacerts from the contents of istio-ca-secret - if that fails error,
unless the error is that is already exists then break
4. Either the cacerts file watch finds the files or the watch is cancelled after 20 minutes and
errors
5. Load the cacerts file and start the existing watch functionality

Challenges Encountered

When a istiod generates a self-signed root certificate for use by the internal CA, a self-signed ca
root certificate rotator is initialize. The SelfSignedCARootCertRotator automatically checks
self-signed signed root certificates and rotates the root certificate if it is going to expire. The
rotator watches the istio-ca-secret k8s secret via the caSecretController.
checkAndRotateRootCert() loads the istio-ca-secret calls
checkAndRotateRootCertForSigningCertCitadel(). The method gets the wait time until the

https://kubernetes.io/docs/concepts/configuration/secret/#restriction-secret-must-exist
https://kubernetes.io/docs/concepts/configuration/secret/#restriction-secret-must-exist

certificate needs to be rotated. Event if the certificate doesn’t need to be rotated, the method
checks if the certificate bytes in the secret are different from the ca cert bytes in the local
CAKeyCertBundle (indicating another instance rotated the cace. If it is different, the
CAKeyCertBundle is updated - the ca cert and ca private key are overwritten and the previous
rootCertFile is appended to the new ca cert and set to the root cert of the key bundle.

If the secret did need to be rotated, then the method gets the existing options from the
istio-ca-secret ca-cert.pem. The options are merged with the new options which include the
SignerPrivPem (this is the same as the private key of the old cert. The new root is generated
from the existing private key.

UpdateRootcertificate() updates the root cert in istio-ca-secret, the keyCertBundle, and the
configMap. The method accepts an argument to either roll forward or backwards a rotation.

When a Istiod starts up, identifies a volume mounted secret cacerts, and loads the secret data,
the file watch on the cert data is initialized. When the files are updated the CAKeyCertBundle is
updated. updatePluggedinRootCertAndGenKeyCert is called on an update and
istiodCertBundleWatcher is notified.

The istiodCertBundleWatcher periodically compares it's own version of the CAKeyCertBundle to
the existing CAKeyCertBundle. If they are not equal the server’s bundle is set to the new value
and the istiodCertBundleWatcher is notified.

Problem

Depending on whether or not a plugged in certificate or an istiod generated self-signed
certificate is used for the CA, different watch and update mechanisms are initiated. With the
proposed secret merging, there is currently no way for all istiod instances to determine if the
cacerts secret was generated by Istiod or not. Therefore, the existing self-signed ca root cert
rotator mechanism might not be initialized correctly or the user might not be aware that the
secret will be rotated/updated by istiod. Additionally, the self-signed ca root cert rotator depends
on a secret watch rather than a file watch. The goal of the proposal is to simplify the CA
configuration process by merging the istio-ca-secret and cacerts k8s secrets, but with the above
mentioned problems the backend implementations would be vastly different.

One possible solution is to update the SelfSignedCARootCertRotator to rely on a file watch
(similar to the existing watch for plugged in ca certs) rather than a secret watch on
istio-ca-secrets. The rotator will periodically check the file contents for expiration rather than the
Secret itself. If the cert needs to be rotated, the secret itself will be updated. The change will
eventually be picked up via the file system watch and the current plugged in cert mechanisms
will continue. The remaining challenge is how to distinguish between istiod generated
self-signed and plugged in certificates when we are only examining the file system.

Alternative Options

Enable the user to specify the plugin CA secret name on install. Currently, the plugin CA
Secret must be named cacerts. This configurabiliy would give user more freedom over
what secrets they can plugin to istiod and would require less reconfiguration.
- Downsides: Additional complexity, challenging debugging scenarios, inconsistent
environments, doesn’t simplify CA secret options
- Benefits: User configurability
[ACCEPTED APPROACH] Use the existing cacerts Secret as the self-signed and plugin
CA. This option proposes combining the cacerts and istio-ca-secret into the existing
cacerts. On start-up, if a plugin cacerts did not exist istiod could create one with a
self-signed CA. This change would require changes to existing logic rathar than adding
additional logic to handle a Secret of a new name.
- Downsides: Expands the existing meaning of the cacerts Secret
- Benefits: Doesn’t require users to change any existing mechanism for updating
cacerts, doesn’t introduce a new secret, istio-generated self-signed cacerts and
plugin cacerts changes will be picked up by the control plane without restart

Implementation Plan

Appendix

Current cacerts Secret Configuration
Note: The cacerts secret can be of type generic or tls certificate.

kind: Secret
apiVersion: v1
metadata:
name: cacerts
namespace: istio-system
Type: Opaque

data:
ca-cert.pem: <<ca-cert>>
ca-key.pem: <<ca-cert-private-key>>
cert-chain.pem: <<cert-chain>>
root-cert.pem: <<root-cert>>

kind: Secret
apiVersion: v1
metadata:
name: cacerts
namespace: istio-system
type: kubernetes.iol/tls
data:
tls.crt: <<root-cert>>
tls.key: <<root-cert-private-key>>
ca.crt: "

Current istio-ca-secret Secret Configuration

Note:
e The istio-ca-secret is of type istio.io/ca-root
e cert-chain.pem, key.pem, root-cert.pem are unset

kind: Secret
apiVersion: v1
metadata:
name: istio-ca-secret
namespace: istio-system
type: istio.io/ca-root
data:
ca-cert.pem: <<root-cert>>
ca-key.pem: <<root-cert-private-key>>
cert-chain.pem: ™
key.pem: “"
root-cert.pem:

	RFC: Merge istio-ca-secrets and cacerts
	
	TL;DR
	Background
	Goals
	Non-Goals
	Requirements
	Proposal/Design Ideas
	Startup Workflow
	Alternative Workflow (Draft)
	Challenges Encountered
	Problem

	Alternative Options
	Implementation Plan
	Appendix
	Current cacerts Secret Configuration
	Current istio-ca-secret Secret Configuration

