
Google App Engine (GAE)
Notes

Author Faram Khambatta

Created 2012-12-26

Last updated 2013-04-02

Spring 3.x & Velocity on GAE
Required Jars

Access Restrictions
Using HTTPS
Directory structure
appengine-web.xml
build.xml
GAE app in NetBeans SDK

General
NetBeans project directory structure
Auto-complete and Import
Context Menu items

Logging
Logging using log4j

Uploading to GAE
JDO

Configuration & Build
Usage
Data Types

Spring 3.x & Velocity on GAE
See Apache Velocity Notes for integration and configuration of Spring and Velocity.

https://profiles.google.com/faram.khambatta/
https://docs.google.com/document/d/1JDYd-Mf_G8CpuDEAoe-BFLHsrLZTNQQjz1Cdq6GMXgc/edit?usp=sharing

Required Jars (when using JDO 3.0)
compile target in build.xml will automatically copy jars from appengine-java-sdk-xxx/lib/user/ to
project’s war/WEB-INF/lib/ . These jars are -

1.​ All the appengine-xxx.jar jars (3 in number).
2.​ asm-4.0.jar
3.​ All the datanucleus-xxx.jar jars (4 in number).
4.​ geronimo-jpa_2.0_spec-1.0.jar
5.​ jdo-api-3.0.1.jar
6.​ jsr107cache-1.1.jar
7.​ jta-1.1.jar

Manually add the following jars to war/WEB-INF/lib/ for Spring 3.x and Velocity -

1.​ commons-collections-3.2.1.jar
2.​ commons-lang-2.4.jar
3.​ commons-logging-1.1.1.jar
4.​ spring-beans
5.​ spring-context
6.​ spring-context-support
7.​ spring-core
8.​ spring-expression
9.​ spring-web
10.​spring-webmvc
11.​velocity-1.7.jar
12.​velocity-tools-2.0.jar

All the above jars are required even for a simple Hello World type MVC app. If any of the above
jars are missing then project might still compile ok but will fail with missing class exceptions
during runtime.

Additionally if log4j logging is required then add log4j jar.

That makes 25 jars in all for a simple Hello World type MVC app.

If additional functionality is required then more jars might be required.

Access Restrictions

To restrict access to certain URL paths only to users logged in to Google accounts,
in web.xml

<security-constraint>​
 <web-resource-collection>​
 <url-pattern>/profile/*</url-pattern>​
 </web-resource-collection>​
 <auth-constraint>​
 <role-name>*</role-name>​
 </auth-constraint>​
</security-constraint>

To further restrict access only to admin users, in above example, change <role-name> from ‘*’ to
‘admin’. Admin users are registered developers of the application.

For above URLs, GAE will automatically display Google login page and on successful login, will
redirect back to app’s URL.

Using HTTPS
To make GAE use https for certain URLs,
in web.xml

<security-constraint>
 <web-resource-collection>
 <url-pattern>/profile/*</url-pattern>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

The Jetty dev server on local machine will ignore above https directive but it will work when
deployed on GAE.

Directory structure

WEB-INF/
​ web.xml
​ appengine-web.xml
​ logging.properties
​ dispatcher-servlet.xml

appengine-web.xml
●​ WEB-INF/ should contain appengine-web.xml over and above web.xml. This file contains

app id and version.
●​ To enable sessions​

​ <sessions-enables>true</sessions-enabled>

build.xml
●​ Change property sdk.dir to point to GAE SDK.
●​ To use JDO 3.0 -​

Modify copyjars and datanucleusenhance targets as shown in GAE docs.
●​ Clean before Build -​

In compile target, add, before anything else,​
<delete dir=”war/WEB_INF/classes”/>​

GAE app in NetBeans SDK

General
●​ Create a Java Free Form project.
●​ Project properties -> Java sources -> Add Folder -> src​

This allows source packages/classes to be added in Projects tab.
●​ NetBeans uses Ant build system. Targets in build.xml are executed.

NetBeans project directory structure
Project directory

●​ src

●​ war
○​ WEB-INF

■​ lib​ (contains 3rd party and GAE libs)
■​ classes (nothing should be directly added to this folder as it is deleted on

executing clean target.)
■​ jsp

●​ build.xml

Auto-complete and Import
Project properties -> Java sources classpath -> Add Jar/Folder

●​ Add all 3rd party jars (which are in lib folder) to above menu option.
●​ This will allow auto-complete and import (Ctrl + Shift + I) in NetBeans.

Context Menu items
Project properties -> Build & Run -> Add context menu item

●​ Ant targets (in build.xml) show up as entries in context menu when project is
right-clicked. By default, only Build and Run are shown. To add more targets, use above
menu. Give each item any arbitrary label and choose required Ant target from dropdown
list.

●​ For GAE, useful targets are update and datanucleusenhance.

Logging
●​ GAE uses java.util.logging.Logger.
●​ Add logging.properties to WEB-INF. It contains a single line -​

​ .level = WARNING​
​ (or .level = INFO)

●​ In appengine-web.xml, add​
<system-properties>​
 <property name="java.util.logging.config.file" value="WEB-INF/logging.properties"/>​
</system-properties>

●​ To use logger,​
e.g.​
​
class MyClass {​
​ private static final Logger log = Logger.getLogger(MyClass.class.getName());​

 ...​
 log.info("Test log msg");​
 ...​
}

Logging using log4j
1.​ Add log4j jar to project i.e. put log4j.jar in yourProjectFolder/war/WEB-INF/lib/
2.​ Put log4j.properties file in yourProjectFolder/src/ i.e. top level source folder.​

compile target in build.xml will copy it to war/WEB-INF/classes/ along with other source
files.

3.​ If the project is a NetBeans project then add path to log4j.jar in​
project properties -> Java sources classpath. This will help in code auto-complete,
auto-import, etc.

4.​ There is no need to add a <system-properties> element in appengine-web.xml as used
for java.util.logging.logger. In fact, if such an element is present then comment it out.
Also, there is no need for a logging.properties file.

Uploading to GAE
1.​ cd project directory.
2.​ appcfg.cmd update war​

(appcfg.cmd is in appengine-sdk-xxx/bin/)
3.​ If project has been compiled with Java 7 then use this commandline instead -​

appcfg.cmd --use_java7 update war ​
(Not required for sdk version 1.7.6 and later)

JDO

Configuration & Build
●​ Create jdoconfig.xml in src/META-INF/. Ant compile target,when executed, will copy it to

WEB-INF/classes/META-INF/. This file defines a persistence-manager-factory bean.
●​ After building the app, run datanucleusenhance Ant target (in build.xml) which does

bytecode enhancement. This target is automatically called by runserver target.

Usage
●​ Create a singleton PMF.java which returns a singleton PersistentManagerFactory (PMF).

This can be used by other classes to persist data. See GAE docs on how to create this
class. PMF.java gets PMF details from jdoconfig.xml.

●​ Any class needing to persist objects should create a PersistenceManager instance from
PMF and use it for CRUD operations.​
e.g.​
​
import some.path.PMF​
​
class MyClass {​
​ PersistenceManager pm = PMF.get().getPersistenceManager();​
 pm.someMethod();​
 ...​
}

●​ Also see JDO Notes.

Data Types

String upto 500 chars

gae.Text upto 1 MB, not indexed

gae.Blob upto 1 MB byte array, not indexed

https://docs.google.com/document/d/1nSqul7Z9r-Qm4U0oMxFNT3y2SkK90ElIkwKqIBM2OiA/edit?usp=sharing

	Google App Engine (GAE)
	Spring 3.x & Velocity on GAE
	Required Jars (when using JDO 3.0)

	Access Restrictions
	Using HTTPS
	Directory structure
	appengine-web.xml
	build.xml
	GAE app in NetBeans SDK
	General
	NetBeans project directory structure
	Auto-complete and Import
	Context Menu items

	Logging
	Logging using log4j

	Uploading to GAE
	JDO
	Configuration & Build
	Usage
	Data Types

